
For graduate students unfamiliar with particle physics, An Introduc-
tory Course of Particle Physics teaches the basic techniques and 
fundamental theories related to the subject. It gives students the 
competence to work out various properties of fundamental particles, 
such as scattering cross-section and lifetime. The book also gives a 
lucid summary of the main ideas involved. 

In giving students a taste of fundamental interactions among ele-
mentary particles, the author does not assume any prior knowledge 
of quantum field theory. He presents a brief introduction that sup-
plies students with the necessary tools without seriously getting into 
the nitty-gritty of quantum field theory, and then explores advanced 
topics in detail. The book then discusses group theory, and in this 
case the author assumes that students are familiar with the basic 
definitions and properties of a group, and even SU(2) and its repre-
sentations. With this foundation established, he goes on to discuss 
representations of continuous groups bigger than SU(2) in detail.

The material is presented at a level that MSc and PhD students can 
understand, with exercises throughout the text at points at which 
performing the exercises would be most beneficial. Anyone teaching 
a one-semester course will probably have to choose from the topics 
covered, because this text also contains advanced material that 
might not be covered within a semester due to lack of time. Thus it 
provides a teaching tool with the flexibility to customize the course 
to suit your needs.
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Preface

Modern theory of particle interactions is based on gauge theories. Among
the four fundamental interactions, all but the gravitational one have been
moulded in the form of gauge theories. There are two important ingredients
in a gauge theory: first, it has to be a quantum field theory, and second, it
must have some internal symmetry that governs its dynamics.

In giving the reader a taste of fundamental interactions among elementary
particles, I have not assumed any prior knowledge of quantum field theory.
I have presented the necessary tools of quantum field theory in Ch. 4 of this
book. Of course, such a brief introduction can never be complete, and many
results have been stated without proof. I have taken care to ensure that the
number of such results is kept to a minimum without seriously getting into the
nitty-gritty of quantum field theory, and the nature of these results is more
didactic than conceptual. But if the reader wants to understand the reasons
behind these formulas, he or she will have to supplement this book with a
beginner-level textbook on quantum field theory.

I do not take the same attitude regarding some advanced topics of quantum
field theory. These have been dealt with in more detail. Such discussions start
from Ch. 11 of the book and appear in different sections of the chapters that
follow. In other words, I assume only a beginner’s knowledge of quantum field
theory, not an expert’s knowledge.

In regard to group theory, I have assumed a somewhat different level of
preparation from the reader. I assumed that the reader is familiar with the
basic definition and properties of a group, and is even familiar with the group
SU(2) and its representations. This seemed like a fair assumption since these
topics are covered by any textbook on quantum mechanics in the context of
angular momentum operators. For continuous groups bigger than SU(2), I do
not assume any prior knowledge. Their representations have been discussed
in detail in the text.

The idea of writing such a book grew when I taught a one-semester course
on particle physics for several years during the last decade at my home insti-
tute, the Saha Institute of Nuclear Physics. However, the book contains much
more than what could be covered in that one-semester course. Students enter
our institute after completing their M.Sc. programs, so most of them already
come with some background of particle physics. Some preliminary material

xxiii
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presented in the book can therefore be omitted for them, but I have included
it for the sake of completeness. The book also contains some advanced mate-
rial that could not be covered in the course due to lack of time. I think finally
I have been able to cover the subject at a level where an M.Sc. student can
start reading the book and understand a good part of it, and also beginning
Ph.D. students can learn something from it. Anyone teaching a course from
the book will have to probably choose from the topics, depending on the level
of students in the course. But the book is not only about teaching courses: I
hope established researchers will also find the book useful.

I have put in a lot of exercises for the benefit of the students. I have
placed them not at the end of the chapters but within the text, in places
where I think performing the exercise would be most helpful for the students.
Even if a student does not feel like solving a particular exercise while reading
through the text, it is advised that the student reads the statement of the
exercise, because some exercises complement the text in a useful way. Some
exercises have been marked with a ‘� ’ sign, signifying that they have in fact
been worked out elsewhere in the book, although I don’t mention where.

It took me a lot of time to finish the book, much more than what I would
have liked. I am very fortunate that Lincoln Wolfenstein, who introduced
me to the world of particle physics, has kindly read earlier drafts of several
chapters of the book and has made illuminating and helpful remarks. I am
also deeply indebted to a long list of students and colleagues, who have ei-
ther helped me out when I was stuck, or suggested modifications to earlier
drafts, or read some chapters and made extensive comments. The list includes
Biswajit Adhikary, Sunanda Banerjee, Bireswar Basu-Mallick, Gautam Bhat-
tacharyya, Francisco Botella, Gustavo Branco, Sayan Chakrabarti, Somdeb
Chakraborty, Subhasis Chattopadhyay, Abhishek Chowdhury, Dipankar Das,
Asit Kumar De, Jadunath De, Amit Ghosh, Kumar Sankar Gupta, Avaroth
Harindranath, Aminul Islam, Anirban Kundu, Amitabha Lahiri, Debasish
Majumdar, Parthasarathi Mitra, Kuntal Mondal, Santanu Mondal, Swagata
Mukherjee, Munshi Golam Mustafa, José F. Nieves, Shoili Pal, Jorge Romão,
Shibaji Roy, Satyajit Saha, Santosh Samaddar, Subir Sarkar, Ashoke Sen,
João Silva — and I apologize to anyone whose name may have been omitted.
I also received help and advice from Michael Barnett, Kunio Inoue, Serguey
Petcov, Hitoshi Murayama, Abdelhak Djouadi, Sven-Olaf Moch, Kevin Mc-
Farland, Heinrich Päs, Subir Sarkar, Horst Wahl and Graeme Watt regarding
obtaining permissions for reproducing several illustrations used in the book.
Publishers of various journals have also been very kind in granting permis-
sions. I have acknowledged them in proper places. I cannot overstate my
indebtedness to my home institute, the Saha Institute of Nuclear Physics, for
providing me with wonderful infrastructural facilities. For some extended pe-
riod during the writing of this book, I was a visitor at the Instituto Superior
Técnico in Lisbon, and I thank my hosts for their hospitality. Peripheral help
from Kamakshya Prasad Modak and Souvik Priyam Adhya is also appreci-
ated. And finally, I want to thank the wonderful support staff at the CRC
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Press, who have helped me in a lot of ways in preparing the manuscript in its
final form.

Despite all the help I have received, I am sure that some mistakes must
have remained in the book. I am responsible for all of them. Since I have
submitted a camera-ready version of the book to the publishers, I am even
responsible for any typographic errors. I will appreciate if any reader points
out any mistake and will keep a list on the internet. For now, the errata will
be located at http://www.saha.ac.in/theory/palashbaran.pal/books/

partphys/errata.html. In case I have to change this web address, please
search on the internet with palash+particle+course.

Palash B. Pal
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Notations

This is not an exposition of all symbols used in the book. It is an explanation
of why such a list could not be made.

It would have been nice if a one-to-one correspondence could be main-
tained between the physical quantities and the symbols that represent them.
Alas, it was not possible to do that without creating notations which were un-
necessarily non-transparent, or uncomfortably different from accepted ones,
or both. Take, for example, the lowercase letter ‘s’. It is used to represent
spin, for obvious reasons. But it is also used customarily to denote one of the
Mandelstam variables. One might think of using the uppercase letter for one
of the two, but then it will be confused with the symbol for the strangeness
quantum number. Similarly, the letter C is used for charge conjugation as
well as for the charm quantum number. Maybe the worst confusion occurs
with B, which can be the baryon number or the bottom quantum number, as
well as the symbol for the branching ratio of a decay channel.

In the end, I stopped worrying about these things by making two adjust-
ments with my conscience. First, I assumed that the reader would be mature
enough to understand the meaning of a symbol from its immediate context.
Second, in some cases, I used different font shapes of the same letter, some-
times with shades of gray, to stand for different things. Here are some (and
definitely not all) examples of uses of this sort:

s Mandelstam variable

s Spin vector

π Irrational number

π Pion

Γ Decay rate

Γ Gamma function

In some cases, I have pointed out such shape differences within the text.
If the reader carefully notices them, the differences should be apparent. Con-
versely, if the reader feels that looking at font shapes is too much of a bother,
at least he or she is no worse off than looking at identical symbols for different
quantities.

In a very few cases, I have used notation that is definitely non-standard.
It is customary to denote antiparticles by a bar above the symbol for denoting
the corresponding particle, e.g., ν for antineutrinos. I never liked this idea
because the overbar is used for constructing bilinears of fermion fields with
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definite transformation properties under the Lorentz group, e.g., ψψ denotes
a scalar. So I have used hats to denote antiparticles. Thus, q̂ stands for
antiquark and ν̂ for antineutrinos. I am not claiming that the hat has not
been used for any other purpose. For example, unit 3-vectors have been
denoted by n̂. My only claim is that such other uses occur in very few places,
so that they do not conflict with my use of symbols for antiparticles in a large
way.

There is a bound state of the charm quark and its antiquark that is referred
to as J/ψ in the literature, and called j-psi. I do not like using the slash in
the name. Using the flexibilities of LATEX typesetting, I have superposed the
shapes of the two letters involved to create the notation JΨ. Some of my
friends find it outrageous. I obviously don’t.



Chapter 1

Scope of particle physics

1.1 What are elementary particles?

Particle physics is the branch of physics which studies elementary particles
and their properties.

It is easy to clarify what we mean by “elementary particles”: these are
particles which do not have any substructure. In other words, these are objects
which are not made up of smaller objects. Turning the tables around, we
can say that the elementary particles are the fundamental constituents of all
objects in the universe.

It is not so easy to tell which particles are elementary. It is possible to
say which particles are not elementary, if one knows of some experiment that
shows substructure of the object. But no experiment can guarantee that a
given object does not have any substructure. A new experiment might show
substructure in an object that was earlier considered elementary. Atoms used
to be thought of as indivisible until a series of experiments performed in the
late 19th and early 20th century confirmed the existence of electrons and the
atomic nucleus. It was soon realized that for all atoms except the lightest one,
viz., hydrogen, the nucleus has a substructure. Protons and neutrons came
to be collectively called nucleons because they are the constituents of nuclei,
and treated as elementary particles. A few decades later, new experiments
indicated that the nucleons themselves have substructure, so they cannot be
called elementary particles any longer. We now believe that they are made
up of quarks , which are elementary particles like the electrons.

Thus the list of elementary particles changes with time. There is no guar-
antee that today’s elementary particles would not turn out to be composite
objects tomorrow. But this cannot also stop us from having a discussion on
elementary particles as they are known today. If things change tomorrow, the
discussion will change, no doubt. We can only employ the best knowledge that
is available at the moment to decide which objects are elementary. Needless
to say, that will be our approach in this book. In §1.2 and §1.4, we are going

1



2 Chapter 1. Scope of particle physics

to provide an inventory of all particles which are believed to be elementary.
We will discuss the properties of these particles in this book.

An elementary particle does not have to be subatomic, in the sense that
it does not have to be a constituent of atoms in some way or other. Näıvely,
when we think about elementary particles, we have one of the two following
propositions in our mind, or maybe some mixture of the two:

1. Elementary particles are constituents of larger conglomerates.

2. Elementary particles do not have any constituents.

It is important, therefore, to be absolutely clear at the outset that when we
talk about the field of “elementary particle physics”, we use the word “ele-
mentary” only in the second sense. The existence of the first property might
be crucial in detecting a particular elementary particle, but is not necessary
for deciding whether a particular particle should be included in the list of
elementary particles. In other words, the capability of forming larger con-
glomerates is a property that an elementary particle may or may not have.
In fact, most elementary particles do not have this property for one reason
or other. For example, if the particle is very unstable, it would not have the
chance of coming in contact with other particles to form a big, macroscopic
chunk of matter. Also, not all particles can bind with others. One of the
best-known elementary particles, the photon, cannot bind to other particles
and is not a constituent of any bigger structure.

1.2 Inventory of elementary fermions

In 1897, the electron was discovered by J. J. Thomson, who suggested that
electrons were constituents of atoms. Before that, it was believed that the
atoms were indivisible. In search for all constituents of atoms, it was soon
discovered that the negative electric charge of the electrons is counterbalanced
in atoms by the positive charge of the nucleus. The nucleus, though small,
contains protons and neutrons, which are much heavier than the electrons.
The electrons, protons and neutrons thus constitute atoms, a picture that
was established finally by the discovery of the neutron in 1932 by James
Chadwick.

The electron, the proton and the neutron are all examples of fermions,
which have an intrinsic angular momentum, or spin, that is a half-integral
multiple of the fundamental constant ~. In particular, all three of these have
spin equal to 1

2~. The other alternative is to have spin in integral multiples of
~, and particles carrying such spin are called bosons. In this section, we will
consider elementary fermions only.

The proton and the neutron are not elementary particles, as we know now.
But the electron is. The electron thus goes back longer into history than any
other particle which is considered elementary even now.
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With the first observation of the muon (µ−) in 1937 and the subsequent
study of its properties, it was clear that there are other elementary particles
which are very much similar in their properties to the electron, except that
they are heavier. Rabi asked his famous question, “Who ordered that?” ex-
pressing his surprise and disgust at the fact that Nature seems to be repeating
things. We don’t know the answer to Rabi’s question, but we know that the
repetition does exist. Of course there are some differences in the properties
of the muon and the electron. For example, the muon, being heavier, can
decay into lighter particles, which the electron cannot. But, as this example
shows, the apparent differences can all be traced to the difference in mass. At
a basic level, the electron and the muon have the same interactions. In mod-
ern terminology, we call the muon a particle of the second generation. Much
later, in 1975, another such particle has been discovered, which is called the
tau particle (τ), or simply the tau. It belongs to the third generation.

In 1930, in order to explain the continuous spectrum of electrons in nuclear
beta decay, Pauli proposed that a neutral fermion was produced in such pro-
cesses. Neutral fermions are collectively called neutrinos . Pauli’s conjecture
was proved in 1956, and thus the existence of one kind of neutrinos was con-
firmed. In the modern terminology, these are called the electron-neutrinos(νe)
since they are related to beta decay, where an electron is emitted. In the 1960s,
it was realized that the muon is also accompanied by its own neutrino, which
is now called the muon-neutrino (νµ). The tau particle is also believed to
have its own neutrino which is different from νe and νµ, and is denoted by
ντ. The neutrinos, therefore, also conform to the generational structure.

These neutrinos, along with the electron, the muon and the tau, form a
class of elementary particles which are called leptons . There is another class
of elementary particles which are called quarks . Unlike the leptons, no one
has seen quarks in their free state. Quarks always appear in bound states,
examples of which are protons and neutrons that occur in atomic nuclei.
Bound states involving quarks are called hadrons .

Properties of quarks must be inferred from the properties of hadrons.
Six types of quarks are necessary to understand the properties of all known
hadrons. These quarks are given the names ‘up’ (u), ‘down’ (d), ‘charm’ (c),
‘strange’ (s), ‘top’ (t) and ‘bottom’ (b). They also seem to follow the gener-
ational structure, in the sense that the properties of u, c and t are similar,
and so are the properties of d, s and b. Thus the six quarks come in three
generations. These, along with the three generations of leptons mentioned
earlier, exhaust the list of elementary fermions as it is known today.

A cautionary remark should accompany this list. It is known that at least
any particle carrying a non-zero electric charge must have an antiparticle
which carries an opposite charge. Neutrinos are electrically neutral. It is
not clear whether they have antiparticles which are different from themselves.
But all other particles listed above are charged. The electron and its likes
are negatively charged, so they have their own antiparticles as well. The
antiparticle of the electron is called the positron, whereas those for the muon
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Table 1.1: Elementary fermions. All of them have spin- 1
2
. The antiparticles have not

been included in the list.

Name Symbol
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Electron e
Electron-neutrino νe

Muon µ

Muon-neutrino νµ

Tau τ

Tau-neutrino ντ

Q
u
a
rk

s

Up u
Down d
Charm c
Strange s
Top t
Bottom b

and the tau do not have any such special names: they are called just antimuon
and antitau. All quarks have electric charge, so there must be six different
types of antiquarks. Their names are also quite mundane, antiup, antidown
etc.

It may be a matter of taste to decide whether to count the antiparticles
as separate entries while preparing a list of elementary particles. On the one
hand, it can be argued that any antiparticle is indeed different from the cor-
responding particle, at least in the electric charge and often in other respects
as well, so they ought to be counted separately. On the other hand, it can be
argued that the properties of any antiparticle follow from the properties of the
corresponding particle, and therefore the antiparticle is not an independent
object.

In compiling a list of all fundamental fermions in Table 1.1, we have taken
the latter viewpoint. The names appearing in this table, along with their an-
tiparticles, complete the list of elementary fermions to the best of our knowl-
edge today. There are also elementary particles which are bosons. We will
get acquainted with them in §1.4.

1.3 Which properties?

We have announced our list of elementary fermions. Let us suppose that we
will also agree on our list of elementary bosons. Even after that, it remains to
be decided which properties of these particles should fall within the purview
of particle physics. It seems that if we successfully identify all elementary
particles and know all of their properties, we will know their behavior in all
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sorts of circumstances and in any sort of conglomeration. This would mean
that we would know the properties of any system. Thus, in principle, it
might seem that this branch of physics should cover all aspects of physics,
and indeed everything else that there is to know. Following the properties of
single particles, we should be able to know everything about any system.

But this would be a worthless pursuit. We really cannot discuss “all”
properties of all systems starting from elementary particles. The problems
are twofold. First, if we have a large number of particles in a system, there
is enormous practical difficulty in discussing the properties of that system
starting from those of individual particles. Often, while discussing a physical
process, it is beneficial to proceed by taking larger units comprised of many
particles, whose identities are not disturbed in the process. For example, while
discussing a football match, we talk about the players and the ball, treating
them as units. It would not make much sense to talk about the atoms in the
ball, or the electrons in the ball.

The second kind of problem is that, in discussing large systems, one often
encounters useful parameters which appear as co-operative effects, i.e., be-
cause of the presence of a large number of particles. Things like temperature
and entropy cannot be defined for a single particle, yet they are undeniably
very helpful concepts while discussing thermal properties of a system.

It is therefore customary to treat physical problems in a step-by-step man-
ner, not going beyond the substructure more than is necessary to understand
a particular problem. For the football match, we do not need to get into
the anatomy of the players. If a player is injured and has to be operated
upon, then we stop considering the player as a unit and discuss his or her
anatomy. But even then, we think in terms of bones and organs rather than
molecules and atoms. For discussing the properties of a system, it is usually
not necessary to go beyond one level of substructure.

Turning the table around, we can say that the properties of any elementary
particle are hardly discernible in systems which have more than one level of
structure. This will be our guiding principle in determining the scope of the
subject. We will discuss elementary particles, and the next level of structures
formed by them.

For example, we will study interactions of the electron and its antipar-
ticle, the positron. We can also discuss the positronium system, which is a
bound state of an electron and a positron. We will study protons, because
they are the first level structures formed from quarks. In fact, the proton
is just an example of the class of structures known, as mentioned earlier, as
hadrons. There are many hadrons, which can be broadly divided into two
classes. Hadrons which have half-integral spin, e.g., the proton and the neu-
tron, fall into the class called baryons . Hadrons with integral spin, like the
pion, are called mesons . In other words, baryons are fermions, mesons are
bosons. We will encounter many kinds of hadrons and discuss their properties
in this book.
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But a hydrogen atom will not fall within the purview of particle physics,
because that is a bound state of the electron and the proton, and the latter
itself is a bound state of elementary quarks. Even nuclei are not included
in discussions of particle physics, because they are bound states of protons
and neutrons, neither of which is elementary. We will make exception to this
rule only in a few places in the book when deuterium, tritium and helium
nuclei will make their appearances in our discussions. However, even in such
places, the aim will not be so much to understand the properties of those
bound states, but rather to illustrate some general principles that apply to
elementary particles as well.

To summarize then, we will study the properties of elementary particles
as well as the first level of structures formed by them. There are two kinds
of properties associated with any system. The first kind can be called static
properties, which the system possesses even if it is left alone. The second kind
of properties can be classified as dynamical, and involve the interactions of
the system with other systems. For example, the mass, the spin, the charge
and the magnetic moment of a particle are static properties. On the other
hand, if we ask how an electron behaves when it collides with a pion, we are
essentially inquiring about a dynamic property of the electron.

In practice, the difference between these two kinds of properties is less
pronounced than what their definitions might suggest. The reason is that
even a static property is revealed to us only through interactions. Even if we
agree that the electron has a charge when it is left alone, we do not know about
it until the electron undergoes some sort of interaction with other things, or
even with another electron. Thus, whether static or dynamic, a property
of a particle is known through interactions. It is therefore good to take an
inventory of interactions between particles.

1.4 Fundamental interactions

There are four kinds of fundamental interactions, as far as we know. The
oldest known one is the gravitational interaction, known since the time of
Newton in the 17th century. In the 19th century, electricity and magnetism
were unified into the electromagnetic theory, and this is the second kind of
interaction that we recognize to be fundamental. In the early part of the
20th century, with the discovery of the atomic nucleus, it was necessary to
introduce two more kinds of fundamental interactions. One of them is the
strong interaction, required to explain the stability of the atomic nuclei despite
the fact that the protons in the nuclei exert repulsive Coulomb forces on one
another. The other is the weak interaction, needed to explain the phenomenon
of beta radioactivity, in which an electron or a positron comes out of a nucleus.

In this book, gravitational interaction will not be discussed at all. The
reason is twofold. First, the gravitational interaction between elementary
particles is much feebler than all other interactions. For example, the grav-
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Table 1.2: Elementary bosons.

Spin Name Number Symbol

1

Photon 1 γ
W bosons 2 W+,W−

Z boson 1 Z
Gluons 8 g

0 Higgs boson 1 H

itational potential between two protons is roughly 10−39 times weaker than
the Coulomb potential between them. Thus, gravitational interactions can
be neglected to a very good approximation. The second reason is that there
is no universally accepted quantum theory of gravitation. In this book, we
will discuss the other three kinds of interactions, using quantum theory as the
theoretical basis.

In quantum theory, interactions are also described in terms of exchange
of particles. For example, electromagnetic interactions are described by the
mediation of the photons, which are seen as the quanta of the electromagnetic
field. Photons have spin 1 (in units of ~) and are therefore bosons. Other
interactions are also mediated by spin-1 bosons. The weak interactions are
mediated by the particles called W+ and W− which have electric charges
shown as the superscripts and an uncharged boson Z. The strong interactions
are mediated by eight particles, which are collectively called gluons. Like the
quarks, the gluons have also never been seen as free particles. Their existence
is inferred from theoretical calculations regarding the properties of hadrons.

In addition, the standard theory of electroweak interactions postulates that
there is a spinless boson. It is called the Higgs boson. Since the inception of
the standard model, there were strong theoretical reasons to believe that it
existed, although there were alternatives to the standard model which avoid
this prediction. In 2012, an announcement was made about the existence of
a boson that conforms with the Higgs boson of the standard model, although
there is not enough data to deduce various properties of the particle and
therefore to confirm that it is indeed the Higgs boson proposed in the standard
model. We will assume that it is so and stick to the standard model, according
to which the elementary bosons are those listed in Table 1.2.

Unlike the list of fermions, the names of all antiparticles have been included
in the list of bosons. The reason is that many of the elementary bosons are
their own antiparticles. The photon, for example, is its own antiparticle. So is
the Z boson, and the Higgs boson according to the standard model. The W+

and the W− are antiparticles of each other. Each gluon has its antiparticle
included in the set of eight.
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1.5 High energy physics

The branch of physics that is called particle physics is also called high energy
physics . The two names suggest that the study of the most minute objects is
somehow related to the use of highest energies.

It is easy to argue that there has to be a connection between these two
extremes. If we shine an object with some kind of waves and want to see
substructures of the object at a length scale smaller than a certain value ℓ,
we need waves whose wavelength is smaller than, or at most comparable to,
ℓ:

λ . ℓ . (1.1)

The relation between the wave and particle natures is provided by the de-
Broglie relation:

p =
2π~

λ
, (1.2)

where p denotes the momentum of the particles that correspond to the waves,
or in other words are the quanta of the waves. Eq. (1.1) can then be written
as

p &
~

ℓ
. (1.3)

This is the crucial equation. It tells us that, in order to study length scales or
order ℓ, we must use probes whose quanta should have a minimum momentum
whose magnitude is inversely proportional to ℓ. Thus, in order to know about
smaller and smaller structures, we need to use more and more energetic probes.

We can look at the question in another way. Suppose we have some ob-
jects whose lengths are of order ℓ, and we want to know whether they are
made up of some building blocks. Well, if there are such building blocks, or
particles, they are no doubt confined in some manner within a distance of
order of ℓ, which defines the size of the supposedly composite object. By the
uncertainty principle, we conclude that the momentum uncertainty of these
objects satisfies the relation

∆p &
~

ℓ
, . (1.4)

Now, if the momentum uncertainty is that big, the momentum itself must at
least be of that order. This sets up a minimum value for the kinetic energy of
the particles that constitute the composite object. Since kinetic energy is a
monotonically increasing function of momentum, it follows that the expression
for the minimum possible kinetic energy should be of the form ℓ−α, where α
is positive, and its value depends on the relation connecting momentum and
kinetic energy. For example, for non-relativistic particles the kinetic energy is
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a quadratic function of the momentum, so that α = 2. For massless particles,
α = 1.

Obviously, the particles must also possess an overall attractive potential
energy. In order that the composite system is bound, the total energy must
be negative, i.e., the magnitude of the potential energy has to be larger than
that of the kinetic energy. However, the two magnitudes do not differ by
huge factors, as exemplified in Ex. 1.1 below. Thus, the magnitude of the
total energy, called the binding energy of the composite object, is usually
comparable with the individual contributions of the kinetic and the potential
energies. We need to overcome this binding energy if we want to break up
the object and see its constituent particles. For this, we need probes which
are more energetic than the the binding energy. The minimum energy of the
probes will thus have to be proportional to ℓ−α, which shows that we need
higher energies in order to gain access to smaller length scales.

2 Exercise 1.1 Consider the electron in the hydrogen atom. Treating
it as a classical system and using Newton’s laws of motion, show
that the magnitude of its potential energy is twice that of the kinetic
energy.

2 Exercise 1.2 Take the size of a typical atom to be of order 10−8 cm.
Use the arguments above to show that its binding energy has to be at
least of order of a few eV. [Note : 1 eV = 1.6 × 10−12 erg.]

2 Exercise 1.3 For nuclei which have typical dimensions of order
10−13 cm, show that the binding energy has to be at least of the order
of tens of MeVs.

2 Exercise 1.4 Electrons have been bombarded at energies of the order
of 100 GeV, and those experiments have not revealed any substructure
of the electron. Even if the electron has any substructure, argue that
its size must be smaller than of order 10−16 cm.

Indeed, the history of discovery of smaller and smaller substructures is
intimately connected to the ability of obtaining and controlling probes of
higher and higher energies. In the second half of the 19th century, there were
immense advancements in the science and technology of electricity, which
made it possible to produce moderately high voltages. Such voltages were
applied to electrodes to impart energies of the order of tens of eVs to atomic
electrons and strip them out of the atoms, activities which led to the discovery
of the electron. Radioactivity was discovered at the turn of the century. Soon
after, Rutherford realized that the products of radioactive decay are very
energetic, have kinetic energies of the order of a few MeVs. He used these as
probes and shot them at atoms, discovering the nuclear structure of atoms.

A big revolution in this field was ushered by Lawrence, who in the 1930s
discovered a technique by which velocities of particles could be increased
through periodic kicks. Cyclotrons were built to utilize this technique, and
the age of particle accelerators began. At first, the accelerators were designed
to impart a few, or at most a few tens of, MeVs of energy on the particles
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circulating within them. In the pursuit of smaller and smaller distances, the
higher and higher energies were sought. This required modifications of the
Lawrencian cyclotron, which worked perfectly only if the particles did not
have velocities or energies in the extreme relativistic regime. In the 1960s,
when one could produce probes having kinetic energies of the order of a GeV,
substructures of protons were revealed in some epoch-making experiments.
By the end of the 20th century, the experimentalists could achieve energies
that were a couple of orders of magnitude higher than GeV.

It has to be appreciated that these are very high energies. The mass of the
electron is 9.1×10−28 g. The energy that an object possesses due to its mass,
to be called the rest energy, was given in the famous formula by Einstein:

E = mc2 . (1.5)

For the electron, this rest energy (sometimes also called the rest-mass energy)
is 0.511 MeV. Thus, even with tens of MeVs of kinetic energy, an electron is
extremely relativistic.

The proton is about 2000 times heavier: its rest energy is 938 MeV, or
roughly about 1 GeV. The neutron is very slightly heavier, by only about
1.3 MeV. But the energies available in a modern day state-of-the-art accel-
erator machine are much larger than the mass energies of the protons or
neutrons. Thus, even these particles will be extremely relativistic in these
machines.

2 Exercise 1.5 Calculate the rest energy of the electron in the MeV unit
to verify the number given in the text.

2 Exercise 1.6 Calculate the speed of an electron if its kinetic energy
is 10MeV. [Note : Do not use the Newtonian formula for kinetic energy. For a
particle not in a bound state, the kinetic energy is the total energy minus the rest
energy.]

1.6 Relativity and quantum theory

Since we must deal with high energies, or equivalently high momenta, we
cannot discuss these matters non-relativistically: it is imperative that we have
a relativistic theory of particle interactions. Moreover, since we are talking
about very small objects, clearly we cannot talk in classical terms: quantum
nature of the particles must be taken into account in understanding their
properties.

Relativistic quantum theory is not a trivial extension of the non-relativistic
version. In other words, one cannot merely use relativistically correct expres-
sions for the Hamiltonian of any given system and use them to perform the
same kind of calculations as one performs in non-relativistic quantum mechan-
ics. One needs a completely different starting point. The reason is simple. In
non-relativistic quantum mechanics, we take time as the parameter in which
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things evolve. On the other hand, spatial co-ordinates are treated as opera-
tors, as is obvious from their commutators with components of momentum:

[
xi, pj

]
= i~δij . (1.6)

We calculate the expectation value of the co-ordinate operator for a particle.
We also state that the uncertainties in a position co-ordinate and its canonical
momentum must satisfy the uncertainty relation:

∆x ∆px ≥ ~ , (1.7)

and similar relations for other components. There is also a time-energy un-
certainty relation,

∆t ∆E ≥ ~ , (1.8)

but that has a different interpretation in non-relativistic quantum mechanics,
since time is not an operator and one cannot talk about the measurement
uncertainty of time. Rather, we say that if one wants to make a measurement
of energy to an accuracy better than ∆E, then the time needed to make the
measurement, ∆t, satisfies the inequality of Eq. (1.8).

In a relativistic theory, space and time are intimately connected, and they
form what is called the spacetime. The Lorentz transformation equations, for
example, involve linear combinations of spatial co-ordinates and time. In such
a setting, therefore, it is imperative that space and time must be treated on the
same footing. One cannot have spatial co-ordinates as operators while time is
a parameter in the theory. So one takes both space and time as parameters,
and the physical objects depend on them.

This changes the whole approach. At a conceptual level, this change is best
exemplified by the position-momentum uncertainty principle of Eq. (1.7). It
no longer has the operator interpretation of non-relativistic quantum theory.
Rather, it should now be understood as something similar to the time-energy
uncertainty relation of Eq. (1.8). Thus, we will take Eq. (1.7) to mean that
a momentum measurement with precision better than ∆px is possible only if
the linear extent of the system, ∆x, satisfies that inequality. We point out
that this is the meaning in which uncertainty relation has been talked about
in §1.5.

At an operational level, the change of approach implies that, rather than
talking of the position operators and other operators which depend on time,
we should base our physical theories on some objects which depend on both
space and time. The simplest such objects are fields , which in classical physics
mean functions of space and time. For example, when one specifies the electro-
magnetic field, one gives the functional dependence of electric and magnetic
fields on the spatial co-ordinates and time. At any spacetime point, the value
of a classical field is thus a number, and the collection of such numbers over
the entire spacetime constitutes the state in which the field is.
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However, the structure of classical fields does not work. It produces sys-
tems which have no ground state, and are therefore completely unstable and
pathological. To cure this problem, one needs quantum fields. The basic dif-
ference with classical fields is that a quantum field at a given spacetime point
is not a number. It is an operator which acts on states, creating or annihi-
lating particles. These statements will be explained in some more detail in
Ch. 4, where we will also discuss how this idea cures the problem of ground
state.

And that brings in the point that quantum fields are associated with cre-
ation and annihilation of particles. This is a very big bonus, because in high
energy processes, particles can of course be created from the available energy.
For example, suppose an electron collides with its antiparticle, a positron.
The end product of the collision might be two such pairs of the particle and
its antiparticle:

e− + e+ −→ e− + e+ + e− + e+ , (1.9)

provided the total kinetic energy of the initial electron and the positron ex-
ceeded the mass energy of the new pair. It is impossible to discuss such
processes in the framework of non-relativistic quantum mechanics.

And that is not just because the energies are in the relativistic regime
for the example mentioned above. It is not necessary that the energy for
producing the final particles should come from kinetic energies of the initial
ones. Mass energy can also do the job. For example, there are many unstable
particles which decay into other particles, and such decays are possible because
the total mass of the decay products is less than the mass of the original
particle. In such cases, decays are possible even in the rest frame of the
parent particle where it has no kinetic energy. One needs quantum field
theory to discuss such phenomena, because, as we said, quantum field theory
is armed with a mechanism of particle creation and annihilation, whereas
non-relativistic quantum mechanics is not.

In summary, it is imperative that we use quantum field theory. So we
discuss rudiments of this theory in Ch. 4 before embarking on properties of
elementary particles. But before ending this chapter, we want to make some
concluding remarks.

1.7 Natural units

Usually, we employ a system of units where there are three independent kinds
of units, and we conveniently take them as the units of mass, length and time.
Units of these three fundamental quantities are unrelated, and we choose them
independently of one another. Other units, like those of force or energy, can
be derived from these basic units.

Although there is nothing wrong with this program, one often curbs the
freedom of choosing units while discussing relativistic quantum theories, be-
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Table 1.3: Dimensions of important kinematic quantities in natural units.

Quantity
Dimension in

conventional units natural units
Length [L] [M ]−1

Time [T ] [M ]−1

Velocity [LT−1] [M ]0

Momentum [MLT−1] [M ]1

Force [MLT−2] [M ]2

Angular momentum [ML2T−1] [M ]0

Energy [ML2T−2] [M ]
Energy density [ML−1T−2] [M ]4

Action [ML2T−1] [M ]0

cause it makes calculations much simpler. In a relativistic theory, the constant
speed of light c must appear in physical formulas. We can choose the units
of length and time in such a way that this speed has the value 1 in our units.
Effectively, it means that if we choose ‘second’ as the unit of time, we choose
the unit of length as the distance that light travels in 1 second. This does not
affect the unit of mass, which can be chosen in such a way that the value of
~ becomes 1. That will also simplify some formulas, since factors of ~ appear
everywhere in quantum theory. If we choose the units by these restrictions,

c = ~ = 1 , (1.10)

they are called natural units. We will use them throughout in this book.
Effectively, this means that we will have only one independent unit: the

other two will be determined by the conditions in Eq. (1.10). We will take the
unit of mass to be the independent one, and denote it by [M ]. Remembering
Einstein’s formula for the rest energy, E0 = mc2, we conclude that energy
must also have the dimension of mass since c = 1 in the natural system of
units. From Planck’s formula, E = hν or E = ~ω, we have to then infer that
frequency or ω has the dimension of [M ], which means time has the dimension
of [M ]−1. Since c = 1, length must also have the same dimension. And the
list can be easily extended to many other things, including the examples that
have been presented in Table 1.3.

It is to be noted that we are not losing any information by omitting factors
of c and h in our formulas. We can always put them back by performing simple
dimensional analysis. In other words, if we want to go back to conventional
units, we put factors of the form ca~b in each term of an expression, and then
equate powers of length and time dimensions to find a and b. The procedure
is simple and short. This is why Feynman commented that keeping track of
the c’s and the ~’s is a complete waste of time.
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2 Exercise 1.7 The Planck mass (MP ) is defined in the natural units
by the relation

MP =
1√
GN

, (1.11)

where GN is Newton’s gravitational constant. Rewrite this relation in
conventional system of units, reinstating factors of c and ~ into the
definition. Hence, find the value of MP .

2 Exercise 1.8 Repeat Ex. 1.2 (p 9) to Ex. 1.4 (p 9) in the natural units.

1.8 Plan of the book

The structure of the rest of the book is as follows. In Ch. 2 and Ch. 3, I cover
some introductory material. Ch. 4 gives a brief introduction to the basics
of quantum field theory. This introduction has to be quick as well as dirty,
because many of the assertions made in the chapter have not been proved.
It has been written more or less in a recipe style. More advanced topics of
quantum field theory, which are not expected to be covered in a first course
of the subject, have been discussed in detail in some of the later chapters, as
we will describe here.

In Ch. 5, I discuss quantum electrodynamics (QED for short), the field
theory of electromagnetic interactions. In Ch. 6 and Ch. 7, I discuss various
discrete symmetries that are crucial in the study of particle physics.

Then, in Ch. 8 and Ch. 10, I discuss various global symmetries of strong
interactions. This is followed by an introduction to Yang-Mills gauge theories
in Ch. 11, and then quantum chromodynamics (QCD) in Ch. 12. Both pertur-
bative and non-perturbative aspects of QCD have been discussed. In Ch. 13,
I discuss the structure of hadrons that is understood from consideration of
various deep inelastic scattering experiments.

There is an intervening chapter, Ch. 9, which I have not cited in the pre-
vious paragraph. This chapter contains a brief discussion of various experi-
mental techniques. An experimentalist would be highly dissatisfied with this
chapter. It can at best be called a summary of experimental questions that
a theorist should be aware of, and a history of development of experimental
techniques related to the study of elementary particles.

The next few chapters discuss weak interactions, starting with the Fermi
theory in Ch. 14. Spontaneously broken quantum field theories have been
introduced in Ch. 15, and the standard electroweak model introduced in Ch. 16
with only the leptons, and extended to quarks in Ch. 17. In Ch. 18, I discuss
various global symmetries of the standard model, including chiral symmetries
and chiral anomalies. Ch. 19 is devoted to the discussion of properties of gauge
bosons of the standard model, as well as the Higgs boson.

In Ch. 20, I go back to quarks again, this time introducing the heavy
quarks, discussing properties of hadrons which contain at least one heavy
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quark. In Ch. 21, I discuss CP violation, with detailed account of the neutral
kaon system, as well as the B mesons.

Ch. 22 contains discussion on signatures of neutrino mass, so far the only
solid evidence for physics beyond the standard model. Ch. 23 is a summary of
various theories beyond the standard model. The presentation in this chapter
is only qualitative. No details of the theories are presented. Since none of
these theories have any experimental signature, I consider these theories to
be outside the scope of the book.



Chapter 2

Relativistic kinematics

Einstein published his ideas on relativity in two major instalments. The first
instalment 1905 examined how the perception of time, space and energy might
differ for observers in uniform relative motion. This constituted the basis of
the special theory of relativity. When the speed of any particle is very high,
close to the speed of light, the kinematical consequences of this theory were
found to be drastically different from those derived from Newton’s laws of
motion and associated ideas of space and time. Since the study of particle
physics is intimately connected to high energies and therefore large speeds, we
must take relativistic effects into account in discussing kinematics of particle
motion, which is what we do in this chapter. We will be brief, because we will
assume that the reader is familiar with the basic tenets of the special theory
of relativity. For fuller treatments, the reader is advised to consult textbooks
on the subject.

Einstein’s second instalment of relativity came around 1915, where he
discussed observers in accelerated motion with respect to one another. This
general theory of relativity turned out to be a theory of gravitation. Since
we decided to neglect all gravitational effects, the ramifications of this theory
will be ignored completely.

2.1 Lorentz transformation equations

The special theory of relativity is based on two axioms. One of them is the
principle of relativity, which states that all physical laws should have the same
form to all observers who might be moving in uniform relative motion with
respect to one another. This principle was first advocated by Galileo, and was
inherent in the Newtonian formulation of dynamics.

Later, when Maxwell formulated his theory of electromagnetism, it was
found that the equations involve a constant which has the dimension of ve-
locity. Further, it was realized that the constant equalled the speed of prop-
agation of electromagnetic waves in the vacuum. This created an apparent
contradiction with Newtonian dynamics. To resolve the problem, Einstein

16
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took a second axiom, viz., that the speed of light in the vacuum is the same
for all inertial observers.

It is this second axiom which necessitated reformulation of the laws of
dynamics. For two observers in relative motion, the notion of time and space
had to be modified in order that the speed of light remains constant for both
of them. The consequences of these axioms are summarized in the Lorentz
transformation equations . Consider a frame of reference S, and another one
called S′ which moves with a uniform speed v along a direction which is called
the common x-axis in both frames. Suppose S′ has a co-ordinate system whose
origin coincides with that of S at time t = 0. Then the relation between the
location and time of any event from the two frames will be given by

x′ =
x− vt√
1− v2

y′ = y

z′ = z

t′ =
t− vx√
1− v2

. (2.1)

2 Exercise 2.1 Rewrite the Lorentz transformation equations using
conventional units where the magnitudes of c and ~ are not unity.
From them, recover the Galilean transformation equations by taking
the limit c→ ∞.

Note that Eq. (2.1) is a set of homogeneous linear equations. They can
therefore be written in a matrix notation. Introducing a shorthand

xµ ≡
(
t, x, y, z

)
, (2.2)

we can write the Lorentz transformation equations of Eq. (2.1) in the compact
form

x′µ = Λµ
νx

ν , (2.3)

where Λµ
ν are elements of the matrix

Λ =
1√

1− v2




1 −v 0 0
−v 1 0 0
0 0 1 0
0 0 0 1


 . (2.4)

In Eq. (2.3), the index ν is summed over, a fact that we have not explicitly indicated. Indeed,
that will be our notation from now on: whenever an index is repeated, we will assume that it
is summed over, unless otherwise noted. This summation convention would apply not only for
vector indices such as ν that appears in Eq. (2.3), but also on matrix element indices, symmetry
group indices and so on. A summation for repeated indices will not be assumed when the indices
run over values for which there is no obvious symmetry or structure. For example, if we talk of
similar kinds of terms in an equation coming from different particles, the sum will be explicitly
indicated.

Whenever we assume summation over repeated indices, the range of the values of the indices
should be understood from the context, and will not be indicated explicitly. For example, for
the vector index ν appearing in Eq. (2.3), the sum is over all four possible values which are
indicated in writing Eq. (2.2).
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The transformation equations can be written in another useful form by
introducing a parameter ϑ defined by the relation

sinhϑ =
v√

1− v2
, (2.5)

or equivalently by

tanhϑ = v . (2.6)

The parameter ϑ is called rapidity. Using this parameter, the matrix of Eq.
(2.4) can be written in the form

Λ =




coshϑ − sinhϑ 0 0
− sinhϑ coshϑ 0 0

0 0 1 0
0 0 0 1


 . (2.7)

Of course, Eq. (2.4) or Eq. (2.7) gives the appropriate transformation
matrix if we consider the relative motion between the two frames to be along
the common x-axis. If the relative motion is in some other direction, the form
of the matrix, as well as the form of the Lorentz transformation equations in
Eq. (2.1), will change accordingly.

Consider now another frame of reference S′′ which is moving with a speed
u with respect to the frame S′, the direction of the relative velocity being
along the common x-axis. Obviously, the co-ordinates of any event adjudged
from the S′′ and the S′ frames will be related by the equation

x′′µ = Λ′µ
νx

′ν , (2.8)

where the matrix Λ′ is given by

Λ′ =
1√

1− u2




1 −u 0 0
−u 1 0 0
0 0 1 0
0 0 0 1


 . (2.9)

Combining Eqs. (2.4) and (2.9), we obtain that the relation between the co-
ordinates assigned by the frames S′′ and S is given by

x′′µ = Λ′µ
νΛν

ρx
ρ . (2.10)

Taking the matrix product of Λ′ and Λ, we find that it can be expressed in
the form of the matrix in Eq. (2.4) with v replaced by

w =
u+ v

1 + uv
. (2.11)

This expresses the velocity addition law . If an object is moving with a velocity
v compared to an observer, and something is moving in the same direction
with a velocity u compared to that object, the velocity of the second object
with respect to the original observer is given by w given in Eq. (2.11).
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2 Exercise 2.2 Supply the missing steps in arriving at Eq. (2.11).

2 Exercise 2.3 Derive the velocity addition law by using the represen-
tation of the Lorentz transformation matrix that appears in Eq. (2.7).
Hence, show that while velocities add by the involved rule of Eq.
(2.11), rapidities add arithmetically.

2 Exercise 2.4 Any component of velocity of any moving object, or a
frame of reference, must satisfy the relation

−1 < v < +1 (2.12)

in order that the Lorentz transformation equations are meaningful.
Show that, when two such velocities are added through Eq. (2.11),
the resulting velocity also satisfies this constraint.

2.2 Vectors and tensors on spacetime

The transformation law of Eq. (2.1) has a great deal of similarity with the laws
of rotation. Consider two sets of co-ordinate axes in ordinary 3-dimensional
space, with a common origin. If the co-ordinates of a point are given by xi in
one set of axes and by x′i in the other, then there exists a relation of the form

x′i = Ri
j x

j . (2.13)

The matrix R is called the rotation matrix. This is a homogeneous linear
relation, just like the relations in Eq. (2.1).

It is easy to see that rotations can be made part of the more general
notation that appears in Eq. (2.3). Consider a matrix Λ of the form

Λ =




1 0 0 0

0
0
0

R


 . (2.14)

Obviously, this changes the spatial co-ordinates by the rule of Eq. (2.13)
while keeping time unchanged. On the other hand, a matrix like that given
in Eq. (2.4) affects both time and space. From now on, we will use the name
“Lorentz transformation” for both kinds. Transformations of the form given
in Eq. (2.14) will be called rotations , and those which affect time will be called
boosts .

In a rotation, the length of the co-ordinate vector remains invariant. Thus,
for the vectors x′ and x, we can write

x′ · x′ = x · x . (2.15)

This can be generalized for Lorentz transformations, including boosts and
rotations, by saying that in such transformations, we obtain

t′2 − x′ · x′ = t2 − x · x . (2.16)
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For rotations, this trivially reduces to Eq. (2.15) since t′ = t under such
transformations. For boosts, only this more general form holds, and it can be
checked by using Eq. (2.1) directly. We use this analogy to call the foursome
appearing in Eq. (2.2) as a 4-vector. It is a vector on the 4-dimensional
spacetime. Time t and the spatial co-ordinates constitute co-ordinates on
spacetime. Time t is usually called the 0th component of the spacetime 4-
vector xµ, i.e., the component with µ = 0. The spatial components go from
1 to 3. If somewhere we want to mention only the spatial components, as in
Eq. (2.13), we will use Roman letters. Indices of this kind are supposed to
take values from 1 to 3, and repeated indices would imply a sum over these
values.

The invariance of Eq. (2.16) can be expressed in a more compact form by
writing

gµνx
′µx′ν = gµνx

µxν , (2.17)

where gµν , called the metric tensor , is given by

gµν = diag(1,−1,−1,−1) . (2.18)

A more compact form is obtained by defining

xµ = gµνx
ν (2.19)

and similarly x′µ, so that we can write the invariance of Eq. (2.17) as

x′µx′µ = xµxµ . (2.20)

The object xµ, with the lower index, is called a covector , or more elaborately
a covariant vector . In order to distinguish it from it, the object xµ defined in
Eq. (2.2) is also called a contravariant vector . When no confusion can arise,
we will use the word “vector” for either of the two types.

The notion of a vector can now be extended trivially. Any object whose
components transform like the components of xµ will be called a vector. Thus,
in a transformation given by Eq. (2.3), the components of a vector Aµ will
change to A′µ, where

A′µ = Λµ
νA

ν . (2.21)

We can also define tensors in the usual manner. For example, a rank-2 tensor
will be defined by the following transformation rule:

F ′µν = Λµ
αΛν

βF
αβ . (2.22)

2 Exercise 2.5 Using the transformation rule for xµ from Eq. (2.3),
show the transformation rule for the covector xµ is given by

x′
µ = Λµνx

ν = Λµ
νxν . (2.23)
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2 Exercise 2.6 Use the transformation rules of Eqs. (2.3) and (2.23),
and the invariance of Eq. (2.20), to show that the Lorentz transfor-
mation matrices satisfy the relation

Λµ
νΛµ

ρ = δρ
ν . (2.24)

Or equivalently, use Eqs. (2.3) and (2.17) to show that

gµνΛµ
αΛν

β = gαβ . (2.25)

2 Exercise 2.7 Using Eq. (2.24) or otherwise, show that the in-
verse transformation of Eq. (2.3) (i.e., expressing the unprimed co-
ordinates in terms of the primed ones) can be written as

xµ = Λν
µx′ν . (2.26)

We now find the transformation properties of derivatives with respect to
the co-ordinates. Consider a scalar function φ of the co-ordinates, and consider
the transformation property of its gradient, ∂φ

/
∂xµ. In the transformed co-

ordinates, the components of the gradient would be

∂φ

∂x′µ
=

∂φ

∂xν

∂xν

∂x′µ
, (2.27)

by use of the chain rule. Using Eq. (2.26) now, we can write it as

∂φ

∂x′µ
= Λµ

ν ∂φ

∂xν
. (2.28)

Comparing with the transformation rule given in Eq. (2.23), we see that the
gradient transforms as a covector. We have denoted covectors by lower indices.
Inspired by that, we will often use the notation

∂µ ≡
∂

∂xµ
(2.29)

when there cannot be any confusion about which co-ordinates have been used
in the derivatives. It should be remembered that although the covector has
components

xµ ≡
(
t,−x,−y,−z

)
, (2.30)

where the minus signs appear from the metric tensor when we use Eq. (2.19),
the components of ∂µ are given by

∂µ ≡
( ∂

∂t
,
∂

∂x
,
∂

∂y
,
∂

∂z

)
, (2.31)

since these are derivatives with respect to the components of the contravariant
vector.
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2.3 Velocity, momentum and energy

We wrote Lorentz transformation equations in Eq. (2.1), assuming the co-
ordinate origins of two frames coincide at t = 0. In the more general situation
when the origins do not necessarily coincide, the transformation equations
will have inhomogeneous terms. However, even in that case, we can write
the difference between two nearby events in a homogeneous form, i.e., we can
write

dx′µ = Λµ
νdx

ν . (2.32)

Following the arguments of §2.2, we can then construct the invariant

ds2 = dxµdxµ . (2.33)

The velocity 4-vector can then be defined as

uµ =
dxµ

ds
, (2.34)

and the momentum 4-vector of a particle of mass m by

pµ = muµ = m
dxµ

ds
. (2.35)

2 Exercise 2.8 From Eq. (2.33), show that

uµuµ = 1 , (2.36)

pµpµ = m2 . (2.37)

Note that, for a particle moving along the line xµ(s), we can write

ds2 = dt2 − dx2 = dt2(1− v2) , (2.38)

where

v =
dx

dt
(2.39)

is the 3-velocity, i.e., the velocity in 3-dimensional space. Thus

ds = dt
√

1− v2 , (2.40)

and therefore the components of the velocity 4-vector are given by

uµ =
( 1√

1− v2
,

v√
1− v2

)
. (2.41)

Obviously, components of the momentum 4-vector of a particle are given by

pµ =
( m√

1− v2
,

mv√
1− v2

)
. (2.42)
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The spatial components reduce to the Newtonian definition p = mv when
v ≪ 1. The temporal component is the energy of the particle:

E =
m√

1− v2
. (2.43)

If we expand it as a power series in v, the first term, i.e., the velocity-
independent term, is the rest energy, m. The next term is the Newtonian
expression for kinetic energy.

Many elementary textbooks of special relativity write Eq. (2.43) as E = Mc2 (the factor of c2

is hidden in Eq. (2.43) by our choice of natural units) by defining M = m/
p

1 − v2/c2 and
call M the ‘kinetic mass’. With this definition, M depends on the velocity. We will follow the
more modern practice of using the word mass to mean the Lorentz invariant quantity m that
first appeared in Eq. (2.35). With this definition, m (or mc2, if natural units are not used) is
the rest energy of a particle. Additional energy acquired because of a non-zero velocity is the
particle’s kinetic energy.

2 Exercise 2.9 Show that Eq. (2.37) can be written as

E2 = p
2 +m2 , (2.44)

which is the relativistic energy-momentum relation of a free particle.
The relation between energy and momentum for any particular object
is often called the dispersion relation of the object. Thus, Eq. (2.44)
is the dispersion relation of a free particle.

2 Exercise 2.10 Expand the expression for energy for small values of
v. Show that the first non-trivial dependence on velocity agrees with
the Newtonian definition of kinetic energy.

2.4 Covariance

Once the 4-vector notation is put into place, it is easy to construct physical
equations which are consistent with the principle of relativity. We only have to
make sure that all terms in an equation transform the same way under Lorentz
transformations. For example, if both sides of an equation are vectors, both
will transform by the rule given in Eq. (2.21), so that the equality will hold
for the transformed vectors in any other frame. Once this criterion is met, an
equation is called covariant , i.e., all its terms have the same transformation
properties.

Indeed, we have used this consideration in giving definitions of some quan-
tities earlier. See, for example, the definition of Eq. (2.34). The quantity dxµ

transforms as a vector, whereas ds is a scalar. Therefore, the derivative dxµ/ds
transforms like a vector, and we called it the velocity 4-vector. If this is mul-
tiplied by another scalar m, the result will be another 4-vector, which is the
momentum 4-vector introduced in Eq. (2.35).

We can ask what would be the derivative dpµ/ds. Of course it will be a
4-vector, so let us call

dpµ

ds
= Fµ . (2.45)
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When the velocity is very small, the spatial components of this equation
should give the rate of change of 3-momentum per unit time. In Newtonian
mechanics, that is the definition of force. Thus, Fµ can be called the force
4-vector , and Eq. (2.45) the classical equation of motion that describes the
motion of a particle in a relativistically consistent manner.

2 Exercise 2.11 Show that the components of the force 4-vector can be
written as

Fµ =

„

F · v√
1 − v2

,
F√

1 − v2

«

, (2.46)

where F = dp/dt, as defined in Newtonian mechanics. For small
values of v ≡ |v|, show that Eq. (2.45) has the same form as Newton’s
second law of motion.

2.5 Invariances and conservation laws

In a given physical process, if we know all forces acting on all participat-
ing particles, we can in principle solve the classical equation of motion, Eq.
(2.45), to determine outcome of the process. This constitutes the program of
dynamics .

In practice, this is often a cumbersome procedure since the forces might be
complicated, and the equations of motion might not be analytically solvable.
It is therefore natural to ask how much information can be obtained in a given
situation without knowing the forces exactly.

Conservation laws can be of much help in this regard. We already men-
tioned that Lorentz transformations, in the generalized sense in which we use
the term, contain rotations. Lorentz invariance, as a result, contains rotational
invariance, which implies the conservation of angular momentum. Invariance
under boosts also implies some conservation laws, but they will not be very
useful in our discussion. We will only make a passing comment about these
conservation laws in §3.6. In addition, we assume that all theories are invari-
ant under the redefinition of the origins of space and time, i.e., homogeneity
of space and time is assumed. Energy and momentum, or 4-momentum in
short, is conserved as a consequence of this assumption.

We seem to be implying that an invariance is equivalent to a conservation law. Indeed, it is. If
there is a transformation induced by a continuous parameter under which the action of a system
is invariant, it implies a conservation law. This statement is famously known as Noether’s
theorem.

We will not give a general proof of this theorem here. Instead, we show an example to
corroborate the theorem. Consider a system with only one co-ordinate x, whose Lagrangian is
given by L(x, ẋ). The action, calculated between the times t1 and t2, is given by

A =

Z t2

t1

dt L(x, ẋ) . (2.47)

Now suppose that the action is invariant if we replace x by x+ǫ, where ǫ is an arbitrary constant.
Obviously, ẋ is unaffected by this transformation. Thus, we can write

A =

Z t2

t1

dt L(x+ ǫ, ẋ) . (2.48)
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Taking the difference of these two equations, we obtain

0 =

Z t2

t1

dt [L(x+ ǫ, ẋ) − L(x, ẋ)] . (2.49)

The parameter ǫ is continuous, i.e., it can take arbitrary values. In particular, it is possible to
take infinitesimally small values of ǫ, and in this limit Eq. (2.49) implies

0 = ǫ

Z t2

t1

dt
∂L

∂x
. (2.50)

By Lagrange’s equation of motion,

∂L

∂x
=

d

dt

„

∂L

∂ẋ

«

≡ dp

dt
, (2.51)

where p = ∂L
.

∂ẋ is the momentum which is canonically conjugate to the co-ordinate x.

Putting this back into Eq. (2.50), we obtain

p(t2) − p(t1) = 0 , (2.52)

which means that the momentum does not change with time. This shows that invariance with

respect to the translation of a co-ordinate implies the conservation of its conjugate momentum.

2 Exercise 2.12 Consider a Lagrangian, involving two co-ordinates x
and y, which is invariant under the rotation

x′ = x cos θ − y sin θ ,

y′ = x sin θ + y cos θ , (2.53)

for any value of θ. Show that the quantity xpy − ypx is conserved,
where px and py are momenta that are canonically conjugate to x and
y.

An advantage of using these conservation laws is that they are obeyed
by quantum mechanics as well. Thus, any consequence that we might deduce
from them will be valid irrespective of whether the system interacts classically,
or whether quantum mechanical effects are important. In §2.6 and §2.7, we
will discuss some simple consequences of these conservation laws.

It should be kept in mind that these are not the only conservation laws that
we can use. We will encounter many other conservation laws and invariances
in later chapters and will discuss their consequences. Some of them are exact,
some are valid approximately in some specific situations. In a sense, the
goal of particle physics is to discover conservation laws and invariances in
particle interactions. They help us in guessing the natures of fundamental
interactions. Also, the basic dynamics of particle interactions is based on
some invariances called gauge invariances , which will be discussed later in
the book. For the moment, we discuss only the consequences of 4-momentum
conservation, which follows from spacetime symmetries.

2.6 Kinematics of decays

2.6.1 Lifetime and time dilation

An unstable particle decays into several other particles. This is a statistical
phenomenon, which means that if we have a number N0 of a certain kind of
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unstable particles at time t = 0, not all of them will decay at the same time.
At time t, if we look at the collection and find the number N(t) of the original
particles which have escaped decay, this number behaves as

N(t) = N0e
−t/τ (2.54)

for some τ , which is called the lifetime of the unstable particle. Alternatively,
we also write the relation as

N(t) = N0e
−Γt , (2.55)

so that

Γ =
1

τ
. (2.56)

The quantity Γ is called the decay rate.
The definitions of lifetime and decay rate, as given above, apply to the

rest frame of the decaying particle. If the particle is moving in a frame, the
number of surviving particles obeys a different relation, and the lifetime comes
out to be different. The reason can be seen from the Lorentz transformation
equations given in Eq. (2.1). In the rest frame, suppose a particle was created
at time t1 and it decayed at time t2. Both events occurred at the same spatial
point in this frame, i.e., the creation of the particle took place at (x, t1) and
the decay at (x, t2), suppressing the other co-ordinates. Consider now the
same two events from the point of view of another frame which is moving
along the x-direction with a speed v with respect to the rest frame. From
Eq. (2.1), the instants of time when these two events took place in this frame
would be given by

t′1 =
t1 − vx√

1− v2
, t′2 =

t2 − vx√
1− v2

, (2.57)

so that

t′2 − t′1 =
t2 − t1√
1− v2

. (2.58)

This shows that the interval between creation and decay of the particle would
be lengthened by the factor 1/

√
1− v2. So the lifetime is enhanced by the

same factor. Equivalently, we can say that the decay rate would be diminished
the factor

√
1− v2. This phenomenon is called time dilation.

2.6.2 Two-body decays

Consider a process where a particle called a decays into two particles, called
a1 and a2. Symbolically, we write the process as:

a(p)→ a1(p1) + a2(p2) , (2.59)
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where in parentheses, we have put in the notation for the 4-momenta of the
particles. The mass of the decaying particle is m, and those of the products
are m1 and m2.

Conservation of 4-momentum means

pµ = pµ
1 + pµ

2 (2.60)

for this process. Therefore,

pµpµ = (p1 + p2)µ(p1 + p2)µ . (2.61)

Using Eq. (2.37) for all particles, we obtain

m2 = m2
1 +m2

2 + 2(E1E2 − p1 · p2) , (2.62)

where E1 and E2 are the energies of the decay products.
The energies E1 and E2 can be individually determined only in a specific

frame. For example, it is convenient to consider the rest frame of the decaying
particle. In this frame, the decay products come out back to back, i.e., in
opposite directions along a straight line:

p1 = − p2 . (2.63)

Thus, Eq. (2.62) can be rewritten as

1

2
(m2 −m2

1 −m2
2) =

√
(p2 +m2

1)(p2 +m2
2) + p2 , (2.64)

where p = |p1| = |p2|. Solving p from here and putting into the energy-
momentum relation, we obtain

E1 =
m2 +m2

1 −m2
2

2m
, E2 =

m2 −m2
1 +m2

2

2m
. (2.65)

2 Exercise 2.13 Supply the missing steps between Eqs. (2.64) and
(2.65).

2 Exercise 2.14 In a frame where the initial particle has a non-zero
3-momentum, show that the magnitude of momentum of the decay
product a1 is given by

p1 =
µ2p cos θ +

p

µ4p2 cos2 θ − (m2
1E

2 − µ4)(E2 − p2 cos2 θ)

E2 − p2 cos2 θ
, (2.66)

where θ is the angle between the vectors p and p1, and µ2 = 1
2
(m2 +

m2
1 −m2

2). If m1 = 0, show that this gives

E1 =
m2 −m2

2

2(E − p cos θ)
. (2.67)
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2.6.3 Three-body decays

We now consider the case of one particle decaying into three particles. In the
notation of Eq. (2.59), the process can be written as

a(p)→ a1(p1) + a2(p2) + a3(p3) . (2.68)

Unlike the case of two-body decays, the energies of the final particles are not
predictable even in the rest frame of the decaying particle. Depending on the
relative orientations of the 3-momenta of the decay products, energy is shared
in different ways among the particles.

We can find the maximum and the minimum possible energy that any of
the three decay products might possess. For example, consider the particle
called a3 in Eq. (2.68). It must carry at least its mass energy, m3. Thus,

(
E3

)
min

= m3 , (2.69)

which corresponds to the situation when this particle is produced at rest while
the other two particles take away all the kinetic energy. On the contrary,
maximum energy will be obtained when the magnitude of its 3-momentum
will be maximum, i.e., when the other two particles will be produced in the
same direction, opposite to that of p3. In this case, we can think of the other
two particles as one single particle with mass m1 +m2, and treat the problem
like a two-body decay process. Borrowing Eq. (2.65) with obvious changes in
notations, we can write

(
E3

)
max

=
m2 +m2

3 − (m1 +m2)2

2m
. (2.70)

2 Exercise 2.15 Consider nuclear beta decay, in which a nucleus X
turns into another nucleus Y with the emission of an electron and an
antineutrino:

X → Y + e+ bνe . (2.71)

The masses of the two nuclei are much larger compared to their dif-
ference Q, as well as to the masses of the other particles. In such a
situation, show that the maximum energy attainable by the electron
is given by

„

Ee

«

max

= Q−mνe . (2.72)

All the energy values discussed in this context refer to the rest frame of
the decaying particle. In other frames, of course, the ranges of energies of
each decay product will be different. In order to obtain frame-independent
conclusions, one often uses combinations like

m2
12 ≡ (p1 + p2)2 = (p− p3)2 . (2.73)
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Note that if we evaluate this quantity in the rest frame of the decaying particle,
we obtain

m2
12 = (p− p3)2 = m2 +m2

3 − 2mE3 . (2.74)

Thus, the maximum and minimum possible values of m2
12 can be obtained

from the expressions for minimum and maximum values of E3 in the rest
frame of the decaying particle.

(
m2

12

)
max

= (m−m3)2 ,
(
m2

12

)
min

= (m1 +m2)2 . (2.75)

The range of values of m2
23 and m2

31 are given by similar expressions.
We can also find correlated bounds on the three quantities m2

12, m2
23 and

m2
31. First, note that these three quantities are not independent:

m2
12 +m2

23 +m2
31 = m2 +m2

1 + m2
2 +m2

3 , (2.76)

a constant for a given decay channel, where the word channel, in this context,
means a specified collection of particles in the end product. We can therefore
take any two of these quantities, e.g. m2

23 and m2
12, as independent and ask

ourselves what is the range of values that one of these quantities can attain
for a given value of the other quantity. For this, note that in any frame,

m2
23 = m2

2 +m2
3 + 2(E2E3 − p2 · p3) . (2.77)

Since the left hand side is a Lorentz invariant, we can evaluate it by taking the
energies and momenta of particles 2 and 3 in any frame. It is most convenient
to work in the center-of-mass (CM) frame of particles 1 and 2, i.e., in a frame
where the 3-momenta of these two particles are equal and opposite. From the
definition of Eq. (2.73), we then obtain that

m12 = E⋆
1 + E⋆

2 , (2.78)

where the stars are indicative of the particular frame used. Now note that

m2 = p2 = (p1 + p2 + p3)2 = (p1 + p2)2 + p2
3 + 2(p1 + p2)µ p

µ
3

= m2
12 +m2

3 + 2m12E
⋆
3 ,

m2
1 = p2

1 = (p1 + p2 − p2)2 = (p1 + p2)2 + p2
2 − 2(p1 + p2)µ p

µ
2

= m2
12 +m2

2 − 2m12E
⋆
2 , (2.79)

so that E⋆
2 and E⋆

3 are functions of m12 only, since the individual masses are
all fixed. The same thing can be said about the magnitudes of the 3-momenta
of these two particles:

p⋆
2 =

√
(m2

12 +m2
2 −m2

1)2 − 4m2
2m

2
12

2m12
,

p⋆
3 =

√
(m2 −m2

12 −m2
3)2 − 4m2

3m
2
12

2m12
. (2.80)
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Figure 2.1: Kinematically allowed region in a three-body decay. We have used some
hypothetical values for various masses to illustrate the nature of the allowed region.

But the angle between p2 and p3 is not determinable from the conservation
laws, even for a fixed value of m2

12. Therefore, referring to Eq. (2.77), we
see that for a given value of m2

12, there is a range of possible values of m2
23

depending on the angle between the vectors p⋆
2 and p⋆

3. The minimum and
maximum values of m2

23 will correspond to the situations when p2 and p3 will
be in the same or in opposite directions, i.e.,

(
m2

23

)
max
min

= m2
2 +m2

3 + 2(E⋆
2E

⋆
3 ± p⋆

2p
⋆
3) . (2.81)

Using the momenta and energies from Eqs. (2.79) and (2.80), we can chalk
out the allowed values ofm2

23 for any value ofm2
12. This gives an allowed region

in a plot of m2
12 versus m2

23, whose shape has been shown schematically in
Fig. 2.1. It means that, if we take the three products from the decay of a single
particle, measure the momenta of all three, form the invariants m2

12 versus
m2

23, the values would fall somewhere within a curve of the form shown. If
we take the data for many such events, we will obtain a point corresponding
to each event. A plot of such points for a particular decay channel is called a
Dalitz plot . The distribution of the points within the kinematical boundary
of Fig. 2.1 provides important information about the mechanism of the decay,
as we will see later in §4.11.

2 Exercise 2.16 Notice that the allowed region in a Dalitz plot is a

bounded region. This means that the values of
“

m2
23

”

max
and

“

m2
23

”

min

must be equal for the maximum and minimum possible values of m2
12.

Verify that this is indeed the case because p⋆
2p

⋆
3 = 0 in these cases.
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2.7 Kinematics of scattering processes

2.7.1 Center-of-mass frame

Decay processes have one particle in the initial state. Scattering processes
have more. If the scattering is elastic, the final state contains the same par-
ticles as in the initial state. Of course scatterings can also be inelastic, where
the particle contents of the initial state and the final state are not the same.
The difference might be in the type of particles present, or in the number, or
in both.

Earlier, we have seen that the kinematical formulas for decay processes
look very simple in the rest frame of the decaying particle. Similarly, for
scattering processes also there is one frame in which the formulas look simple.
This is the frame in which the total initial 3-momentum is zero, which is called
the CM frame. Let us analyze scattering processes in this frame.

We take the simplest case of 2-to-2 scatterings, i.e., processes in which
there are two particles in the initial state as well as in the final state. Let us
denote the process symbolically by

a1(p1) + a2(p2)→ a′1(p′1) + a′2(p′2) , (2.82)

where the 4-momenta of the particles, as in Eq. (2.59), have been shown in
the parentheses. Note that we have not assumed that the scattering is elastic.
Each of the four particles appearing in the process might be different. Their
masses will be denoted by m1, m2, m′

1 and m′
2, in the order that they appear

in Eq. (2.82).
By definition, we must have

p1 + p2 = 0 (2.83)

in the CM frame. Momentum conservation then tells us that, in the final
state also, total 3-momentum must vanish, i.e.,

p′
1 + p′

2 = 0 . (2.84)

Also, the energy in the initial state is

Etot ≡ E1 + E2 , (2.85)

and we must then have

E′
1 + E′

2 = Etot . (2.86)

Using the Einstein relation between energy and momentum, we can write this
equation as

√
p′2 +m′2

1 +
√
p′2 +m′2

2 = Etot , (2.87)
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(p) (−p)

(p′)

(−p′)

θ

Figure 2.2: Kinematics of two-particle scattering in the CM frame.

where p′ is the magnitude of p′
1, and therefore also of p′

2, through Eq. (2.84).
Solving this, we obtain the value of p′, and use this to obtain

E′
1 =

E2
tot +m′2

1 −m′2
2

2Etot
, E′

2 =
E2

tot −m′2
1 +m′2

2

2Etot
. (2.88)

This shows that, given the total energy of the particles in the initial state,
the energies of the particles in the final state are uniquely determined. It is
easy to see that the same does not apply to 3-momentum. The magnitude,
of course, is determined. But the directions are not. Because of Eq. (2.84),
we need to specify the direction of any one of the two final particles. This
requires two parameters, like the polar and azimuthal angles on a sphere. In
Fig. 2.2, we show one of these, which we call θ. This is called the scattering
angle. The other is the orientation of the plane on which all four momenta
should lie. Here, they are shown to lie on the plane of the paper, but they
could lie on any other plane containing the momentum vectors of the initial
particles.

2.7.2 Fixed-target frame

Some experiments are done by hitting a fixed target with a beam of particles.
For the analysis of such experiments, it is often convenient to use the labora-
tory frame itself, i.e., the frame in which one of the initial particles is at rest.
Commonly, it is called the lab frame, an obvious legacy of the times when all
scattering experiments were done this way, i.e., by hitting a fixed target with
a beam of particles. However, these days many experiments are done in which
neither of the initial particles is at rest in the laboratory, including some ex-
periments in which the lab frame, taken in the literal sense, is really the CM
frame. To avoid confusion, it seems better to use the name fixed-target frame,
or FT frame for short.
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p1 = (E1,p1)

p′1 = (E′
1,p

′
1)

p′2 = (E′
2,p

′
2)

θ

θ2

Figure 2.3: Kinematics of two-particle scattering in the FT frame. Particle 2 is at
rest in this frame, shown as a blob.

The process is still given by Eq. (2.82), with the stipulation that, in the
frame in question,

p2 = 0 . (2.89)

Momentum conservation then implies that

p1 = p′
1 + p′

2 , (2.90)

which means that the vectors p1, p′
1 and p′

2 lie on the same plane. In Fig. 2.3,
this plane has been taken as the plane of the paper. Our notations for different
angles have been shown in this figure.

The general formulas are quite cumbersome, so we give the results for
the case when one of the initial particles and one of the final particles are
massless. In particular, we take m1 = m′

1 = 0. Then, with the geometry
shown in Fig. 2.3, we can write the components of the 4-momenta of different
particles in the following manner:

pµ
1 = (E1, E1, 0, 0) ,

pµ
2 = (m2, 0, 0, 0) ,

p′µ1 = (E′
1, E

′
1 cos θ, E′

1 sin θ, 0) ,

p′µ2 = (E′
2, p

′
2 cos θ2,−p′2 sin θ2, 0) . (2.91)

Among the component equations implied by Eq. (2.90), one is trivial. The
other two are:

E′
1 sin θ − p′2 sin θ2 = 0 ,

E′
1 cos θ + p′2 cos θ2 = E1 , (2.92)

In addition, there is the energy conservation law, which gives:

E′
1 + E′

2 = E1 +m2 . (2.93)
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From these equations, one can determine the energies of the final particles as
a function of the scattering angle:

E′
1 =

m2
2 + 2m2E1 −m′2

2

2(m2 + E1 − E1 cos θ)
, (2.94)

and E′
2 is obtained through Eq. (2.93).

2 Exercise 2.17 Derive Eq. (2.94).

An interesting piece of information comes out of Eq. (2.94). Consider
an endergonic reaction, i.e., a reaction for which the total mass of the final
particles exceeds that of the initial particles. In the simplified case that we
are considering here with m1 = m′

1 = 0, it means m2 < m′
2. Since E′

1 must
be positive, Eq. (2.94) implies that we must have

E1 >
m′2

2 −m2
2

2m2
. (2.95)

In other words, particles in the beam hitting the target must possess a thresh-
old energy in order that the reaction can happen.

2 Exercise 2.18 Notice, in Eq. (2.95), that the threshold energy is
larger than the mass difference between the final and the initial states.
Explain qualitatively why supplying just the difference of energy, i.e.,
having E1 = m′

2 −m2, is not enough.

2 Exercise 2.19 For an endergonic reaction, what is the threshold en-
ergy in the CM frame?
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Symmetries and groups

3.1 The role of symmetries

Quantum field theory provides a set of rules with which, given the Lagrangian
of a system, one can calculate rates of physical processes like decay or scat-
tering. These rules will be discussed in Ch. 4.

One might ask, if quantum field theory can do everything from a La-
grangian, what does the subject of particle physics do then? Does it do
anything that does not fall within the purview of quantum field theory?

The answer to the last question is ‘yes’, and the tasks are twofold. First,
by considering interactions among particles, we will have to guess what the
Lagrangian is. Of course there are some requirements on the Lagrangian
from the basic properties of spacetime. These will be discussed in Ch. 4.
But in addition to that, there are other symmetries between particles which
play a crucial role in the structure of the Lagrangian. By discovering these
symmetries, particle physics provides the input to quantum field theory.

Second, it is difficult to discuss bound states in quantum field theory. For
properties of bound states, it is therefore much easier to be guided by the
symmetries alone.

It is important to note that symmetries take the center stage in both these
tasks. And group theory provides the mathematical structure for dealing with
symmetries. For this reason, we devote this chapter on group theory, giving
special attention to groups which will be useful for us in discussions later in
the book.

3.2 Group theory

A set G is called a group if there exists a binary composition rule between its
elements, denoted by ◦, that possesses the properties listed below.

35
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1. For any elements a and b belonging to G, the result of the binary com-
position, a ◦ b, must also be an element of G. This is called the closure
property.

2. The composition rule is associative, i.e., a ◦ (b ◦ c) = (a ◦ b) ◦ c for any
elements a, b and c.

3. There exists an identity element e in the sense that, for each a ∈ G, we
obtain a ◦ e = e ◦ a = a.

4. For each element a ∈ G, there exists an element a−1 ∈ G such that
a ◦ a−1 = a−1 ◦ a = e. The element a−1 is called the inverse of the
element a.

In short, the composition rule must be closed, associative, should have an
identity, and an inverse for each element. And we can see why this mathe-
matical structure is appropriate for discussing symmetries of any system.

By a system, we might mean a physical object, or a mathematical equation,
or anything else. Symmetry operations are operations which leave the system
unchanged. Consider a set whose elements are these symmetry operations.
And the composition rule, denoted earlier by ◦, means just applying one
operation after another. In what follows, we will often omit the symbol ◦ for
the composition rule and denote a ◦ b simply by ab. The composition rule,
accordingly, will often be called group multiplication.

We apologize that the name group multiplication can be confusing for certain groups. We
warn that the group composition rule may not have anything to do with ordinary multiplication
of numbers. For example, in Ex. 3.1, we present a group in which the group composition rule
is in fact the addition of integers. However, this usage of the term is not at all unusual, so we
will use it: the reader should be careful.

Clearly, if we apply two such operations in succession, the result does not
change the system either, which means that the composition rule is closed. If
we apply three specific symmetry operations in succession, it certainly does
not matter how we might envisage them as being grouped, because each op-
eration leaves the system unchanged. So the result will be associative. There
is also an obvious symmetry operation for any system, viz., doing nothing to
the system. This is the identity element. And if we apply some operation
which does not change the system, applying it in the opposite direction must
also not change the system. This defines the inverse of an element. Thus we
conclude that all symmetry operations on any system form a group.

In passing, in a manner of warning, let us observe some of the things that
are not essential in the definition of a group:

1. The element a−1 need not be different from a. In fact, it is obvious that
the inverse of the identity element is the identity element itself.

2. A group operation need not be commutative, i.e., a◦b 6= b◦a in general.
Of course if either a or b is the identity element, an equality sign will
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hold. Also, if b = a−1, an equality sign will hold. But the equality sign
need not hold for all pairs of elements a and b of the group. If in case it
does so for a particular group, the group is called a commutative group
or an Abelian group.

2 Exercise 3.1 Verify that the set of all integers forms a group under
the operation of ordinary addition of numbers. What is the identity
element? What is the inverse of the integer 2? Is this group Abelian?
[Note : This group is usually called Z, the first letter of the German word ‘Zahl’
which means ‘number’ (‘Zahlen’ is plural).]

2 Exercise 3.2 The set of all integers does not form a group under the
operation of ordinary multiplication of numbers. Why?

2 Exercise 3.3 Verify that the set of all positive real numbers forms a
group under the operation of ordinary multiplication of numbers.

2 Exercise 3.4 Verify that the set of all real numbers forms a group
under the operation of ordinary addition of numbers.

3.3 Examples and classification

3.3.1 Examples

Since this is not a textbook on group theory, it is not expected that we give
examples of all different kinds of groups that occur in different contexts. As
examples, we present here only some groups which will be useful for us in the
subsequent discussion in this book.

a) The group Z2

Consider a set of two elements which will be called a and b, and a composition
rule that can be represented in the form of the table below:

a b
a a b
b b a

(3.1)

The row head denotes the first element in the composition and the column
head the second, and the result of the composition is given in the matrix.
Clearly, it shows that a is the identity element. The operation b, applied
twice, gives the identity.

What kind of symmetry operations might b represent? An easy example
that comes to mind is reflection from a fixed plane. Twice reflected, the
result is the same as that of doing nothing. If we consider a geometrical figure
that is invariant under reflection, its symmetry group would be given by two
elements, whose composition would be governed by the table in Eq. (3.1).

We can also think of the invariance of a mathematical expression. Consider
the quantity x2 where x is a real number, and ask ourselves which operations
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keep it invariant for arbitrary values of x. Of course, the identity transforma-
tion does that. And then there is also the operation

x→ −x , (3.2)

which can be thought of as a reflection about the point zero on the real line.
If this operation is called b and the identity operation a, the composition rule
is still governed by Eq. (3.1).

Another way to envisage the group is by the solutions of the equation
x2 = 1, i.e., by the square roots of unity, where the group composition rule is
simple multiplication of numbers. Because the power on x is 2 in the equation,
the group is called Z2.

2 Exercise 3.5 In analogy with Z2, one can define the groups ZN for
any positive integral value of N. The group ZN has N elements which
correspond to the roots of the equation xN = 1. Write down the
elements of the group Z3 and construct the multiplication table.

2 Exercise 3.6 Define a group whose elements are integers from 0 to
N − 1, and the composition rule is ‘addition mod N’ (i.e., perform
a simple addition, and then take the remainder of the result when
divided by N). Show that the group composition table for this group
is exactly the same as that obtained in Ex. 3.5 for the group ZN .
[Note : This is also an equivalent definition of the group ZN . We explained why
the letter Z is used to denote such groups; you can guess the reason for the subscript
N .]

b) Group U(1)

Let us now consider the solutions of the equation |z|2 = 1 for complex values
of z. The solutions are of the form

z = e−iθ (3.3)

for real θ. It is straightforward to check that such numbers form a group,
where the group composition rule is just ordinary multiplication of complex
numbers.

A complex number e−iθ can be thought of as a unitary 1× 1 matrix. For
this reason, the aforementioned group is called U(1): the letter U denotes
unitary, and the number 1 indicates the size of the matrix.

Numbers of the form eθ, for all real values of θ, form a group as well if ordinary multiplication
is taken as the group composition rule. But that is a different group: not the U(1) group. In
fact, the elements of this group can be put in one-to-one correspondence with the elements
of the group defined in Ex. 3.4. The factor of i in the exponent of Eq. (3.3) is crucial in the
definition of a U(1) group. It ensures unit absolute value for the elements of the group. The
minus sign in the definition is just a matter of convention: we will use the same convention for
other groups as well.

c) Unitary groups

Taking a cue from the U(1) group, we can think of larger groups with matrices,
the group composition rule being the ordinary rule of matrix multiplication.
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The set of all N × N matrices does not form a group, because it includes
matrices which have zero determinants, and therefore no inverses. However,
if we think of all unitary N ×N matrices, they do form a group. This group
is called U(N). Let us use the symbol U to denote any element of the group
U(N). By definition, U obeys the relation

U †U = 1 . (3.4)

Taking the determinant of both sides we obtain

∣∣ detU
∣∣2 = 1 , (3.5)

which means that the determinant of such a matrix will be of the form

detU = eiα (3.6)

for some real α. Thus, the determinant can never be zero, and each unitary
matrix must have an inverse. In fact, Eq. (3.4) tells us that the inverse is
given by the relation

U−1 = U † . (3.7)

Another interesting property of the U(N) group follows from Eq. (3.6).
Let us write an arbitrary element U in the form

U = U ′D , (3.8)

where D is a multiple of the unit matrix, with each diagonal element equal to
eiα/N so that its determinant is equal to that of U , and U ′ is a matrix whose
determinant is unity. Clearly, if we follow this prescription and write down
the matrices U ′ for all elements of the U(N) group, the matrices U ′ will form
a group by themselves. This group is called SU(N), where the letter S stands
for special , in the sense that the determinant of any element of this group has
a special value, viz., unity. The matrix D, acting on any column matrix, will
change the phase of each element by the same amount. This is like a U(1)
transformation on the elements of the column matrix. Moreover, the matrices
U ′ will commute with the matrices D, since the latter, by construction, is a
multiple of the unit matrix. Thus, in short, we can write the matrix U(N) in
the form

U(N) = SU(N)×U(1) . (3.9)

If N = 1, this statement is vacuous, since SU(1) is a trivial group with just
the unit element. But for all integral N > 1, the statement is non-trivial. It
says that we can talk about the SU(N) part and the U(1) part independently
of each other.

2 Exercise 3.7 What is so special about the determinant being equal to
unity? In other words, can we form a group with unitary matrices
whose determinant has some other value?
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We can think of the group U(N) in terms of some invariance. For this,
suppose an N × N matrix U acts on a column matrix ψ with N elements.
The product Uψ will be a column matrix, and the action of the matrix can
be represented by writing

ψ′ = Uψ . (3.10)

Then, it is easy to see that

ψ′†ψ′ = ψ†ψ (3.11)

by using Eq. (3.4). Thus, unitary transformations keep the norm of a state
invariant. If we denote the components of ψ by ψ1, ψ2, · · ·ψN , we can say
that, under the action of any element of U(N), the expression

N∑

i=1

|ψi|2 (3.12)

is invariant.

d) Orthogonal groups

We can also consider symmetries of an expression like

N∑

i=1

x2
i , (3.13)

where the xi are real variables. The group corresponding to this symmetry is
called O(N), where the letter O is for orthogonal. It is easy to see that the
elements of this group are orthogonal matrices, i.e., any element O satisfies
the condition

O⊤O = 1 . (3.14)

An important orthogonal group is O(3). Any element of this group, by
definition, is a linear transformation on x, y and z that keeps the expres-
sion x2 + y2 + z2 constant. Among these, there are elements which can be
represented by a matrix with unit determinant, and they form a group by
themselves. This group is called SO(3). It represents rotations around a fixed
origin in 3-dimensional space.

2 Exercise 3.8 A general rotation in 2 dimensions can be represented
by the co-ordinate transformations given in Eq. (2.53, p 25). Define
ξ = x+ iy and show that the transformations are equivalent to a phase
rotation on the complex parameter ξ. This means that the group
SO(2) is the same as the group U(1).

3.3.2 Classifications

We have given examples of a lot of groups, many of which will be encountered
in later parts of the book. It will be useful, at this point, to classify the groups
in terms of the symmetry operations they represent.
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a) Discrete versus continuous

One kind of classification can be made by considering whether one element of
the group can be changed, without going outside the elements of the set that
define the group, to another element. Consider, e.g., elements of the group
U(1). As said earlier, the elements are of the form e−iθ with real θ. We can
change the value of θ continuously and access different elements of the group.
Such groups are called continuous groups.

In contrast, consider the group Z2. It has two elements, as noted earlier.
The elements can be thought of as the square roots of unity, i.e., as the
numbers ±1 and the group composition rule as ordinary multiplication of
numbers. There is no way we can continuously go from +1 to −1, or vice
versa, since the intermediate numbers do not belong to the group. The group
is characterized by discrete elements, and would therefore fall in the category
of discrete groups.

There can also be groups which have several connected parts, but the parts
are separate from each other in the sense that one cannot change the elements
of one part continuously to obtain an element of another part. Consider the
group O(3) mentioned a little earlier. The determinant of a 3× 3 orthogonal
matrix must be either +1 or −1. The elements of any orthogonal matrix of
determinant +1 can be continuously changed to obtain any other orthogonal
matrix of the same determinant, but one cannot obtain the other determinant
by making continuous changes. Therefore we can say that the O(3) group has
two disconnected parts.

b) Spacetime versus internal

A group is called a spacetime group if its elements inflict a change of spatial co-
ordinates and/or time. For example, the rotation group falls in this category,
because when a rotation is applied on an object, the co-ordinates of individual
points change.

In contrast, we can think of transformations between quantities defined
at the same spacetime point. For example, we can change the phase of a
wavefunction at each point, or imagine a transformation that changes one
kind of particle to another. Such transformations are called internal , and
their symmetry group also can be designated by the same adjective.

c) Local versus global

Transformations of any group are characterized by one or more parameters.
An example is the parameter θ that was used to represent a U(1) transforma-
tion. Bigger groups will need more than one parameter, as we will presently
see. If these parameters do not depend on the spacetime co-ordinates, the
transformation, as well as the symmetry, is called global . If the contrary is
true, the transformation and the symmetry group are called local .
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It should be appreciated that among the kinds of distinctions mentioned
here, only the first one is an inherent property of the mathematical structure
of the group. The others depend on the context in which the group structure is
invoked, or the manner in which it is done. The same mathematical group can
describe either a spacetime symmetry or an internal symmetry, depending on
the symmetry operations that the elements represent and the states on which
they act. For example, we discussed that a Z2 symmetry might be related to
mirror reflections or of changing the signs of wavefunctions of some particles.
In the first case, it would be a spacetime symmetry, whereas in the second
case, it would be an internal symmetry. Similarly, the same mathematical
group can be either global or local. But the same group cannot be both
discrete and continuous: that distinction is something inherent in the group.

3.4 Generators

3.4.1 Parameters and generators

A discrete group can have a finite number of elements. It is therefore pos-
sible to write down explicitly the result of the composition for any pair of
elements. Such groups are called finite groups . Discrete groups may also have
infinite number of elements, as exemplified in Ex. 3.1 (p 37). And for continu-
ous groups, the number of elements is necessarily infinite. For infinite groups ,
it is not possible to write down the result of the composition for each pair of
elements, since the number of such pairs is infinite.

One therefore has to devise some strategy for expressing the result of
group composition in the case of infinite groups. The strategy employed is to
represent the infinite number of elements by a finite number of parameters,
each of which can take infinite number of values. We have already used this
strategy while talking about the U(1) group, whose elements were written as
e−iθ. To write down all elements, we thus need only a single parameter θ.
The number of group elements is infinite because θ can take infinite number
of values.

For larger groups, we need more than one parameter. To include such
larger groups, we employ a generalization of the strategy employed for U(1)
and write a group element G in the form

G = exp(−iTaθa) , (3.15)

where θa are the parameters, and there is of course an implied sum over the
subscript a. The objects Ta are called generators of the group. The factor of
−i in the definition is just a matter of convention, as mentioned earlier.

A few simple observations can be made here. First, there is no loss of
generality in taking all θa’s to be real, since a complex number can always
be written using two real numbers. Second, when all parameters are equal
to zero, we obtain the identity element of the group. Third, the function on
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the right hand side of Eq. (3.15) is continuous in the parameters θa. Thus, a
group element can be written in that form only if it is connected to the identity
through continuous changes of parameters. If there are discrete operations in
the group, those cannot be represented in this form. Fourth, we can use Eq.
(3.15) to define the generators by the relation

Ta = i
∂G

∂θa

∣∣∣∣
θ=0

. (3.16)

The derivative has to be evaluated at the point where all parameters vanish,
i.e., at the identity element.

Corresponding to each parameter, we therefore need one generator. The
group U(1) has one parameter and therefore one generator. Using Eq. (3.16)
and the representation in the form shown in Eq. (3.3), we find that this
generator is just 1.

For counting the number of parameters necessary for representing the el-
ements of U(N), we start with the most general N × N matrix. It has N2

elements which can all be complex. Thus, if there is no other restriction on
the elements, an N ×N matrix will be characterized by 2N2 real parameters.
A unitary matrix has fewer parameters since, by definition, it must satisfy
Eq. (3.4). We can equate both sides, element by element. Notice that U †U
is hermitian for any matrix U . Its diagonal elements are then automatically
real, and we get N constraints by equating each of them to 1. Among the
off-diagonal elements of U †U , the elements in the lower half are complex con-
jugates of the elements in the upper half. The elements in the upper half can
be taken to be the independent ones, and there are 1

2N(N −1) of them. Each
of them may be complex, so we should obtain two equations corresponding
to each off-diagonal element: one for the real part and one for the imagi-
nary part. The number of constraints from the off-diagonal elements is thus
N(N − 1). Adding this number with the number of constraints from the di-
agonal elements, we find that in all there are N2 constraints on the elements
of the matrix U . This means that we will be left with N2 independent pa-
rameters. In addition, for SU(N) group elements, the determinant is unity,
which imposes an extra condition. So the number of independent parameters
required to designate an SU(N) matrix is N2 − 1. Accordingly, there are
N2 − 1 generators.

Unitary matrices also satisfy the condition

UU† = 1 . (3.17)

One might wonder whether the elements of this equation put extra constraints on the elements of
U . However, these are not independent conditions. In fact, Eqs. (3.4) and (3.17) are equivalent,
since both can be derived from Eq. (3.7).

2 Exercise 3.9 Show that the number of generators of an O(N) group
is 1

2
N(N − 1). The number is same if the group is SO(N). Why?
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3.4.2 Algebra

The properties of a group are manifest in the multiplication rule of all pairs
of elements of the group. Since the elements of a continuous group can be
expressed in the exponential form as given in Eq. (3.15), we need to use the
Baker–Campbell–Hausdorff formula for their multiplication. This formula
says that if A and B do not necessarily commute,

eAeB = exp

(
A+B +

1

2
[A,B] + · · ·

)
, (3.18)

where there are further terms involving multiple commutators. Clearly then,
in order to multiply two group elements of the form given in Eq. (3.15),
we need to know the commutators between the generators. We know that
group multiplication is closed. It means that, if A and B both are linear
superpositions of generators like what appears in the exponent of the right
hand side of Eq. (3.15), the exponent on the right hand side of Eq. (3.18)
must also be a linear superposition of the generators. For that to happen, the
commutators must be in the form of superposition of generators. Thus, the
collection of all commutators can be written in the form

[
Ta, Tb

]
= ifabcTc . (3.19)

This is called the algebra of the group. The quantities fabc are called the
structure constants of the group. Obviously, they obey the conditions

fabc = −fbac . (3.20)

Symmetry properties of the structure constants for interchanges involving the
third index will be discussed in §11.2.

As a digression, one can note that the generators defined through Eq. (3.15) span a vector
space, i.e., form the basis of a vector space. Elements of a vector space have the property that
any two elements can be added to obtain an element, and also any element can be multiplied
by a number to obtain another element. Generators of an algebra definitely satisfy both these
properties because any linear superposition of the generators can be used as a generator. For
example, if one has two generators T1 and T2, the exponent of Eq. (3.15) contains the expression
θ1T1 +θ2T2. But this can also be written as 1

2
(θ1 +θ2)(T1 +T2)+ 1

2
(θ1 −θ2)(T1 −T2), which

means that we can use T1 ±T2 also as generators, using different parameters for expressing the
same group element. Any particular set of generators chosen for a group can be seen as a basis
in the vector space of generators.

2 Exercise 3.10 Verify that the structure constants depend on the
choice of generators. Consider the SU(2) algebra, which can be writ-
ten in terms of the hermitian generators Ji (for i = 1, 2, 3) as

[Ji, Jj ] = iǫijkJk , (3.21)

where ǫijk is completely antisymmetric in its indices, with

ǫ123 = +1 . (3.22)

Now take a different set of generators of SU(2), e.g., J± ≡ J1 ± iJ2

and J0 ≡ J3. Find the structure constants for this choice.
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3.5 Representations

3.5.1 Matrix and differential representations

A representation of a group G is obtained by assigning an operator RG to
each element G of the group in such a way that

RG1RG2 = RG1G2 , (3.23)

where G1 and G2 are arbitrary elements of the group. Similarly, we can also
talk about the representation of an algebra by assigning an operator Ra to
each generator Ta such that

RaRb −RbRa = ifabcRc . (3.24)

Needless to say, a representation of the algebra automatically defines a repre-
sentation of the group whose algebra it is.

We mentioned the word operator while giving the definition of a repre-
sentation. Operators are defined on a vector space. We have talked about
vector spaces earlier. The elements of a vector space are most commonly and
most obviously called vectors. The name sounds fine at first, because ordi-
nary vectors that we are familiar with, through our knowledge of dynamics
and electromagnetic theory, are indeed elements of a vector space in the 3-
dimensional space. But this name creates some confusion, because the tensors
of rank 2 (or of any other rank) are also elements of a vector space. To avoid
this trouble of terminology, we will use the word states to denote the elements
of a vector space. An operator, in our terminology, would transform one state
to another (not necessarily different) state.

Thus, a representation is a way of visualizing group elements by consid-
ering what they do to a particular choice of states. Consider the rotation
group, whose elements are rotations. If a rotation is applied to a vector,
the components of the vector change. Since a vector in ordinary space has
three components, the result of application of rotation can be represented by
a 3 × 3 matrix. And this matrix can be used to represent the rotation itself.
Such a representation is called a matrix representation. It should perhaps be
said here that, although the operators form the representation of the group,
sometimes we loosely say that the vector space itself, or the states, form a
representation. Call it abuse of language if you like, but it is quite common.
Thus, it is common to say that vectors form a representation of the rotation
group.

A particular explicit representation of an algebra therefore involves the choice of basis in two
different vector spaces. First, the generators of a group form a vector space, and we need to
make a choice for the independent generators. The dimension of this vector space is equal to
the number of generators. This statement has nothing to do with the theory of representations
that we are talking about in this section. Second, a matrix representation of the generators is
based on a vector space of some finite number of dimensions, and we need to choose a basis
in this vector space in order to arrive at an explicit representation. As we will see now, this
number of dimensions can start from 1 for any group, irrespective of the number of generators
it might have.
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It is easy to see that at least one matrix representation exists for any
group. This is defined by

RG = 1 (3.25)

for all group elements. Here we assign a number to each group element.
Obviously, Eq. (3.23) is satisfied if such an association is made. Since a
number can be thought as a 1× 1 matrix, this can be called a 1-dimensional
representation of the group. Of course this representation is not faithful , i.e.,
it does not assign a different matrix to each different group element, but that
is not a necessary property for a representation.

2 Exercise 3.11 What is the corresponding representation of the alge-
bra of a group?

There may be other 1-dimensional representations as well. In addition,
there may be matrix representations of other dimensions. For SU(2), there are
representations of all dimensions, which readers should have seen in ordinary
quantum mechanics, when considering rotation matrices for states of different
spins. For other groups, this is not the case. Representations of other groups
will be discussed as and when the need arises.

2 Exercise 3.12 Find a faithful 1-dimensional representation for the
group Z2.

We can have different kinds of representations altogether. Suppose we ap-
ply a rotation on a scalar function, ϕ(x). Note that scalar functions constitute
a vector space as well, since we can add two such functions, or multiply one
function by a number, and we end up with a scalar function. By definition,
a scalar is something that remains invariant under a rotation, even though
the argument of the function, i.e., the co-ordinate vector, changes under it.
In other words, suppose there is a point P at which we want to evaluate the
value of the scalar. The co-ordinate vector of this point is x. We apply a
certain rule, encoded in ϕ(x), to obtain the value of the scalar at the point P.
Now we make a rotation of the co-ordinates, so that the co-ordinate vector of
P changes to x′. We now have to apply a new rule, say ϕ′(x′), such that we
obtain the same value for the function at P. So we want

ϕ′(x′) = ϕ(x) . (3.26)

For the sake of definiteness, let us suppose that the rotation performed was
about the z-axis, so that the z co-ordinate remained unchanged, and the other
co-ordinates changed by Eq. (2.53, p 25). For an infinitesimal rotation, these
changes can be written as

x′ = x− yθ , y′ = y + xθ . (3.27)

Thus, ignoring higher order terms in θ, we should have

ϕ(x, y, z) = ϕ′(x− yθ, y + xθ, z) , (3.28)
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or equivalently

ϕ′(x, y, z) = ϕ(x+ yθ, y − xθ, z)

= ϕ(x, y, z) + θ
(
y
∂

∂x
− x ∂

∂y

)
ϕ(x, y, z) . (3.29)

The functional form changes by the action of a rotation. We can write

ϕ′ = Dzϕ , (3.30)

using the notation Dz to denote a rotation about the z-axis. We can write this
rotation in the form prescribed in Eq. (3.15), denoting the relevant generator
by Lz and keeping only up to the first order term in the parameter θ:

Dz = 1− iLzθ . (3.31)

Comparing this form with Eq. (3.29), we obtain

Lz = −i
(
x
∂

∂y
− y ∂

∂x

)
, (3.32)

meaning that this is how Lz works when it acts on a function. This is a
differential representation of the generator for rotation around the z-axis.
Similar representations for Lx and Ly are obvious.

It is clear why both types of representations are necessary. A matrix has a
finite number of rows and columns, and can act on something that has a finite
number of elements. Thus, e.g., if we want to see how the three components
of a spatial vector mix under a rotation, we need a matrix representation
of order 3. On the other hand, co-ordinates are represented by continuous
parameters, so we need differential representation of generators to find out
how a function of the co-ordinates changes.

If we are talking about a vector field, e.g., then both kinds of changes take
place. Corresponding to Eq. (3.30), we can now symbolically write

A′(x) = DRA(x) . (3.33)

Here D contains differential operators which ensure that we obtain the same
vector at the same point P in space. This is the same thing we had to do for
scalar functions as well, and the recipe for this change must be the same as
that for a scalar function. For a vector field, in addition, the co-ordinate axes
have changed after rotation, so the components of this vector along the new
axes will involve a superposition of the components along the old axes. These
changes in the components can be represented by a 3-dimensional matrix
representation of rotation, which mixes the components.

Using generators, we can write

D = exp(−iL · θ) , (3.34)
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where L has been defined through Eq. (3.32) and its cyclic permutations.
Similarly, we can define

R = exp(−iS · θ) , (3.35)

where S denotes a set of three matrices. For infinitesimal θ, we can keep only
up to first order terms and obtain

A′(x) =
(

1− iL · θ − iS · θ
)
A(x) . (3.36)

Compared to the scalar function, there is an extra contribution coming from
the mixing of the components. This represents the matrix representation of
the object whose rotation is being considered.

Since both L and S generate effects of rotation, there must be some com-
mon properties that they share. This is the algebra, which determines the
group multiplication property between any two elements of the group. The
rotation group has the algebra of SU(2), and therefore the components of both
L and S should satisfy the same kind of relations as shown in Eq. (3.21). This
means that the differential generators should satisfy the relations

[Li, Lj] = iǫijkLk (3.37)

when operating on any function. And the matrix generators should satisfy
the relations

[Si, Sj ] = iǫijkSk , (3.38)

where the multiplication implied in the definition of the commutator bracket
is just matrix multiplication. If, instead of vectors, we take some tensor
which acts as a representation of the rotation group, we need to use different
dimensional matrices to represent its transformation property. Even those
matrices would obey the same commutation relation. Said another way, if we
can find three matrices obeying Eq. (3.38), they constitute a representation
of the SU(2) algebra.

2 Exercise 3.13 Check the validity of Eq. (3.37) by letting the left hand
side operate on an arbitrary function of co-ordinates.

3.5.2 Irreducible representations

Vectors constitute a representation of the rotation group because if a rotation
is applied, one vector turns into another vector, with different components
along some predetermined axes. The important point is that, by the opera-
tion of a rotation, vectors turn into vectors, and vectors only: we do not need
anything other than vectors in order to define the effect of rotation. Contrast
it with vectors along the x-axis only. They do not constitute a representation
because, after an arbitrary rotation is applied, we do not obtain a vector along
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the x-axis. Therefore, the x-components of vectors do not form a representa-
tion: the vectors do. Objects which transform like a representation of a group
should be self-contained under the action of the group.

Now consider scalars and vectors together. Certainly this is also a rep-
resentation because the effect of a rotation would not produce, say, a rank-2
tensor. However, it is also true that under rotation, a vector does not be-
come a scalar or vice versa. The scalars and the vectors are independently
self-contained. In such cases, we say that the representation obtained by con-
sidering them together is a reducible representation. On the other hand, if we
consider the three components of a vector, we need all of them to write down
the effect of a general rotation. Such a representation is called an irreducible
representation.

The same thing can be said in a different manner. Suppose we start with
a state in the vector space that has only one non-zero component. Let us call
it X(i), where the subscript indicates that only the ith component is non-zero.
Now we start operating this state by the operator representation of all group
elements, one by one. The question is: will the vectors resulting from these
operations include the vector X(j) for any j 6= i? If the answer is ‘yes’, it
implies that the representation is irreducible. If not, the representation is
reducible.

Clearly, any reducible representation must be a direct sum of several ir-
reducible ones. In our example above, the reducible representation contained
vectors and scalars, both of which constitute irreducible representations. In
order to discuss representations, it is therefore sufficient to discuss irreducible
representations only. Properties of any reducible representation can be in-
ferred from the properties of the irreducible representations it contains. In
view of this, from now on we will mostly talk about irreducible representations
and drop the adjective irreducible wherever no confusion may arise.

A special property of Abelian groups should be mentioned here. For such
groups, all pairs of group elements commute, which means that all generators
commute among themselves. In any matrix representation, we can therefore
choose the basis so that all generators are diagonal matrices. When expo-
nentiated, all group elements will also be diagonal in this basis. Acting on
states, they would not mix any state with any other, which means all states
will be 1-dimensional irreducible representations. This does not necessarily
mean that the states remain invariant under the group operations. A state
can still transform by a phase under a group operation. If it does, we say that
the state has a non-zero charge under the Abelian group. If it doesn’t, i.e., if
it really remains invariant, the charge is zero.

3.5.3 Kronecker product of representations

What happens if we take the product of components of two states in two (not
necessarily different) representations? For example, consider the components
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of a vector, Ai, and those of another vector, Bj . The question is: how do the
products AiBj transform under rotation?

There are, of course, nine such products for ordinary 3-dimensional space.
Since the components of each vector mix among themselves under a rotation,
the product itself does the same. Thus all nine products, taken together,
should constitute a representation. It is not clear though whether this rep-
resentation is irreducible. If we consider the general case of products of two
arbitrary representations, the result in general is not irreducible. Showing the
Kronecker product of two representations means showing which irreducible
representations occur in product terms.

Let us get back to the example of products of the components of two
vectors, i.e., terms of the form AiBj . Under a rotation, the components of A

and B transform as

A′
i = RikAk , B′

j = RjlBl . (3.39)

Here, while discussing rotations, we do not distinguish between upper and
lower indices. Thus,

A′
iB

′
j = RikRjlAkBl . (3.40)

The rotation group is the orthogonal SO(3) group, so the matrices R repre-
senting rotation must be orthogonal matrices. This means that they should
satisfy the relations

RikRil = δkl , RikRjk = δij . (3.41)

Using these relations in Eq. (3.40), we find that

A′
iB

′
i = AiBi . (3.42)

In other words, the combination of the form AiBi, also called the dot prod-
uct of the two vectors, is invariant under rotations. This constitutes a 1-
dimensional representation. Symbolically, we can write this result as3× 3 = 1 + · · · in SO(3) , (3.43)

signifying that the Kronecker product contains a singlet, or 1-dimensional
representation. The dots in this equation imply that we have not yet explored
which other irreducible representations occur in this product.

To finish this task, we note that Eq. (3.40) implies the relation

A′
iB

′
j ±A′

jB
′
i =

(
RikRjl ± RjkRil

)
AkBl

= RikRjl

(
AkBl ±AlBk

)
, (3.44)

where the last step has been obtained by redefining the dummy indices in
one of the terms. This equation shows that the symmetric and the antisym-
metric combinations do not mix under rotations: the symmetric ones remain
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symmetric and the antisymmetric ones remain antisymmetric. It implies that
the antisymmetric combinations transform like an irreducible representation.
Since there are three possible antisymmetric combinations, this representa-
tion will be 3-dimensional representation, i.e., it will act on states which are
triplets. Similarly, there are six possible symmetric combinations, but one
of them has already been accounted for in Eq. (3.42). So we are left with a
5-dimensional representation. The complete form of Eq. (3.43) is therefore3× 3 = 1 + 3 + 5 in SO(3) . (3.45)

For the rotation group, the dimensionality d of the representation and the total
angular momentum quantum number j are related through the definition

d = 2j + 1 . (3.46)

In terms of the angular momentum quantum number, Eq. (3.45) means that
two angular momenta, 1 each, combine to form angular momentum 0, 1 or
2. The reader must be familiar with this result, and its generalization, from
basic quantum mechanics courses. There was not much need of repeating
it here except for introducing the method which will be useful in finding
representations of other groups when we need them.

3.5.4 Decomposition under a subgroup

A subgroup is a subset of elements of a group which satisfy all properties of
being a group. In other words, G′ will be a subgroup of the group G provided

1. The elements of G′ form a subset of the elements of G.

2. G′ itself is a group under the same group operation that defines G.

In a representation of G, if we collect all operators corresponding to the
elements of a subgroup G′, they obviously constitute a representation of G′. If
the states corresponding to the representation of G are self-contained by the
action of the elements of G, obviously they are self-contained by the action
of a subset of elements of G. But an irreducible representation of G does not
necessarily remain an irreducible representation of G′. Suppose we start with
a state X(i) which has a non-zero element only in the ith position. Because
the representation is irreducible, it means that, for any j 6= i, we can find a
group element G such that GX(i) = X(j). But there is no guarantee that this
element will be part of G′. If it is not, then it means that the ith and the jth

components do not fall in the vector space of an irreducible representation of
G′. In general then, an irreducible representation of G decomposes under a
subgroup G′.

Consider an example of the group SU(4). According to the definition
given in Eq. (3.12), this group is defined by matrices of unit determinant
which, acting on four complex elements z1 through z4, ensure that

|z1|2 + |z2|2 + |z3|2 + |z4|2 = invariant. (3.47)
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Take the subset of these matrices which keep only |z1|2 + |z2|2 invariant,
without affecting z3 and z4 at all. This will define an SU(2) subgroup of
the SU(4) group. However, as this description shows, the elements of this
SU(2) mix the components z1 and z2 among themselves, but not with z3
and z4. This means that the 4-dimensional representation of SU(4) is not an
irreducible representation of the SU(2) subgroup. The first two components
are now singled out and they span a 2-dimensional representation of the SU(2).

As another example, consider a vector A in the ordinary co-ordinate space.
If we start with Ax and apply arbitrary rotations, the result cannot be ex-
pressed without using Ay and Az. This is why we say that the three com-
ponents of a vector transform in a 3-dimensional representation, and it is
irreducible because all three are needed in order to write down the result of
a general rotation. But now consider only rotations around the z-axis. It is
easy to see that these rotations, by themselves, form a group. This is the
group SO(2), because these are rotations in the x-y plane. This is a subgroup
of the rotation group SO(3). If we apply the operations in this subgroup,
the x and y components mix, but the z-component remains unaffected. This
means that the z-component is a singlet of SO(2). From the discussion above,
it might seem that the x and y components transform like a doublet or a
2-dimensional representation. But even that is not true. The reason for this
was hinted in Ex. 3.8 (p 40). If we consider the combinations Ax± iAy, we will
see that neither of them mixes with the other: each combination changes only
by a phase. Thus, Ax± iAy and Az are singlets of the subgroup SO(2) which
has only Lz as its generator. We can summarize this statement by saying that3 à 1 + 1 + 1 for SO(3) ⊃ SO(2). (3.48)

The + sign here, as well as in Eq. (3.45), does not really mean summation
in any sense: it is just an indication that the 3-dimensional representation
of SO(3) decomposes into three 1-dimensional representations of SO(2). In
order to emphasize this non-arithmetical meaning of the signs, we have not
used a simple equality sign between the left hand side and the right hand side
of the equation, but rather used the symbol à .

In a sense, the result of Eq. (3.48) was inevitable. The group SO(2) has
only one generator, so it must be an Abelian group. We mentioned earlier
that Abelian groups can have only 1-dimensional irreducible representations.

3.6 Lorentz group

3.6.1 Generators and algebra

Lorentz transformations, i.e., boosts and rotations together, form a group.
One can take each of the properties mentioned in §3.2 that defines a group,
and verify that it is satisfied by Lorentz transformations.

There are shortcuts for this procedure. Recall Eq. (2.25, p 21), which must
be satisfied by any Lorentz transformation. In matrix notation, this can be
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written as

Λ⊤gΛ = g . (3.49)

It is then easy to see that the product of two Lorentz transformations will also
satisfy this equation. Associativity is guaranteed for matrix multiplication.
And, taking the determinant of both sides of Eq. (3.49), we obtain

(
det Λ

)2

= 1 , (3.50)

which implies that a Lorentz transformation matrix must be non-singular,
and hence its inverse must exist. It is easy to see, by multiplying both sides
of Eq. (3.49) by Λ−1 from the right and by its transpose from the left, that
the inverses are also Lorentz transformations. Thus, all group properties are
satisfied.

The group elements can be generated by six parameters. There can be
three independent boost parameters, one along each orthogonal axis in the
3-dimensional space. Any rotation is by an angle around an axis. The angle is
one parameter, and it takes two parameters to specify an axis in 3-dimensional
space. Thus, there are three parameters required to specify any rotation.
Taking boosts and rotations together, we need six parameters.

There is another way to realize that there are six parameters. The Lorentz
transformation equations were given in Eq. (2.3, p 17). We can write this
equation in the form

x′µ =
(
δµ

α + ωµ
α

)
xα , (3.51)

where ωµ
α contain the transformation parameters. However, any Lorentz

transformation keeps the quantity gµνx
µxν invariant, as mentioned in Eq.

(2.17, p 20). Thus,

gµνx
µxν = gµνx

′µx′ν = gµν

(
δµ

α + ωµ
α

)(
δν

β + ων
β

)
xαxβ . (3.52)

For infinitesimal ωµ
α’s, keeping only up to first order terms in the small

parameters, we obtain

gµν

(
ωµ

αδ
ν

β + δµ
αω

ν
β

)
= 0 , (3.53)

or,

ωβα + ωαβ = 0 . (3.54)

The parameters ωαβ are therefore antisymmetric in the indices. Since each
index can take four values, there are

(
4
2

)
= 6 independent combinations, which

represent six parameters.
For a six-parameter group, there are six generators. Earlier, we have

shown that the differential generators of rotation are given by Eq. (3.32) and
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its cyclic permutations. The extension to Lorentz group should be obvious,
and we can write the differential representation of the generators as

Jµν = i(xµ∂ν − xν∂µ) . (3.55)

For rotation generators, both indices will have to be spatial. For example,
Lz, defined in Eq. (3.32), is nothing but J12. (While comparing the two
expressions, we need to remember the presence of the minus signs in Eq.
(2.30, p 21) in the definition of xµ, and the absence of them in Eq. (2.31, p 21)
in the definition of ∂µ.) Boost generators, on the other hand, have one time
index and one space index.

2 Exercise 3.14 Show that J01 can generate Lorentz boosts in the x-
direction, yielding the co-ordinate transformation rules of Eq. (2.1,
p 17). [Hint : First show it for an infinitesimal boost, then try to exponentiate it
and obtain the result in the form implied in Eq. (2.7, p 18).]

Note that Jµν = −Jνµ, so that Eq. (3.55) defines only six independent
non-zero combinations, which is exactly what we need. From these differential
representations, it is straightforward to show that

[
Jµν ,Jλρ

]
= i(gµρJνλ + gνλJµρ − gµλJνρ − gνρJµλ) . (3.56)

This equation contains the commutation relations of all pairs of generators of
the group, and is therefore the algebra of the group.

3.6.2 Representations

We have derived the algebra by identifying differential operators for the gen-
erators of the Lorentz group in Eq. (3.55). As discussed in §3.5.1, the algebra
might be satisfied by some finite dimensional matrices as well. These matrices
will then constitute a finite dimensional representation of the Lorentz algebra.
Already, we have found a 4-dimensional representation of the Lorentz group.
This is the representation that follows from the definition of the group, and
is called the fundamental representation. Some of the group elements in this
representation have been given in Eqs. (2.4) and (2.14).

2 Exercise 3.15 Find the representation of the Lorentz group genera-
tors that follows from the definition of the group elements given in
Eqs. (2.4) and (2.14). Show that the matrix elements of the generator
Jµν can be written as

“

Jµν

”

λρ
= i(gµλgνρ − gνλgµρ) . (3.57)

Verify that they obey the algebra given in Eq. (3.56).

In order to find all representations of the Lorentz algebra, it is better to
rewrite the algebra in a different way. We define

Ji ≡
1

2
ǫijkJjk , (3.58a)

Ki ≡J0i . (3.58b)
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The commutation relations between the operators introduced in Eq. (3.58)
can be easily read from Eq. (3.56):

[
Ji, Jj

]
= iǫijkJk ,

[
Ki,Kj

]
= −iǫijkJk ,

[
Ji,Kj

]
= iǫijkKk . (3.59)

We see that the commutation relations of the J-operators are self-contained
in the sense that they do not involve the K-operators. This means that the J-
operators, by themselves, generate a group. Indeed, it is the rotation group, or
SU(2). The operators K do not have these properties, and the commutation
relations involving K mix up the two kinds of operators.

To avoid such mixing up, we define a different set of operators by the
relations

N
(±)
i ≡ 1

2
(Ji ± iKi) . (3.60)

Then it is straightforward to deduce the following commutation relations:

[
N

(+)
i , N

(+)
j

]
= iǫijkN

(+)
k ,

[
N

(−)
i , N

(−)
j

]
= iǫijkN

(−)
k , (3.61)

so that the three operators N
(+)
i generate an SU(2), and so do the three

operators N
(−)
i . Moreover, it is also seen that

[
N

(+)
i , N

(−)
j

]
= 0 , (3.62)

which means that all generators of one SU(2) commute with all generators
of the other SU(2). Mutually commuting algebras are denoted with ×, so
we can conclude that the Lorentz algebra is an SU(2) × SU(2) algebra. The

generators of each SU(2) factor, i.e., N
(+)
i and N

(−)
i , can also be shown to be

hermitian, as SU(2) generators should be.

2 Exercise 3.16 If we write a unitary matrix U in the form U = e−iA,
show that A must be hermitian.

2 Exercise 3.17 Consider a Lorentz boost in the x-direction with a ve-
locity v. For infinitesimal v, how do the components of a 4-vector
change? From this, find the 4-dimensional matrix representation of
the boost generator Kx and show that it is anti-hermitian. From this
and similar results, argue that the generators N

(±)
i defined in Eq.

(3.60) are hermitian.

Once this is established, we can write down all finite dimensional repre-
sentations of the Lorentz group using the knowledge of SU(2) representations
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learned while studying the theory of angular momentum in quantum mechan-
ics courses. We know that each SU(2) representation is characterized by a
number which can be an integer or a half-integer, representing the highest
eigenvalue of any of the hermitian generators in that representation. For
SU(2)×SU(2), each finite dimensional representation will be characterized by
two numbers, n+ and n−, specifying its transformation property under the
two SU(2) subgroups. Moreover, note that Eq. (3.60) implies that

J3 = N
(+)
3 +N

(−)
3 , (3.63)

so that the angular momentum of the representation will be the sum n+ +
n−. Some examples of finite dimensional irreducible representations are given
below:

Representation Spin
(0, 0) 0

(0, 1
2 ) 1

2

(1
2 , 0) 1

2

(1
2 ,

1
2 ) 1

(3.64)

The list goes on, with higher and higher values of n+ and n−.

In §2.5, we mentioned that the conservation laws implied by invariance under boosts will not
be very useful for us. Let us digress a bit and see what kind of conservation laws they are.

Let us consider a collection of point particles. From Eqs. (3.58b) and (3.55), we see that
the boost operators are given by

Ki =
X

particles

“

tpi − xiE
”

. (3.65)

Let us define the center of energy co-ordinate of this collection of particles by the relation
X

particles

xiE = xi
CEEtot , (3.66)

where the subscript ‘tot’ means a sum over all particles. Then Eq. (3.65) can be written as

xi
CE =

„

pi
tot

Etot

«

t− Ki

Etot
. (3.67)

Since pi
tot and Etot are conserved, this equation implies that the center of energy moves with

a constant velocity.

3.6.3 Extended Lorentz group and its representations

We remarked that Lorentz transformations keep the combination

t2 − x · x (3.68)

invariant, a fact that we wrote in the form of Eq. (2.16, p 19) earlier. As shown
in §3.2, the set of all transformations that keeps a particular mathematical
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expression invariant always forms a group. We can therefore define a group
by the set of all transformations on t and x which keep the expression given
in Eq. (3.68) invariant. This group goes by the name O(3,1).

The reason behind the name can be seen from the expression in Eq. (3.68).
Transformations which keep the combination x2 + y2 + z2 invariant form a
group called O(3), where the number in the parentheses is the number of
variables whose sum of squares is maintained invariant. The invariant in Eq.
(3.68) also contains superposition of squares of several variables. However,
it is not a sum of squares. One of the squares appears with a different sign
compared to the other three. This fact is indicated by calling the group
O(3,1). It can be called O(1,3) as well; it makes no difference.

Lorentz transformations are certainly members of the group O(3,1). How-
ever, a little thought reveals that the group O(3,1) contains other transfor-
mations which are neither boosts nor rotations. For example, consider the
transformation

t→ −t , x→ x . (3.69)

Obviously it keeps the expression of Eq. (3.68) invariant. So does the trans-
formation

t→ t , x→ −x . (3.70)

The first of these operations is called time reversal , and the second parity
transformation. The name space-inversion is also used alternatively for the
second. Although the latter name is more descriptive of the operation in-
volved, we will mostly use just the single word parity, a curtailed form of the
former name.

It is easy to see, and in fact it will be shown shortly, that the transforma-
tions of Eqs. (3.69) and (3.70) cannot be the result of a boost or of a rotation
in 3-dimensional space. A rotation, of whatever magnitude, can be built by
adding smaller rotations. The same goes for boosts. In this sense, they are
continuous transformations. The operations shown in Eqs. (3.69) and (3.70),
on the other hand, are discrete.

The possibility for the existence of such transformations can also be seen
from Eq. (3.49), which is equivalent to the statement that the expression in
Eq. (3.68) is invariant by the transformation of Eq. (2.3, p 17). As we have
shown, Eq. (3.49) implies Eq. (3.50), which says that

det Λ = ±1 . (3.71)

Continuous transformations cannot make the determinant jump from the
value +1 to the value −1 or vice versa. Discrete transformations can.

2 Exercise 3.18 Use the formulas for rotations in a 2-dimensional
space, given in Eq. (2.53, p 25), to show that the inversion of both
co-ordinates can be seen as the result of a rotation in two dimen-
sions, where the determinant of the transformation matrix is +1.
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There is another thing which can be discontinuous. For this, we go back
to Eq. (2.25, p 21), which is nothing but Eq. (3.49) in an indexed notation.
This equation, for α = β = 0, reads

(
Λ0

0

)2

−
(

Λ1
0

)2

−
(

Λ2
0

)2

−
(

Λ3
0

)2

= 1 . (3.72)

Clearly, this implies

(
Λ0

0

)2

≥ 1 , (3.73)

which means that Λ0
0 can either be equal to or larger than 1, or equal to

or smaller than −1. Once again, only discrete transformations can take the
value from one branch to another.

The discussion makes it clear that the group O(3,1) has four disconnected
branches, as listed below:

Branch det Λ Λ0
0

1 +1 ≥ +1
2 +1 ≤ −1
3 −1 ≥ +1
4 −1 ≤ −1

(3.74)

Obviously, all rotations and boosts fall in the first branch. The entire O(3,1)
group, containing all branches, is called the extended Lorentz group. The first
branch listed in Eq. (3.74), which contains all rotations and boosts, is some-
times called the proper Lorentz group when the distinction with the extended
group has to be made clear.

2 Exercise 3.19 Give examples of transformations which belong to the
branches 2, 3 and 4.

Earlier, we have identified finite dimensional irreducible representations
of the Lorentz group. Now, we try to do the same for the extended Lorentz
group. In §3.5.4, we argued that an irreducible representation of a group
G does not necessarily remain irreducible under a subgroup G′. Said another
way, an irreducible representation of a smaller group G′ does not automatically
qualify as a representation for a bigger group G containing it.

Indeed, this is the case for many of the irreducible representations of the
SU(2) × SU(2) Lorentz group. This can be seen from the way the genera-
tors of this group behave under discrete transformations like parity or time
reversal. Recall the differential generators of the Lorentz group given in Eq.
(3.55). Clearly, under time reversal, the generators of the form Jij remain
unchanged, but those of the form J0i change by a sign. The same is true
under parity transformation. Looking at Eq. (3.58), we then conclude that
under either of these discrete transformations,

Ji −→ Ji , Ki −→ −Ki . (3.75)
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The definition in Eq. (3.60) now implies that, under the same discrete trans-
formations,

N
(+)
i ←→ N

(−)
i , (3.76)

i.e., generators of the two SU(2) factors get interchanged. Thus an element
of the representation (n1, n2) of the Lorentz group becomes an element of the
representation (n2, n1) by the action of parity or time reversal. If a represen-
tation has n1 = n2, it is closed under the discrete symmetries, and therefore
qualifies as representation of the extended Lorentz group. For others, we must
take the combination (n1, n2) + (n2, n1) if we want to obtain an irreducible
representation of the extended group. For example, among the examples that
appear in Eq. (3.64), the spin-0 representation, (0, 0), and the spin-1 repre-
sentation, (1

2 ,
1
2 ), are representations of the extended Lorentz group. But a

fermion representation like (1
2 , 0) is not. An irreducible representation of the

extended Lorentz group is (1
2 , 0) + (0, 1

2 ), and this is in fact the Dirac repre-
sentation that we will encounter in Ch. 4. Representations like (1

2 , 0) or (0, 1
2 )

can be useful if parity or time reversal symmetries are not relevant, and we
will see them in the context of weak interaction theories in Ch. 14.

Physical theories, we believe, should be invariant under proper Lorentz
transformations. Whether they are invariant under the extended Lorentz
group is a question that we will address in later chapters.

3.7 Poincaré group

In addition to Lorentz transformation, we believe that redefinitions of the
origin of spacetime should also have no effect on physical theories. This means
that we should also have the symmetry

xµ → xµ + aµ , (3.77)

where aµ is an arbitrary constant 4-vector. This statement can be combined
with the invariant of Lorentz transformations given in Eq. (3.68) to say that,
physical theories should be invariant under all transformations which keep the
quantity

∆xµ ∆xµ (3.78)

invariant, where ∆xµ is the difference of co-ordinates of two points in space-
time. Transformations which keep this combination invariant is called the
Poincaré group.

Poincaré group therefore has 10 generators. Six of them belong to the
Lorentz group which is a subgroup of the Poincaré group. The other four
generate spacetime translations, whose parameters are the components of aµ

Eq. (3.77). The generators of these translations are the components of the
4-momentum.
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It should be noted that the expression shown in Eq. (3.78) is also invariant
under discrete transformations like parity and time reversal. When we want
to indicate the group including these discrete operations, we can call it the
extended Poincaré group. If we discuss only the connected part of the group,
we can use the name proper Poincaré group. The distinction will be made
only where it is important to do so.



Chapter 4

A brisk tour of quantum field theory

We have mentioned in §1.6 that a relativistic quantum theory naturally leads
us to field theory. It was also commented there that the structure of classical
field theory has some problems, and we should use quantum field theory. Since
such theories describe all three fundamental interactions that we are going to
discuss, it is imperative that we have an idea of the basic tenets and the
main working tools of quantum field theory. In this chapter, we present the
important concepts and tools in capsule form. If the reader is already familiar
with the methods of quantum field theory, this chapter may easily be skipped.
Other readers will feel unhappy at many places in this chapter, where results
will appear without proofs. Unfortunately, there is no alternative: if we have
to do justice to the discussion of quantum field theory, we would require so
many pages that the reader would feel even more unhappy. So, a reader
unfamiliar with quantum field theory will have either to accept some results
and understand how a result can be applied without understanding how it is
derived, or consult a quantum field theory book to obtain more details.

4.1 Motivating quantum fields

Already in Ch. 1, we have emphasized the necessity of the use of fields in
relativistic quantum theory. Anything that depends on space and time is
called a field in physics. We assume that the reader is familiar with classical
fields, which are number-valued functions of space and time. When we say
‘number-valued’, we mean that, corresponding to a given point at a given
time, the value of the field can be expressed as one or more numbers, either
real or complex. For example, when we talk about the electromagnetic field
in classical physics, we mean a collection of six numbers (three components
of the electric field and three of the magnetic field) corresponding to each
spacetime point. Taken for all points together, they describe the state of the
electromagnetic field.

Relativistic quantum fields cannot be number-valued, for reasons that we
now try to explain. As we know, the relativistic relation between energy and

61
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momentum of a free particle, viz.,

E2 = p2 +m2 , (4.1)

is quadratic in energy. This is in contrast with the non-relativistic formula
for the kinetic energy:

E =
1

2m
p2 , (4.2)

and it is problematic on two counts.
To appreciate the first problem, let us recall how one sets up a quantum

mechanical equation of motion. The expression for energy is taken as the
expression for the Hamiltonian operator H , where p is understood to be the
gradient operator −i∇ acting on the wavefunction Ψ. Then one writes the
time-evolution equation through the Schrödinger equation:

i
∂

∂t
Ψ = HΨ . (4.3)

For the non-relativistic formula of Eq. (4.2), this procedure makes perfect
sense. However, if we want to write down the Hamiltonian operator starting
from the relativistic formula of Eq. (4.1), it would look like

H =
√
−∇2 +m2 , (4.4)

and the square root would make no sense at all.

This may be just a matter of convention, but it is worth stating. By the phrase Schrödinger equa-
tion, some people mean only the non-relativistic Schrödinger equation, where a non-relativistic
Hamiltonian appears in place of H in Eq. (4.3). We will adopt a more general use of the term
where, irrespective of the form and content of the Hamiltonian, an equation of the form of Eq.
(4.3) will be called the Schrödinger equation.

To avoid the problem with the square root, we can decide to give up the
Schrödinger equation and write a different relativistic equation. After all,
the Schrödinger equation implies the equivalence of the operators i∂/∂t and
H . So, rather than forming the equation by letting these operators act on
the wave function, we can let the squares of these operators act on the wave
function. That would give the equation

− ∂2

∂t2
Ψ = H2Ψ . (4.5)

This can be called the Klein–Gordon equation in a generalized sense, and
it puts us face to face with the second problem. Suppose we put the free
Hamiltonian of Eq. (4.1) into this equation. No matter what we do, we will
find not only the positive energy eigenvalues given by

Ep = +
√

p2 +m2 (4.6)
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in the eigenvalue spectrum, but also their negative counterparts, −Ep. Since
the magnitude of the 3-momentum can take all positive values, the quantities
−Ep will contain negative energy eigenvalues with arbitrarily large magnitude,
extending all the way up to negative infinity. This means that there is no
ground state for this system. Such pathological systems cannot be physical.

If Ψ is interpreted not as a wavefunction but rather as a classical field,
the same problem remains with the plane wave solutions of this field. As we
said earlier, the solution to the wave equation gives the state of the system
in this case, and we would again encounter a situation that the field has
no ground state. Despite this problem, it is worthwhile to construct the
plane wave solutions. For one thing, these solutions form a complete set of
functions, and any solution can be expanded in a Fourier series in terms of
these plane waves. So, in §4.2, we discuss various field equations and their
plane wave solutions and write fields as superpositions of these plane waves.
And, following a build-up in the intermediate sections, in §4.7 we discuss how
the problem with negative energies disappears with an operator interpretation
of the fields.

4.2 Plane wave solutions

Our aim would be to construct an action functional involving fields, from
which all dynamics can be obtained. We will want the action to be Poincaré
invariant. Lorentz invariance forms a subset of Poincaré invariance, so the
action should definitely be Lorentz invariant. In order to achieve this, we need
to consider fields which have definite Lorentz transformation properties. The
representations of the Lorentz group were discussed in §3.6, and the simplest
ones were identified in Eq. (3.64, p 56). In fact, we will need only the ones
mentioned there, viz., the scalar representation, the Dirac representation and
the spin-1 or vector representation. We will discuss the plane wave solutions
of these kinds of fields here.

4.2.1 Scalar fields

By plane wave solutions of any kind of field, we mean solutions whose depen-
dence on spacetime co-ordinates is of the form eip·x. This factor, by itself,
is a scalar under Lorentz transformations. For scalar fields, the plane wave
solutions can therefore be just of the form

e−ip·x or e+ip·x . (4.7)

One question: why did we write two kinds of terms in Eq. (4.7)? With
arbitrary pµ in the exponent, should we not be able to obtain all plane waves
with either of the terms written in Eq. (4.7)? The answer to this second
question is obviously ‘yes’, but we do need both kinds of terms because the
pµ’s that we want to use are not entirely arbitrary. We want the scalar field
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to satisfy the Klein–Gordon equation, Eq. (4.5). When we substitute the
expression on the right-hand side of Eq. (4.1) for H2 and use the co-ordinate
space representation of the momentum operator, the Klein–Gordon equation
can be written as

(
2 +m2

)
φ(x) = 0 , (4.8)

where

2 = ∂µ∂µ . (4.9)

If we substitute the solutions of Eq. (4.7) into Eq. (4.8), we obtain

p2 = m2 . (4.10)

Thus, all components of pµ are not really arbitrary. We will use only the
spatial components of pµ as independent variables. Moreover, Eq. (4.10)
yields two solutions for the temporal component, ±Ep, where Ep is given
in Eq. (4.6). As we said before, there is a problem with the negative solution.
Thus, we will always take the temporal component to be positive, i.e., take
the solution given in Eq. (4.6).

Now, any function can be expanded as a Fourier transform by using plane
waves. But such an expansion will have both positive and negative frequencies.
Here, p0 takes the role of the frequency, and we have decided to use only the
positive solution, Ep, in its place. This is why we need both the solutions of
Eq. (4.7). Writing

p · x = Ept− p · x , (4.11)

we see that the first solution represents positive frequency, or positive energy,
whereas the second one represents negative energies. Between the two, all
energies are covered, and we can use them to perform a Fourier transform
and write

φ(x) =

∫
D3p

(
a(p)e−ip·x + a†(p)e+ip·x

)
. (4.12)

The integration measure has been denoted by D3p. We will take

D3p ≡ d3p√
(2π)32Ep

. (4.13)

Compared to the usual factor used for Fourier transforms, there is an extra√
2Ep in the denominator. This is purely conventional. It should be realized

that any overall x-independent factor with the plane waves can be absorbed
in the definition of a and a†. Our choice of the normalization simplifies the
relation between the objects a(p) and a†(p), as we will see in §4.7.
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Notice, for the moment, that the two terms in Eq. (4.12) are conjugates
of each other, which ensures that

φ(x) = φ†(x) . (4.14)

In other words, φ(x) represents a hermitian field, or a real field. If we want
to deal with a scalar field that is complex, the most general Fourier transform
would be

φ(x) =

∫
D3p

(
a(p)e−ip·x + â†(p)e+ip·x

)
. (4.15)

With a 6= â, the two terms are no more conjugates of each other, so this field
is complex.

4.2.2 Vector fields

We now discuss fields which transform like vectors under Lorentz transfor-
mations. We start with the photon field for two reasons. First, the classical
theory of electromagnetic fields is well-known, and second, the photon field
serves as a prototype for other massless fields that will come up in the discus-
sion later in the book. After the photon field, we have a short discussion on
massive vector fields.

a) Photon field

Maxwell’s electromagnetic equations are written in terms of the electric field
E and the magnetic field B. In 4-dimensional language, they are components
of an antisymmetric rank-2 tensor Fµν , called the field-strength tensor. In
quantum theory, we have to deal with the 4-vector Aµ, which is related to
Fµν through the definition

Fµν = ∂µAν − ∂νAµ . (4.16)

Components of the 4-vector Aµ are called potentials in classical physics. This
is what we take as a field in quantum theory. We will call it the photon field .

The plane wave solutions for the photon field must also be of the form
shown in Eq. (4.7). But the photon field transforms like a vector under Lorentz
transformations. So the exponential factors must be multiplied by an x-
independent factor which transforms like a vector. Thus the positive energy
solutions can be written as

ǫµ(p)e−ip·x . (4.17)

The negative energy solutions will be similar, with opposite sign in the expo-
nent.

The vector ǫµ(p) is called the polarization vector . It seems that, in order to
span the 4-dimensional spacetime, we can have four independent such vectors.
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But the classical Maxwell field equations show that the electromagnetic field
has only two independent degrees of freedom, because the components of E

and B, six altogether in number, are constrained by the equations

∇ ·B = 0 , ∇×E = − ∂B

∂t
, (4.18)

which are called he homogeneous Maxwell equations, because they are indeed
homogeneous functions of degree 1 of the electric and the magnetic fields.
The divergence equation gives one constraint condition. The curl equation
is a vector equation, which contains three components, and therefore three
constraints. Thus only two of the six components of E and B are independent,
leaving two independent polarization vectors for each momentum.

The other Maxwell equations, which express the relation between the field
strengths and the sources, can be written as

∂µF
µν = jν , (4.19)

where jν is the 4-vector for current density. Using Eq. (4.16), it can be written
as

2Aν − ∂µ∂
νAµ = 0 (4.20)

in the absence of sources. To make it look like the Klein–Gordon equation,
we can use the constraint

∂µA
µ = 0 . (4.21)

Thankfully, this does not result in any loss of generality since Eq. (4.16)
implies that Aµ is not uniquely defined: a redefinition of the form

Aµ → Aµ + ∂µf (4.22)

leaves physics unchanged for any function f . This arbitrariness can be used to
ensure Eq. (4.21). The freedom, or the arbitrariness, mentioned in Eq. (4.22)
is called gauge invariance. Conditions like Eq. (4.21) which curb this freedom
are called gauge conditions .

In passing, we should make a comment about the choice of units in writing the inhomogeneous
Maxwell equations, Eq. (4.19). There are many different systems of units for writing electro-
magnetic quantities. Depending on the convention, an extra constant factor might appear on
the right hand side of this equation. Such constants need not be just numerical factors like
4π: they might even have dimensions, depending on our definition of what jν is. We have
decided to put all such possible factors into the definition of jν . This system is called the
Heaviside–Lorentz units.

2 Exercise 4.1 Show that, in the Heaviside–Lorentz units, the electric
field for a point particle of charge q located at the origin of co-
ordinates is given by

E(r) =
q

4πr3
r . (4.23)

[Hint : For a point charge at rest at the origin of co-ordinates, j0(r) = qδ3(r)
whereas ji = 0.]
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Looking back at the plane wave solution of Eq. (4.17), we see that Eq.
(4.21) implies that the polarization vectors should satisfy the condition

ǫµ(p)pµ = 0 . (4.24)

This means that only three of the four components of ǫµ(p) are independent.
Moreover, we can make one component zero by using the freedom denoted in
Eq. (4.22). Thus, only two components of the polarization vector are physical,
and consequently there can be only two independent polarization vectors.

This is how it works. Consider a photon moving in the z-direction, so that its 4-momentum can
be written as

pµ = (E, 0, 0, E) , (4.25)

consistent with the fact that the photon is massless. Eq. (4.24) then tells us that the components
of the polarization vector must satisfy the relation

Eǫ0 −Eǫ3 = 0 , (4.26)

so that ǫ0 = ǫ3. Further, Eq. (4.22) says that, under transformations of the form

ǫµ(p) → ǫµ(p) +Kpµ (4.27)

for arbitrary K, physics remains unchanged. These are the gauge transformations. For the
momentum 4-vector that we have chosen, this means that we can change ǫ0 and ǫ3 at our will:
these components therefore cannot be physical. The other two components are unaffected by
the gauge transformation, and are therefore the physical components for the photon momentum
given in Eq. (4.25). For a photon moving in an arbitrary direction, we can take the physical
polarization vectors to be perpendicular to the direction of motion. In other words, the spatial
part of the polarization vectors should satisfy the condition

ǫ(p) · p = 0 . (4.28)

2 Exercise 4.2 Show that the gauge choice of Eq. (4.24) remains unaf-
fected under the gauge transformations given in Eq. (4.27) since the
photon is massless.

Denoting the different polarization vectors by an index r, we can write
down the plane wave expansion of the photon field as

Aµ(x) =
∑

r

∫
D3p

(
ar(p)ǫµr (p)e−ip·x + a†r(p)ǫµr

∗(p)eip·x
)
. (4.29)

Note that we have taken the Fourier components in a form which makes the
photon field real, as it should be. Also, it should be mentioned that the sum on
the index r can run over four independent polarization vectors as well: there
is a well-defined formalism that ensures that the characteristics of a physical
photon depend only on two polarization vectors, both of which satisfy Eq.
(4.21).

Following the argument in §4.2.1, we have the freedom to set the normal-
ization of the polarization vectors arbitrarily. Since the physical polarizations
are space-like, we can take them of unit length, i.e.,

ǫ · ǫ = 1 . (4.30)
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If we deal with four independent polarization vectors out of which two will
be unphysical, one of these vectors must be time-like. So we can take the
normalization to be

ǫµr ǫ
∗
µr′ = −ζrδrr′ , (4.31)

with

ζ0 = −1, ζ1 = ζ2 = ζ3 = +1 . (4.32)

Note that the expression on the right hand side of Eq. (4.31) does not involve
a sum over the repeated index r since this is just a counting index. According
to our summation convention stated in §2.1, any summation over this index
will be explicitly indicated, as in the following equation:

3∑

r=0

ζrǫ
µ
r ǫ

ν
r
∗ = −gµν , (4.33)

which is the completeness relation satisfied by the polarization vectors.

As mentioned earlier, the sum involves unphysical polarization states. In real problems, we will
encounter such sums over physical states only. Consider a photon moving in the z-direction, so
that we can use Eq. (4.25) as its 4-vector. Subject to the conditions given in Eqs. (4.24) and
(4.28), the physical polarization vectors will be given by

ǫµ
(1)

= (0, 1, 0, 0) , ǫµ
(2)

= (0, 0, 1, 0) , (4.34)

or linear combinations of these two. We can then write
X

pol
(physical)

ǫµr ǫ
ν
r
∗ = −gµν − pµpν

(p · n)2
+
pµnν + pνnµ

p · n , (4.35)

where nµ = (1, 0, 0, 0). The result in this form is valid for any photon momentum pµ, not
necessarily in the z-direction. We will show later that the terms containing pµ and/or pν do
not contribute to any physical amplitude, and so one can effectively use the formula

X

pol
(physical)

ǫµr ǫ
ν
r
∗ = −gµν . (4.36)

2 Exercise 4.3 Verify that, for the photon momentum in the z-
direction, the expression given in Eq. (4.35) has non-zero values only
if µ = ν = 1 or µ = ν = 2, which is what is expected from Eq. (4.34).

b) Proca field

Eq. (4.19) suggests an easy and straightforward way of generalization for
massive vector fields. In absence of sources, we can write the equation as

∂µF
µν +M2Aν = 0 , (4.37)

where Fµν and Aν are related through Eq. (4.16). This is called the Proca
equation.
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Since Fµν is antisymmetric in its indices, ∂ν∂µF
µν = 0. So Eq. (4.37)

implies

∂νA
ν = 0 , (4.38)

an equation that the Proca field must satisfy. The polarization vectors of the
Proca field therefore satisfy Eq. (4.24) just like the photons do. However, the
freedom described in Eq. (4.27) is not available for the Proca field. Because of
the presence of the Aν term, the Proca equation is not invariant under gauge
transformations of the form given in Eq. (4.22).

Because of the constraint of Eq. (4.24), there can be three independent
polarization states of a massive vector boson. We can take the polarization
vectors to be orthogonal to one another, i.e.,

ǫ(r)
µ (p)

(
ǫµ(s)(p)

)∗
= −δr

s . (4.39)

Suppose a massive vector boson has the 4-momentum pµ = (Ep, pn̂), where n̂

is a unit 3-vector. As for the case of the photon, we can take two polarization
vectors of the form (0, n̂′) with n̂ · n̂′ = 0. These are transverse degrees of
polarization. For a massive vector boson, we can obtain one more, viz.,

ǫµl (p) =
1

M
(p, Epn̂) . (4.40)

This is a longitudinal polarization state since the spatial part is along the
direction of the 3-momentum of the vector boson. With these three states of
polarization, it is easy to see that

∑

r

ǫ(r)
µ (p)

(
ǫ(r)
ν (p)

)∗
= −gµν +

pµpν

M2
. (4.41)

If we are talking about a real Proca field, the plane wave expansion will be
given by Eq. (4.29), with the polarization vectors appropriate for the Proca
field. For a complex Proca field, a†r(p) appearing on the right side of Eq. (4.29)
will have to be replaced by â†r(p) so that the two terms are not hermitian
conjugates of each other. However, there are problems with dealing with
Proca fields which will be alluded to in §14.9.

4.2.3 Dirac fields

Dirac suggested that, for spin- 1
2 fermions, one should not use the Klein–

Gordon equation. Instead, he introduced the Hamiltonian

H = α · p + βm . (4.42)

The Schrödinger equation with the Dirac Hamiltonian is often called the Dirac
equation:

i
∂ψ

∂t
= −iα ·∇ψ + βmψ . (4.43)
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Multiplying both side from the left by β, this equation can also be written in
the form

iγµ∂µψ −mψ = 0 , (4.44)

where we introduce the notation

γµ = {β, βαi} . (4.45)

We will also define the corresponding matrices with lower indices in the usual
way:

γµ = gµνγ
ν . (4.46)

It should be noted that we have put a Lorentz index on these matrices, de-
spite the fact that these are constant matrices. They are the same in all
frames. The reason for equipping these matrices with Lorentz indices will be
explained later, in §4.4. In any case, even at this point it should be obvious
that the objects presented in Eq. (4.45) are different from Lorentz vectors: for
a particular value of µ, the object Aµ is a number, whereas γµ is a matrix.

In order that the solutions to the Dirac equation reproduces the relativistic
relation between energy and momentum, Eq. (4.1), the objects γµ should
satisfy the relations

[
γµ, γν

]
+

= 2gµν , (4.47)

where the square brackets with a subscripted plus sign denote the anticom-
mutator,

[A,B]+ ≡ AB +BA . (4.48)

Hermiticity of the Hamiltonian of Eq. (4.42) imposes the following property:

γ†µ = γ0γµγ0 . (4.49)

2 Exercise 4.4 Take the square of the Hamiltonian given in Eq. (4.42),
assuming the objects α and β commute with all components of mo-
mentum, but nothing about their mutual commutation properties.
Show that the result gives H2 = p2 +m2 if Eq. (4.47) is satisfied.

The anticommutation property cannot be satisfied if the objects γµ are
numbers. We have to take them as matrices. In Appendix F, we argue that
they have to be 4× 4 matrices. Eq. (4.44) then says that any solution for ψ
must be a 4-component column vector. Let us therefore try solutions of the
form

ψ(x) = upe
−ip·x , (4.50)

where up is a 4-component column vector. This is called a spinor solution.
According to the discussion of §4.2.1 following Eq. (4.7), the up appearing in
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Eq. (4.50) must be a positive energy spinor. Similarly, there will be negative
energy spinors, defined by solutions of the form

ψ(x) = vpe
+ip·x . (4.51)

There will be four linearly independent solutions altogether, two of the first
kind and two of the second. We will denote these different solutions by an
extra subscript index, i.e., by writing up,s and vp,s. When we write any
mathematical formula with only one subscript on the spinors, the subscript
should always be understood to be the 3-momentum appearing in the plane
wave solution, and the formula to be valid irrespective of which of the two
different solutions we take.

To obtain the spinors, we insert Eqs. (4.50) and (4.51) into the Dirac
equation, Eq. (4.44). This gives the following equations for the spinors:

(
p/−m

)
up = 0 , (4.52)

(
p/+m

)
vp = 0 , (4.53)

where we have introduced the useful notation

p/ ≡ γµpµ . (4.54)

Of course, the explicit solutions of Eqs. (4.52) and (4.53) depend on the
explicit forms of the Dirac matrices. These are representation dependent, and
therefore are not of direct interest to us. Independent of the representation,
we can make a few observations that will be helpful for future manipulations
with the spinors. First, note how Eq. (4.52) looks for p = 0. In this case
p0 = m, so that the equation reduces to

(
γ0 − 1

)
u0 = 0 , (4.55)

which means that u0 is an eigenvector of γ0 with eigenvalue +1. Similarly, Eq.
(4.53) shows that v0 should be an eigenvector of γ0 with eigenvalue −1. Note
that there will be two solutions of each type, since there are four eigenvectors
of the 4× 4 matrix γ0.

We now define normalized eigenvectors of γ0 by the equations

γ0ξs = ξs , γ0χs = −χs , (4.56)

with

ξ†sξs′ = χ†
sχs′ = δss′ , ξ†sχs′ = χ†

sξs′ = 0 . (4.57)

The index on the eigenvectors can take two values, giving two different eigen-
vectors.
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Clearly, u0 and v0 must be given, apart from some optional normalization
constant, by ξs and χs respectively. And the solutions for arbitrary momen-
tum can be constructed in the following way:

up,s = Np

(
p/+m

)
ξs , (4.58)

vp,s = Np

(
− p/+m

)
χ−s , (4.59)

where Np is a normalizing factor, to be defined shortly. To show that these
are indeed solutions, we need to check that they do indeed satisfy Eqs. (4.52)
and (4.53) respectively. Substitution of these forms into the left hand sides of
the equations yields the combination

(
p/−m

)(
p/+m

)
= p/p/−m2 . (4.60)

This is zero since

p/p/ = γµγνp
µpν = γµγνp

νpµ = γνγµp
µpν

=
1

2

[
γµ, γν

]
+
pµpν = gµνp

µpν = p2 , (4.61)

which equals m2, by Eq. (4.10).
As for the normalization factor Np, we choose

Np =
1√

Ep +m
. (4.62)

In Appendix F, we show that this choice implies the following normalization
conditions on the spinors:

u†p,sup,s′ = v†p,svp,s′ = 2Epδs,s′ (4.63)

and

u†p,sv−p,s′ = v†p,su−p,s′ = 0 . (4.64)

Using these spinor solutions, we can write

ψ(x) =
∑

s

∫
D3p

(
ds(p)us(p)e−ip·x + d̂†s(p)vs(p)e+ip·x

)
. (4.65)

Note that we use the notations u(p) and up interchangeably, here and else-
where in the book.

2 Exercise 4.5 Express u0 and v0 in terms of the normalized eigenvec-
tors of γ0.
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4.3 Lagrangian

Before proceeding further with fields, let us discuss what we want to do with
them.

Of course, we want to study the evolution of fields. This can be done by
setting up an action for the fields and deriving the equations of motion from
the action. In particle mechanics, the action is defined as the time integral of
the Lagrangian:

A =

∫
dt L . (4.66)

Since fields are functions of both time and space, it is more useful to write
the action as

A =

∫
dt

∫
d3x L =

∫
d4x L , (4.67)

where L is the Lagrangian density. Since this is the object we will use always,
and not the object L that appears in Eq. (4.66), we will drop the word ‘density’
and refer to it simply as Lagrangian. In case we want to refer to L, the spatial
integral of the Lagrangian, we will call it the total Lagrangian.

What will the Lagrangian consist of? It will contain fields, of course.
In addition, there can be first derivatives of the fields. The Lagrangian for-
mulation does not allow the presence of any higher order derivatives in the
Lagrangian.

For the purpose of a general discussion, let us denote a general field by
Φ(x). Thus

L = L (Φ, ∂µΦ) . (4.68)

Of course, Φ need not be only one field. All relevant fields are summarized in
that notation.

The action principle says that the action must be extremum for the clas-
sical solution. The fields must satisfy some condition for this to be realized.
Omitting details, we write the result:

∂µ

(
∂L

∂(∂µΦA)

)
=

∂L

∂ΦA
, (4.69)

where the index A selects out any one field among those present in the La-
grangian. This equation is called the Euler–Lagrange equation for the field
ΦA.

Since all physics comes from the action and the physics is Poincaré in-
variant, the action itself must be Poincaré invariant. Looking back at Eq.
(4.67) and appreciating the fact that the integration measure d4x is Poincaré
invariant, we conclude that the Lagrangian has to be Poincaré invariant.



74 Chapter 4. A brisk tour of quantum field theory

This is the advantage of proceeding through a Lagrangian formulation.
Quantum mechanics is often introduced through the Hamiltonian formula-
tion. We can of course define the Hamiltonian (which is, truly speaking, the
Hamiltonian density) through the Lagrangian by

H =
∑

A

ΠA∂0ΦA −L , (4.70)

where ΠA is called the canonical momentum corresponding to the field ΦA,
defined as

ΠA =
∂L

∂(∂0ΦA)
. (4.71)

But this Hamiltonian will not be Poincaré invariant, and therefore will not be
as convenient as the Lagrangian.

With Lagrangians, the task is simple. Take the fields, and try making
Poincaré invariants with them. There are two parts of Poincaré invariance, as
discussed in Ch. 3. First, the Lagrangian will have to be translation invariant.
This can be easily ensured by not putting any explicit dependence of xµ in
the Lagrangian. Derivatives are of course allowed, as indicated in Eq. (4.68),
because they are not affected by a constant shift of the co-ordinates.

The second part of ensuring Poincaré invariance is ensuring Lorentz invari-
ance. The Lagrangian should contain only Lorentz invariant combinations of
fields. This is the task that we take up in §4.4. Once this is done, we will be
able to see examples of Lagrangians that we can work with.

The Lagrangian may have internal symmetries apart from the spacetime
symmetries that we discussed above. We will talk about such symmetries
briefly in §4.6, but will take them up seriously beginning with Ch. 5.

Another property of Lagrangians should be kept in mind. In order that the
Hamiltonian is hermitian, the Lagrangian should be hermitian. That means
that any given term in the Lagrangian must either be hermitian by itself, or if
it is not, the Lagrangian must contain the hermitian conjugate term as well.

There is another important point. It is the action which really governs the
dynamics. Suppose we have a term which is a total divergence, of the form
∂µS

µ for some collection of fields Sµ. We can use the Gauss theorem to turn
the integral of this term into a surface integral. Assuming all fields vanish at
the spacetime surface at infinity, the surface integral will be zero. The lesson
is that a total divergence term is irrelevant in the Lagrangian.

One final constraint should be discussed here. In conventional units, action
has the dimension of ~. In natural units, since we have taken ~ = 1, action
should be dimensionless, as has been noted in Table 1.3 (p 13). Eq. (4.67) then
implies that the mass dimension of the Lagrangian is given by

dim L = 4 . (4.72)

In a term in the Lagrangian, any combination of fields must therefore be
multiplied by a constant such that the overall combination has mass-dimension
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equal to 4. The constants, in general, are called coupling constants. In case
only the fields themselves make up for the dimension 4, the coupling constant
would be dimensionless. If the dimension of the fields in a Lagrangian term
is less than 4, the coupling constant would have a positive mass dimension.
The remaining possibility, where the field combination has dimension greater
than 4 and consequently the coupling constant has negative mass-dimension,
suffers from a big problem. With the presence of any such coupling constant,
the entire theory becomes sick. One obtains infinite results for amplitudes of
physical processes. We will therefore consider theories in which such constants
do not appear, theories which are called renormalizable. Exceptions can be
made only if the theory is supposed to be an approximation, valid up to
a certain maximum energy. These kind of theories are called effective field
theories .

4.4 Making Lorentz invariants with fields

4.4.1 Invariants with scalar and vector fields

Making Lorentz invariants with scalar fields is easy. The scalar field itself is
invariant under the Lorentz group, so any polynomial made out of the scalar
field must also be invariant. For example, if we consider a scalar field φ(x),
there can be terms like φ2 or φ3 or any higher power of φ in the Lagrangian.
There may also be a term like (∂µφ)(∂µφ), or the square or cube or higher
powers of this expression. There might be some restrictions coming from
hermiticity, renormalizability, and other symmetries, which we will encounter
as we go along.

We now consider a vector field V µ. It is easy to construct invariants
using this field: one merely has to notice that all Lorentz indices are con-
tracted. For example, we can write a term V µVµ. One can also have terms
like (∂µVν)(∂µV ν), or (∂µVν)(∂νV µ). The combination ∂µV

µ cannot occur.
Or, rather, it is useless to employ this combination, since it is set to zero for
vector fields, as indicated in Eq. (4.21).

4.4.2 Invariants involving Dirac fields

There cannot be any term in the Lagrangian which would have only one Dirac
field. The reason is that the Dirac field carries an angular momentum of 1

2 .
Any term in the Lagrangian has to be Lorentz invariant, which implies that
the total angular momentum should be zero. So, fermion fields must occur in
even numbers. It is therefore instructive to see how different combinations of
two fermion fields behave under Lorentz transformations.



76 Chapter 4. A brisk tour of quantum field theory

a) Basic invariant

Under Lorentz transformations, a fermion field transforms as follows:

ψ(x) −→ ψ′(x′) = exp

(
− i

4
ωµνσµν

)
ψ(x) , (4.73)

where

σµν =
i

2

[
γµ, γν

]
, (4.74)

and ωµν ’s are the parameters of transformation. This is a representation
in the form advocated in Eq. (3.15, p 42), because when all ωµν ’s vanish,
we obtain the identity transformation. Thus ωµν ’s represent the departure
from identity transformation. They can be defined by writing the co-ordinate
transformation rule, Eq. (2.3, p 17), in the form

x′µ = Λµ
νx

ν =
(
δµ

ν + ωµ
ν

)
xν =

(
gµν + ωµν

)
xν . (4.75)

When we defined generators in Eq. (3.15, p 42), there was only a factor of −i in the exponent.
Compared to that, it might seem that Eq. (4.73) has an extra factor of 1

4
. Actually, there has

been no change of convention between Eqs. (3.15) and (4.73). To appreciate this statement,
first it has to be realized that 1

2
σµν , and not σµν , are the generators of the Lorentz group.

This fact, elaborated in Ex. 4.6, accounts for a factor of 1
2

present in the exponent of Eq.

(4.73). Another factor of 1
2

comes from the fact that the Lorentz group has six generators, as

elucidated in §3.6. These can be taken as 1
2
σµν with µ < ν. The exponent of Eq. (4.73) has

an unrestricted sum over the indices so that each independent σµν appears twice in the sum.

2 Exercise 4.6 Starting from the definition of Eq. (4.74), show that the
matrices 1

2
σµν satisfy the same commutation commutation relation

as the Jµν’s, shown in Eq. (3.56, p 54). [Hint : Use Eq. (4.47), and the
identities

[A,BC] = [A,B]C +B[A,C] , (4.76a)

[A,BC] = [A,B]+C − B[A,C]+ , (4.76b)

which hold for any objects A, B and C whose multiplication is associative.]

To keep the notation compact in relations such as the one in Eq. (4.73), we
will omit the co-ordinate as the argument of the field. It will be understood
that the primed field should have the primed co-ordinate as its argument,
whereas the unprimed field should have the unprimed co-ordinate. Taking
the hermitian conjugate of Eq. (4.73), we obtain

ψ† −→ ψ′† = ψ† exp

(
+
i

4
ωµνσ†

µν

)
. (4.77)

This shows that

ψ′†ψ′ = ψ† exp

(
+
i

4
ωµνσ†

µν

)
exp

(
− i

4
ωµνσµν

)
ψ . (4.78)
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But the two exponential factors in the middle do not cancel each other, be-
cause σ†

µν 6= σµν . In fact, from Eq. (4.49), it is easy to show that

σ†
µν = γ0σµνγ0 , (4.79)

which means that the right hand side of Eq. (4.78) cannot be written as
ψ†ψ, or in other words, the combination ψ†ψ is not invariant under a Lorentz
transformation.

2 Exercise 4.7 Verify Eq. (4.79).

Let us then try to find whether there is an invariant of the form ψ†Mψ,
where M is some fixed matrix. Since the transformation property of ψ has
been shown in Eq. (4.73), the given combination will be invariant if ψ†M has
the following transformation property:

ψ†M −→ ψ′†M = ψ†M exp

(
+
i

4
ωµνσµν

)
. (4.80)

Using Eq. (4.77), we see that this implies

ψ† exp

(
+
i

4
ωµνσ†

µν

)
M = ψ†M exp

(
+
i

4
ωµνσµν

)
. (4.81)

Since we want this equation to be satisfied for arbitrary ψ and arbitrary values
of ωµν , we require

σ†
µνM = Mσµν . (4.82)

Using Eq. (4.79) and
(
γ0

)2

= 1 which follows from Eq. (4.47), this can be

written as

σµνγ0M = γ0Mσµν . (4.83)

In other words, γ0M commutes with all σµν ’s. This is easily ensured if γ0M
is the unit matrix, or if

M = γ0 . (4.84)

For future purposes, it is therefore convenient to introduce the notation

ψ ≡ ψ†γ0 , (4.85)

and summarize our exercise by saying that under Lorentz transformations, ψ
transforms as

ψ −→ ψ
′

= ψ exp

(
+
i

4
ωµνσµν

)
, (4.86)

so that the combination ψψ is an invariant.
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The choice of Eq. (4.84) is not unique. There exists a matrix that anti-
commutes with all gamma matrices, i.e.,

[
γµ, γ5

]
+

= 0 . (4.87)

This matrix, called γ5, is given by

γ5 ≡ iγ0γ1γ2γ3 . (4.88)

The matrices σµν contain a pair of gamma matrices, and therefore commute
with γ5:

[
σµν , γ5

]
= 0 . (4.89)

Thus, we can also use γ5 in place of γ0M . In this case, we obtain the result
that ψγ5ψ is also an invariant under Lorentz transformations.

There is an important mathematical theorem, called Schur’s lemma, which says that a matrix
can commute with all generators of an irreducible representation if and only if it is a multiple
of the unit matrix. Existence of the matrix γ5 that commutes with every σµν clearly indicates
that the representation we are dealing with is not irreducible. Indeed, it is very easy to see that
if we define

σ
(±)
µν =

1

2
(1 ± γ5)σµν , (4.90)

then the matrices 1
2
σ

(+)
µν satisfy the same commutation commutation relation as the Jµν , and

so do the matrices 1
2
σ

(−)
µν . This already shows that the set σµν is not irreducible: it can be

decomposed into two different sets, each of which satisfies the same algebra. These two sets are
in fact the matrix representation of the generators in the two different spin- 1

2
representations that

we mentioned in Eq. (3.64, p 56). The Dirac field contains these two irreducible representations,
and can be said to belong to the ( 1

2
, 0) + (0, 1

2
) representation. This is obviously reducible, as

the plus sign between the two irreducible representations indicates.
It can be easily seen that the component representations defined by the generators appearing

in Eq. (4.90) are 2-dimensional. By the choice of the overall constant in the definition of γ5,
we have ensured that

“

γ5
”2

= 1 . (4.91)

The eigenvalues of γ5 are therefore ±1, each one being doubly degenerate. We can take a basis
for the Dirac matrices such that γ5 is diagonal, with two positive eigenvalues in the first two
diagonal positions, and the two negative ones in the last two positions. Then, the matrices
1
2
(1 ± γ5) will be of the form

1

2
(1 + γ5) = diag(1, 1, 0, 0) ,

1

2
(1 − γ5) = diag(0, 0, 1, 1) . (4.92)

Consequently, σ
(+)
µν will be a set of matrices with non-zero elements only in the upper left 2× 2

block, and will inflict non-trivial transformations only among the two upper components of any

column vector. Similarly, σ
(−)
µν will inflict non-trivial transformation only among the two lower

components. In this sense, each set constitutes a 2-dimensional representation.

2 Exercise 4.8 Following the example of γ5 discussed here, construct a
general proof of Schur’s lemma. In other words, show that if there
exists a matrix Y that commutes with all generators Ta in a rep-
resentation and is not a multiple of the unit matrix, then one can
construct two or more (depending on the number of eigenvalues that
Y has) sets of matrices, in the fashion shown in Eq. (4.90), which
would satisfy the same algebra as the Ta’s.
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b) General bilinears of fermion fields

How do general combinations of the form ψFψ transform? We have already
encountered two such combinations, and found that they are scalars, or invari-
ants. Before exploring other possibilities for F , let it first be realized that it is
not necessary to deal with arbitrary matrices in place of F . Since ψ has four
components, the matrix F must be a 4× 4 matrix. It will thus be enough if
we identify 16 independent basis matrices and derive the transformation rules
of the resulting bilinears. The conventional choice groups them conveniently
into several categories, listed below.

Combination
F

Number
name of matrices
S 1 1
V γµ 4
T σµν 6
A γµγ5 4
P γ5 1

(4.93)

In fact, the names of the combinations contain hints to their Lorentz trans-
formation properties. The combination ψψ is called S because it is a scalar,
as we have seen. Of course we have also seen that ψγ5ψ behaves the same way.
It turns out that under the extended Lorentz group, the behaviors of these
two combinations are different. In Ch. 6, we will see that the combination
ψγ5ψ is odd under parity. For such scalars, the name pseudoscalar is often
used, which explains why this combination has been dubbed P in Eq. (4.93).

Among the rest, we first consider the behavior of ψγλψ under a Lorentz
transformation. Using Eqs. (4.73) and (4.86), we find

ψ
′
γλψ′ = ψ

(
1 +

i

4
ωµνσ

µν

)
γλ

(
1− i

4
ωµνσ

µν

)
ψ +O

(
ω2
)

= ψγλψ +
i

4
ωµνψ

[
σµν , γλ

]
ψ +O

(
ω2
)
. (4.94)

For evaluating the commutator, we use Eq. (4.76b). Using the anticommuta-
tors of Eq. (4.47), we obtain

[
γµγν , γλ

]
= 2gνλγµ − 2gµλγν . (4.95)

Using the definition of σµν from Eq. (4.74), we then obtain
[
σµν , γλ

]
= 2i

(
gνλγµ − gµλγν

)
. (4.96)

Thus

ωµν

[
σµν , γλ

]
= 2i

(
ωµ

λγµ − ωλ
νγ

ν
)

= 2i
(
ωµλγµ − ωλνγν

)
= − 4iωλµγµ , (4.97)
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where in writing the last step, we have used the property that ωµν is anti-
symmetric in its indices, Eq. (3.54, p 53). Putting this back into Eq. (4.94),
we obtain

ψ
′
γλψ′ = ψγλψ + ωλµψγµψ . (4.98)

Comparing Eqs. (4.98) and (4.75), we conclude that the combination ψγλψ
transforms like a 4-vector under a Lorentz transformation. This is the reason
we called this combination V in Eq. (4.93), and this is also why we put a
Lorentz index on the set of four constant matrices presented in Eq. (4.45).

Since γ5 commutes with all σµν ’s, the transformation property of the com-
bination ψγλγ5ψ should be the same as that of ψγλψ so far as the proper
Lorentz transformations are concerned. Under parity, however, the trans-
formation is different, as we show in Ch. 6. To emphasize this feature, the
combination ψγλγ5ψ is called the axial vector , and is denoted by A, as in Eq.
(4.93). Finally, the bilinear where σµν is sandwiched between spinors is called
T because it transforms like a rank-2 tensor.

2 Exercise 4.9 Show that ψσµνψ transforms like a rank-2 tensor under
proper Lorentz transformations.

4.4.3 Final recipe

Writing down Lorentz invariants can now be reduced to an easy recipe: con-
tract all Lorentz indices that appear anywhere, either with fields, or with
derivatives, or in fermion bilinears. This can be used even when we want to
write down the Lagrangian including more than one kind of field. For example,
if there are two scalar fields φ1 and φ2, any combination of them, like φ2

1φ
2
2,

should be invariant. With a vector field Aµ, a combination like Aµφ†∂µφ will
be invariant. So will be the combination ψγµψA

µ, or ψσµνψF
µν . Of course,

before writing any term in the Lagrangian, we should check its hermiticity.
If it is not hermitian, we must add the hermitian conjugate. We should also
check whether the term is renormalizable. Explicit examples will be shown
shortly.

4.5 Lagrangians for free fields

We have already discussed the equations of motion for free fields. For scalar
fields, we should have the Klein–Gordon equation, given in Eq. (4.8). For a
Dirac field, we should obtain the Dirac equation, Eq. (4.44). And, for the
photon field, the relevant equation is Eq. (4.19), with the source term on the
right hand side set to zero.

Notice that all these equations are linear in the fields. If we want to
derive them from a Lagrangian via the Euler–Lagrange equations, Eq. (4.69),
then the corresponding Lagrangian must be quadratic in the fields. We can
therefore think of the possible quadratic terms that one can construct with a
given kind of field in order to arrive at the free Lagrangian for the field.
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Consider a scalar field φ first. The obvious quadratic term is φ2, and this
can be one term in the Lagrangian. The Lagrangian can also contain deriva-
tives. A quadratic term involving the derivative is (∂µφ)(∂µφ). Combining
the two terms, we can write the free Lagrangian as

L0 =
1

2
(∂µφ)(∂µφ) − 1

2
m2φ2 . (4.99)

If φ is a complex scalar field, the free Lagrangian is

L0 = (∂µφ)†(∂µφ)−m2φ†φ . (4.100)

In either case, it is straightforward to see that the resulting Euler–Lagrange
equation is indeed the Klein–Gordon equation.

2 Exercise 4.10 Verify this statement by deducing the Euler–Lagrange
equations from the Lagrangians of Eqs. (4.99) and (4.100). [Note :

For the complex scalar field, there should be two Euler–Lagrange equations, one for
φ and one for φ†. Each should be equivalent to the other.]

2 Exercise 4.11 What are the mass dimensions of the field φ and the
constant m that appear in the Lagrangian?

Note that we have put factors of 1
2

in both terms of Eq. (4.99) but not in Eq. (4.100). An
overall factor in the Lagrangian does not affect the Euler–Lagrange equation. Then why was
it introduced? The answer is to maintain a consistency with the Lagrangian for the complex
scalar field. The complex field can be broken up into its real part and imaginary part in the form

φ =
1
√

2

“

φ1 + iφ2

”

, (4.101)

and here the numerical factor ensures that φ is normalized the same way that φ1 and φ2 are.
If we put this into Eq. (4.100), the terms involving φ1 and φ2 come with factors of 1

2
, as seen

in Eq. (4.99).

For the Dirac field, consider the Lagrangian

L0 = iψγµ∂µψ −mψψ . (4.102)

It is easy to see that it gives the Dirac equation: take ψ as the ΦA that
appears in Eq. (4.69) and it follows immediately. But there is an apparent
problem, viz., the the first term of Eq. (4.102) is not hermitian. We can make
the Lagrangian hermitian by replacing the first term by the average of the
term and its hermitian conjugate. That would give

L ′
0 =

i

2

(
ψγµ∂µψ − (∂µψ)γµψ

)
−mψψ . (4.103)

According to the rules we set up earlier, this is the Lagrangian that we should
use. However, we should notice that

L0 −L ′
0 =

i

2

(
ψγµ∂µψ + (∂µψ)γµψ

)

= ∂µ

( i
2
ψγµψ

)
, (4.104)

i.e., the two forms of the Lagrangians differ by a total derivative. As we said
earlier, total derivative terms are irrelevant, so we can use either of them. We
will use the Lagrangian of Eq. (4.102), which is simpler.
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2 Exercise 4.12 Find the Euler–Lagrange equation corresponding to the
field ψ from the Lagrangian of Eq. (4.102), and show that it is just
the hermitian conjugate of the Dirac equation.

2 Exercise 4.13 Show that Eq. (4.103) also gives the Dirac equation.

We now discuss the photon field. If we find the Lagrangian of an electro-
magnetic field classically, we obtain

L0 = −1

4
FµνF

µν . (4.105)

However, in quantum field theory, this Lagrangian gives problems, which will
be alluded to in §4.10. So one adds another term to it and writes

L0 = −1

4
FµνF

µν − 1

2ξ
(∂µA

µ)2 . (4.106)

The extra term is called a gauge-fixing term. It sounds like an arbitrary
insertion and an insult to the classical wisdom, but actually it is neither, if
we insist on the subsidiary condition on the photon field in the form of Eq.
(4.21). At the classical level, the added term is zero. At the quantum level,
it makes calculation possible. The Lagrangian contains a parameter ξ, which
can have arbitrary values. All physical amplitudes should be independent of
this parameter.

4.6 Noether currents and charges

We mentioned Noether’s theorem earlier in §2.5, and demonstrated how to
derive conservation laws from symmetries of the action. We now give a more
complete recipe for deriving the conserved quantities, and give some exam-
ples from the free Lagrangians encountered in §4.5. We will keep the present
discussion confined to internal symmetries only, and will not give details. De-
tails of the deductions, as well as more general discussions including spacetime
symmetries, can be obtained in books on quantum field theory.

Internal symmetries involve transformation between fields at a given space-
time point. Suppose we have an infinitesimal transformation of the form

ΦA(x) −→ Φ′A(x) = ΦA(x) + δΦA(x) . (4.107)

Suppose these changes in the fields are inflicted through small changes of a
number of parameters, which we denote by θr. It can then be shown that the
change in the action is given by

δA =

∫
d4x

∑

r

δθr∂µJ
µ
r , (4.108)

where

Jµ
r =

∑

A

∂L

∂(∂µΦA)

δΦA

δθr
. (4.109)
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For a symmetry transformation, the action should not change, so that we
should obtain

∂µJ
µ
r = 0 . (4.110)

For each value of the index r, the 4-vector Jµ
r , whose divergence vanishes, is

called the Noether current . More explicitly, the equation can be written as

∂J0
r

∂t
+ ∇ · Jr = 0 . (4.111)

Integrating this equation on the entire space and assuming that the fields,
and therefore the currents, vanish at infinity, we obtain

dQr

dt
= 0 , (4.112)

where Qr is the Noether charge, defined as

Qr =

∫
d3x J0

r . (4.113)

Eq. (4.112) then tells us that the Noether charge is conserved.
As an example, first consider the free Lagrangian of a complex scalar field,

given in Eq. (4.100). Clearly, it is invariant under a phase rotation

φ −→ φ′ = e−iθφ , (4.114)

where θ is a parameter that is independent of spacetime co-ordinates. The
transformation of φ† follows from here, but we have to remember that φ
and φ† (or alternatively, φ1 and φ2 introduced in Eq. (4.101)) are really two
independent fields in the Lagrangian. For infinitesimal values of the phase
parameter, denoted by δθ, the changes of these two fields can be written as

δφ = −iδθ φ , δφ† = +iδθ φ† . (4.115)

Following Eq. (4.109) now, we can write the Noether current for this trans-
formation as

Jµ =
∂L

∂(∂µφ)

δφ

δθ
+

∂L

∂(∂µφ†)

δφ†

δθ

= −i(∂µφ†)φ+ i(∂µφ)φ† . (4.116)

2 Exercise 4.14 The Dirac Lagrangian, given in Eq. (4.102), is invari-
ant under phase rotations of ψ. Show that the corresponding Noether
current is given by

Jµ = ψγµψ . (4.117)
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4.7 Quantum fields as operators

We mentioned in §4.1 that it is imperative that we have an operator interpre-
tation of quantum fields. What we have done so far is that we have expressed
fields as superpositions of plane waves: the scalar field in Eqs. (4.12) and
(4.15), the Dirac field in Eq. (4.65), and the photon field in Eq. (4.29). If
these expressions should behave as operators, it means that the Fourier com-
ponents, like a(p) of Eq. (4.12) or d(p) of Eq. (4.65), should be operators. In
fact, this is the reason why we added daggers at different places, where just a
complex conjugation sign was expected if we were talking of number-valued
functions.

To understand what these operator do, we consider the real scalar field in
some detail. From the Lagrangian of Eq. (4.99), we can first find the canonical
momenta corresponding to the field φ. This will be

Π = ∂0φ . (4.118)

Thus the Hamiltonian is given by

H = Π∂0φ−L =
1

2

[(
∂φ

∂t

)2

+
(
∇φ
)2

+m2φ2

]
. (4.119)

If we now integrate it over all space to find the total Hamiltonian, and sub-
stitute the plane wave expansion of the field φ from Eq. (4.12), we obtain

H =

∫
d3x H =

1

2

∫
d3p Ep

(
a†(p)a(p) + a(p)a†(p)

)
, (4.120)

without assuming anything about the commutation properties of a(p) and
a†(p). The similarity of this expression with the Hamiltonian of a collection
of harmonic oscillators suggests that we declare the operator nature of a(p)
and a†(p) through the relations

[
a(p), a†(p′)

]
= δ3(p− p′) ,

[
a(p), a(p′)

]
= 0 ,

[
a†(p), a†(p′)

]
= 0 . (4.121)

It is now easy to check the following commutation relations:
[
H, a(p)

]
= −Epa(p) , (4.122a)

[
H, a†(p)

]
= +Epa

†(p) . (4.122b)

Consider now an eigenstate
∣∣Ψ
〉

of the total Hamiltonian with some eigen-
value, say E . The relations in Eq. (4.122) imply that

Ha(p) |Ψ〉 = (E −Ep)a(p) |Ψ〉 , (4.123a)

Ha†(p) |Ψ〉 = (E + Ep)a†(p) |Ψ〉 . (4.123b)
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In other words, a(p)
∣∣Ψ
〉

and a†(p)
∣∣Ψ
〉

are also eigenstates of H . The action
of a(p) reduces the eigenvalue by Ep, whereas the action of a†(p) increases
the eigenvalue by the same amount. This is interpreted by saying that, acting
on a state consisting of a number of particles, the operator a(p) annihilates a
particle of 3-momentum p from the state, whereas the operator a†(p) creates
a particle of 3-momentum p in the state. These particles are the quanta of
the field. So a(p) is called the annihilation operator and a†(p) the creation
operator .

The problem of negative energy solutions, discussed in §4.1, disappears in
this new interpretation. In Eq. (4.12), a(p) is associated with the positive
energy plane wave solution, and it annihilates a particle with positive energy.
In the same equation, a†(p) was associated with the negative energy plane
wave solution. In the operator interpretation, it means that it annihilates a
negative amount of energy from a state, or in other words, it creates energy
into a state. It is the energy difference before and after operating with the
operator that is positive or negative, not the energy of the state.

For the photon field, the annihilation and creation operators come with
a polarization index. The task of the operators is to annihilate or create a
photon in the polarization state indicated by the index.

For the complex scalar field, the operator a(p) and a†(p) still satisfy the
commutation relations of Eq. (4.121). So do their hatted counterparts. And
either of the hatted operators commutes with either of the unhatted ones.
This means that both daggered operators are creation operators and both
undaggered operators are annihilation operators.

Further relation between the two creation operators is obtained by con-
structing the Noether charge from the conserved current of Eq. (4.116). Once
the plane wave expansion of Eq. (4.15) is inserted into this expression, we
obtain

Q =

∫
d3p

(
a†(p)a(p)− â†(p)â(p)

)
. (4.124)

The combination a†a is the number operator. So, this equation shows that
the quanta created by â†(p) has the opposite conserve charge compared to
the quanta created by a†(p). The former kind of quanta are called the an-
tiparticles of the latter kind. The field operator φ for a complex field then
either annihilates a particle, or creates an antiparticle. Exactly the opposite
is done by the operator φ†.

The interpretation is the same for the Dirac field operator, for which the
operator d(p) annihilates a particle of momentum p, whereas d†(p) creates
an antiparticle of the same momentum. The opposite is done by ψ, because
from Eq. (4.65) we get

ψ(x) =
∑

s

∫
D3p

(
d†s(p)us(p)e+ip·x + d̂s(p)vs(p)e−ip·x

)
, (4.125)
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which involves the operators d†s(p) and d̂s(p). The difference, for the case
of fermions, is that these operators do not obey any commutation relation.
Rather, they obey the anticommutation relations

[
ds(p), d†s(p′)

]
+

= δ3(p− p′) , (4.126a)
[
d̂s(p), d̂†s(p′)

]
+

= δ3(p− p′) , (4.126b)

all other anticommutators being zero.

2 Exercise 4.15 Show that the commutation relations of Eq. (4.121)
imply the following equal-time commutation relations on the field
φ(x):

»

φ(x), ∂0φ(y)

–

˛

˛

˛

˛

˛

x0=y0

= iδ3(x − y) . (4.127)

[Note : From the standpoint of quantum field theory, this relation is more funda-
mental. The right hand side of the commutator of creation and annihilation operators
depend on the choice of our integration measure given in Eq. (4.13).]

2 Exercise 4.16 For a fermion field, show that the anticommutation
relations of Eq. (4.126) imply the following anticommutation relation
for the field operator:

»

ψ(x), ψ†(y)

–

+

˛

˛

˛

˛

˛

x0=y0

= δ3(x − y) , (4.128)

whereas the anticommutator between ψ(x) and ψ(y) vanishes, and so
does the anticommutator between two daggered field operators.

4.8 States

The fields are operators. What do they operate on?
Of course they act on states. States consist of particles: any number of

them, any kind of them. The simplest state is the one which contains no
particle. This is called the vacuum state, defined by

a(p) |0〉 = 0 , (4.129)

where in this equation, a(p) is a generic notation for the annihilation operator
of any field corresponding to any momentum p.

A one-particle state should be defined by the action of a creation operator
on the vacuum, i.e., should be of the form

|A(p)〉 = Npa
†(p) |0〉 , (4.130)

where a† denotes the creation operator for the particle called A, and Np is a
normalization constant. The definition of states with more particles, including
particles of different types, should be obvious.
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The normalization of states with one or more particles has to be dealt with
care. The vacuum state can be simply normalized by imposing the condition

〈0 |0 〉 = 1 . (4.131)

The same cannot be done for states with particles. To appreciate the point,
consider the inner product of two one-particle states. The definition of Eq.
(4.130) gives

〈A(p′) |A(p) 〉 = N∗
p′Np

〈
0
∣∣a(p′)a†(p)

∣∣ 0
〉
. (4.132)

Using the commutation or anticommutation relation between the creation
and annihilation operators depending on whether the particle in question is a
boson or a fermion, and then using Eqs. (4.129) and (4.131), we obtain

〈A(p) |A(p′) 〉 = N∗
p′Npδ

3(p− p′) . (4.133)

This is problematic when we look at the normalization of a state, i.e., when
p = p′. The right-hand side of Eq. (4.133) then contains a delta function with
vanishing argument, which is not defined. However, note that

δ3(q) =

∫
d3x eiq·x . (4.134)

So, for q = 0, the result of the integral on the right hand side is the volume of
the space. Thus, the problem with normalization can be avoided if we define
our theory within a finite (but very large) volume V . Choosing

Np =
√

2Ep , (4.135)

we find that Eq. (4.133) gives the normalization condition

〈A(p) |A(p) 〉 = 2EpV . (4.136)

Note that this implies that, unlike the vacuum state which is dimensionless,
any one-particle state has a non-trivial mass dimension:

dim |A(p)〉 = −1 . (4.137)

The arbitrary volume V taken for the purpose of normalization should drop
out of the calculation of any physically measurable quantity.

4.9 Interactions

Let us look back at the free Lagrangians presented in §4.5. As mentioned
there, these Lagrangians are all quadratic in fields. The operator interpre-
tation shows why this is so. Consider, e.g., the Lagrangian of real scalar
fields in Eq. (4.99). Both terms contain the field operator combination φφ,
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(a) (b)

Figure 4.1: Interactions in diagrammatic form. Diagram (a) corresponds to the φ3

interaction, diagram (b) to the interaction ψγµψAµ.

with derivatives or with constants which are not important for this discussion.
Each field operator φ either creates or annihilates a particle, as discussed. If
it acts on a one-particle state, the combination will annihilate the particle and
create it again. Thus, in effect, nothing happens at any point: the particle
just moves on.

If we consider any term in the Lagrangian which has three or more field
operators, the situation is different. Consider, for the sake of concreteness, a
term of the form φ3 with a real scalar field φ. If it acts on a state with two
particles, it can annihilate them and create a new one. Or it can act on a
state of one particle and the final result will be a state with two particles. In
any case, it signifies a non-trivial event. Such terms are therefore interaction
terms.

Or consider a term ψγµψAµ in the Lagrangian, where ψ is a Dirac field
and Aµ is the photon field. Let us recall, in a tabular form, what the different
field operators can do.

Operator Can annihilate Can create

ψ a fermion an antifermion

ψ an antifermion a fermion

Aµ a photon a photon

Overall, there will be eight possibilities, corresponding to one entry from each
row. For example, the interaction might annihilate a fermion and a photon,
and create a fermion. Or may be it can annihilate a fermion-antifermion pair
into a photon. And so on.

We can summarize all such information in a diagrammatic language.
Fig. 4.1 shows the basic building blocks of this language. For example, the
diagram to the left shows three lines meeting at a point, implying that the
interaction at that point would involve creation and annihilation of three par-
ticles. Dashed lines conventionally denote spin-0 particles. In the diagram
on the right hand side, the wavy line signifies a photon being created or an-
nihilated. The solid line, with an outgoing arrow, stands for the operator ψ:
a fermion created or an antifermion annihilated. And the solid line with an
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Figure 4.2: Two vertices of φ3 interaction making a Feynman diagram for a two-
particle elastic scattering.

incoming arrow represents the work of ψ: annihilation of a fermion or creation
of an antifermion.

It should be pointed out that these representations of basic interaction
vertices in Fig. 4.1 cannot correspond to physical processes. Consider, e.g.,
the diagram in Fig. 4.1a. Each leg represents a particle being created or anni-
hilated. It would be obviously impossible to have all three legs correspond to
annihilation, because then the final state would be the vacuum. The vacuum
has zero energy, whereas each initial particle must carry some positive energy,
so energy cannot be conserved. For the same reason, one cannot produce
three particles from the vacuum. A little more effort shows that 1 → 2 or
2→ 1 processes are also impossible.

2 Exercise 4.17 Show that the vertex of Fig. 4.1a cannot give a phys-
ical process of one particle decaying into two. [Hint : Consider energy
conservation in the rest frame of the decaying particle.]

2 Exercise 4.18 � For the vertex of Fig. 4.1b, we mentioned eight possi-
bilities. Show that none of them can correspond to physical processes.
[Hint : It is energy conservation once again.]

But these diagrams are not totally useless for this reason. Problems in
quantum field theory are usually addressed through perturbation theory. The
free Lagrangian, i.e., the part of the Lagrangian that is quadratic in the field,
is taken as the unperturbed Lagrangian, and the coupling terms are treated
as perturbations on it. When a proposed diagram has only one vertex, that
can be seen as a first order perturbation result. What we have said above can
be summarized by saying that in the first order of perturbation theory, the
interactions that we considered do not give rise to any physical effect.

We can then try second order in perturbation theory. The result can be
represented in the form of a diagram with two interaction vertices. In higher
and higher orders of perturbation theory, we can use these basic interaction
vertices as units to build up more complicated diagrams which can represent
physical processes. Such diagrams are called Feynman diagrams. For exam-
ple, consider Fig. 4.2. It contains two vertices of φ3 interaction. If we consider
that lines to the left correspond to incoming particles and the lines to the
right outgoing particles, the diagram represents a scattering process where
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there are two particles in the initial as well as in the final state. This is an
elastic scattering since all lines correspond to the same particle, so that the
initial and final masses are the same.

The problem about energy conservation encountered with Fig. 4.1 is evaded
here because at each vertex there is one line which does not correspond to
any of the initial or final particles, and some rules that apply for physical
particles need not apply for them. As a concrete example, consider the left
vertex of Fig. 4.2. Let the two left lines correspond to incoming particles,
with 4-momenta pµ and p′µ, which satisfy the relations p2 = p′2 = m2. The
particle line in the middle will then have a 4-momentum (p+ p′)µ, but

(p+ p′)2 = p2 + p′2 + 2p · p′ = 2(m2 + p · p′) , (4.138)

which is not equal to m2. Thus, the particle in the intermediate line does
not satisfy the energy-momentum relation. Then so be it! We cannot per-
form measurements on that particle, so there is no reason to assume that it
satisfies the energy-momentum relation. Of course, this can happen only for
intermediate lines, and the particles in these lines are called virtual particles or
off-shell particles. In contrast, particles which satisfy the energy-momentum
relation are called either physical or on-shell .

4.10 From Lagrangian to Feynman rules

This entire journey that we are undertaking, from a Lagrangian to the Feyn-
man diagrams, is intended for calculating amplitudes and rates for physical
processes. A Feynman diagram for a certain physical process corresponds to a
contribution to the amplitude for that process. And this contribution can be
written down just by looking at the diagram if we remember a set of rules, or a
recipe for doing so. These rules are called Feynman rules. There are different
kinds of elements in a diagram: external lines, internal lines, vertices, loops
and so on. Each of them contributes a factor to the amplitude. We discuss
the rules by such categories.

4.10.1 External lines

Roughly speaking, the Feynman rule for an external line is obtained by the
following steps. First, we need to look at the plane wave expansion of the
corresponding field and identify the relevant term. For example, if the line
corresponds to an incoming line, the relevant term is the one which contains
the annihilation operator for the particle. Once this is done, we discard the
exponential factor, the creation or annihilation operator and the integration
measure that we called D3p. Whatever is left in the term is the Feynman rule
for the external line.

For example, look at the complex scalar field in Eq. (4.15). Once we
discard the parts mentioned just above, nothing is left in either term. Thus,
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Table 4.1: Feynman rules for external lines.

Type of particle Feynman rule for
incoming outgoing

scalar 1 1
fermion up,s up,s

antifermion vp,s vp,s

photon ǫµr (p) ǫµr
∗(p)

the Feynman rule is nothing, or just a factor of 1. For the Dirac field, however,
the spinors will remain, and for the photon field, the polarization vector. We
summarize all these results in Table 4.1.

4.10.2 Internal lines

The Feynman rule for an internal line contains the propagator for that line.
We describe how to obtain this for a generic field Φ. Take the free Lagrangian
for a field and write it in the form

L0 =
1

2
ΦOΦ + total derivatives (4.139)

if Φ is real (i.e., hermitian), or as

L0 = ΦOΦ + total derivatives (4.140)

if Φ is a complex field, and Φ is the conjugation of Φ defined in a way that
ΦΦ is Lorentz invariant. Thus, for example, for scalar fields Φ is simply Φ†,
whereas for a Dirac field, it is the combination defined in Eq. (4.85).
O will invariably contain differential operators, coming from the deriva-

tives in the Lagrangian. Replace all derivatives ∂µ in it by −ipµ (since
pµ = i∂µ), and take the inverse of O. That is the propagator. The Feyn-
man rule is i times the propagator.

As an example, consider the free Lagrangian of a complex scalar field,
given in Eq. (4.100). We can write it as

L0 = ∂µ

(
φ†∂µφ

)
− φ†2φ−m2φ†φ , (4.141)

so that we identify

O = −2−m2 . (4.142)

The Feynman rule for a scalar internal line will then be given by

i∆F (p) =
i

p2 −m2
. (4.143)
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For a Dirac field, Eq. (4.102) shows that

O = iγµ∂µ −m, (4.144)

and therefore the propagator should be the inverse of (p/−m). It means that
the propagator is a matrix which, when multiplied by (p/−m), gives the unit
matrix. A little reflection and the use of Eq. (4.61) show that the Feynman
rule for an internal fermion line is

iSF (p) = i
p/+m

p2 −m2
. (4.145)

For the photon field, we start from the Lagrangian of Eq. (4.106) and
rewrite it as

L0 = −1

2
∂µAν(∂µAν − ∂νAµ)− 1

2ξ
(∂νA

ν)(∂µA
µ)

=
1

2
Aν

(
gµν

2− (1 − 1

ξ
)∂µ∂ν

)
Aµ + ∂µ(· · ·) . (4.146)

The propagator is then given by Dµλ, where
(
−gµνp2 + (1 − 1

ξ
)pµpν

)
Dµλ = δν

λ . (4.147)

Writing Dµλ(p) = agµλ + bpµpλ, we can solve the co-efficients a and b and
obtain the Feynman rule for an internal photon line as

iDµλ(p) = − i

p2

(
gµλ − (1− ξ) pµpλ

p2

)
. (4.148)

Note what happens if we take ξ →∞: the propagator cannot be defined. This
is the reason why we had to introduce the gauge-fixing term in Eq. (4.106).
We cannot do without this term, i.e., we must use some finite value of ξ so
that the gauge-fixing term does not vanish. Since the final results do not
depend on the value of ξ, we will take ξ = 1 so that the photon propagator is
given by

iDµλ(p) = − igµλ

p2
. (4.149)

This is called the ’t Hooft–Feynman gauge.

2 Exercise 4.19 Go through the same procedure without the gauge-
fixing term, and show that the procedure of finding the inverse of
O fails.

2 Exercise 4.20 Consider a Proca field, for which the free Lagrangian
can be written as

L0 = −1

4
FµνF

µν +
1

2
M2AµA

µ . (4.150)

Show that in this case, the propagator can be obtained without adding
any gauge-fixing term, and the propagator is given by

Dµν(p) =
1

p2 −M2

“

−gµν +
pµpν

M2

”

. (4.151)
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4.10.3 Vertices

The Feynman rule for a vertex depends on the interaction term in the La-
grangian that the vertex comes from. Take the term, strip it of all field
operators, and multiply by i to obtain the Feynman rule for the vertex. If
there are n factors of any of the fields for n > 1, multiply by a factor n!. The
following examples will make the algorithm clear:

Interaction term Feynman rule
in Lagrangian for vertex

hψψφ ih

hψγ5ψφ ihγ5

−λφ4 −4!iλ

(4.152)

If an interaction term contains the derivative of any field, the correspond-
ing Feynman rule will contain a factor of momentum. To see how this rule
follows from the prescription given above for the vertices, suppose there is an
interaction term that contains ∂µφ, where φ is a complex scalar field. From
the plane wave expansion of the field given in Eq. (4.15), we obtain

∂µφ(x) =

∫
D3p

(
− ipµa(p)e−ip·x + ipµâ

†(p)e+ip·x
)
. (4.153)

This means that, apart from other factors that would come from other field
operators in this interaction term, there should be a factor −ipµ for a particle
annihilated, or a factor +ipµ for an antiparticle created. Said another way,
the factor will be −ipµ if pµ is the 4-momentum in the direction of the charge
carried by the particle.

4.10.4 Other factors

There are various kinds of other factors that can enter the amplitude. Here
is a list.

Loop factors : For every independent loop in a Feynman diagram, there
must be one 4-momentum that is not determined by the momenta of
external particles. So there will be one arbitrary momentum for each
loop, and we should integrate over all possible values of this momentum,
with a factor of

∫
d4q

(2π)4
. (4.154)

Antisymmetry factors : Fermion creation and annihilation operators an-
ticommute, as we have seen in Eq. (4.126). There are two consequences
of this fact in Feynman rules.
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1. If there is a closed fermion loop in the diagram, one should put an
overall factor of −1 for it and take a trace of the Dirac matrices
occurring in the expression.

2. If two diagrams differ by the interchange of two fermion lines only,
there must be an extra negative sign between the two diagrams.

Symmetry factors : If, in a diagram, there is a set of n internal lines corre-
sponding to the same field which begin and end on the same two vertices,
there should be an extra factor of 1/n! for the amplitude of the diagram.
For lines with complex fields, it means that the arrows all point from
one vertex to another. For real fields, arrows are irrelevant. The reason
for this factor will be explained with an example in §4.12.2.

Another passing comment. The exponential co-ordinate dependent factors
of the plane wave expansion seem not to appear anywhere in this scheme.
Actually, they do, in a quiet way. All such factors corresponding to the lines
meeting at a vertex ensure that the 4-momentum is conserved at the vertex.

4.10.5 Feynman amplitude

When we calculate the rate of any process, we first draw the Feynman dia-
grams corresponding to the process. Then we look for the Feynman rules for
the geometrical elements that constitute any diagram: external lines, internal
lines, vertices, and so on. We string together the Feynman rules corresponding
to all such geometrical elements to form the Feynman amplitude of a process.
To be more precise, the product of the Feynman rules of all geometrical ele-
ments gives i times the Feynman amplitude M for the diagram. If a physical
process has many diagrams, the Feynman amplitudes of different diagrams
should be added.

For example, consider the diagram of Fig. 4.2 (p 89). The geometrical ele-
ments that we talked about are of the following nature for this diagram:

• Four external lines: according to the rules given in Table 4.1 (p 91), there
is a factor of 1 for each such line.

• Two vertices: if the interaction term in the Lagrangian is −µφ3, the
Feynman rule for each vertex should be −6iµ.

• One internal line: its Feynman rule should be its propagator.

Combining all these factors, we find that the Feynman amplitude for the
diagram is given by

iM = (−6iµ)2
i

k2 −m2
, (4.155)

where m is the mass of the particle. The 4-momentum k of the internal
line is determined by those of the external lines. For example, if the two
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external lines to the left of the diagram represent two particles coming in
with 4-momenta p and q, we should write k = p+ q.

It should be noted that the Feynman amplitude is not the transition ampli-
tude in the quantum mechanical sense, whose modulus squared gives the prob-
ability of transition. Transition probability must be dimensionless, whereas
Feynman amplitudes are not so in general (see Ex. 4.23 (p 100) below). The
quantum mechanical amplitude can be obtained by multiplying the Feynman
amplitude by some standard factors. These factors do not depend on the in-
teractions, so they can be easily separated out, and the formulas for rates of
physical processes can be written directly in terms of the Feynman amplitude,
which is what we do in some of the remaining sections of this chapter.

4.11 Calculation of decay rates

Armed with the Feynman rules, we can write down the Feynman amplitude
of a diagram. The amplitude for a process will be the sum of amplitudes of
all diagrams that contribute to the process. Once this amplitude is obtained,
we can use it to find rates of various physical processes.

4.11.1 General formula

The simplest kind of processes that we consider are the ones where the initial
state has just one particle. In the final state, there can be any number of
them. The process would then correspond to the decay of the initial particle
into the final ones. The rate of the decay, i.e., the inverse of the lifetime, is
given by

Γ =
1

2E

(
∏

a

∫
d3p′a

(2π)32E′
a

)
(2π)4δ4(p−

∑

a

p′a)
∣∣∣M
∣∣∣
2

, (4.156)

where M is the Feynman amplitude. We have denoted the properties of final
state particles with primed parameters. The initial particle has an energy E.

We want to note an important feature of this formula. The Feynman
amplitude for any process is Lorentz invariant. The δ-function, of course, is a
Lorentz invariant function because if two momenta, say pµ and qµ, are equal
in one frame of reference, they will be equal in every frame. Moreover, the
integration measures are also Lorentz invariant, as indicated in Ex. 4.21.

This implies two things. First, we can perform the integration in a frame
that is most convenient for us. To obtain the decay rate in a particular frame,
one merely has to put in the value of the energy of the initial particle that
is appropriate for that frame. Second, suppose we consider the decay rate in
the rest frame of the decaying particle and call it Γ0. In any other frame, the
decay rate will be given by

Γ0

Γ
=
E

m
. (4.157)
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Since lifetime is the inverse of Γ, this shows the time dilation of lifetime.

2 Exercise 4.21 Convince yourself that the integration measure appear-
ing in Eq. (4.156) is Lorentz invariant by showing that

Z

d4p δ(p2 −m2)Θ(p0) =

Z

d3p

2Ep
, (4.158)

where Θ is the step function which is zero for negative arguments and
1 for positive arguments. Next, show that Θ(p0) is Lorentz invariant
for an on-shell particle satisfying p2 = m2, so that the entire left hand
side is Lorentz invariant.

2 Exercise 4.22 Verify that, for one particle decaying into N particles,
the mass dimension of the Feynman amplitude M is 3 −N.

4.11.2 Two-body decays

We will often discuss two-body decays, so it would be convenient to have
a more processed form of the result for such cases. Of course, without the
knowledge of the amplitude, we cannot really perform the integral that ap-
pears in Eq. (4.156). But we can at least try to see how much progress we
can make without knowing the amplitude.

We will find out the decay rate in the rest frame of the parent particle, a
quantity which we have called Γ0. Suppose the mass of the parent particle is
m, and that of the product particles are m′

1 and m′
2. Then,

Γ0 =
1

2m

∫
d3p′1

(2π)32E′
1

∫
d3p′2

(2π)32E′
2

(2π)4δ4(p− p′1 − p′2)
∣∣∣M
∣∣∣
2

=
1

32π2m

∫
d3p′1
E′

1

∫
d3p′2
E′

2

δ4(p− p′1 − p′2)
∣∣∣M
∣∣∣
2

. (4.159)

We can easily perform the integration over p′
2 by using the delta function and

obtain

Γ0 =
1

32π2m

∫
d3p′1
E′

1E
′
2

δ(m− E′
1 − E′

2)
∣∣∣M
∣∣∣
2

. (4.160)

We can write

d3p′1 = dΩ dp′ p′2 , (4.161)

showing explicitly the angular and the magnitude variables in the integration
measure. Here p′ denotes the magnitude of either of the outgoing 3-momenta,
both being equal in the rest frame of the decaying particle. We can then take
the differential of the energy-momentum relation for a free particle to obtain

p′dp′ = E′dE′ , (4.162)

where E′ can be either E′
1 or E′

2. Putting these things, we obtain

dΓ0

dΩ
=

1

32π2m

∫
dE′

1 p′

E′
2

δ(m− E′
1 − E′

2)
∣∣∣M
∣∣∣
2

. (4.163)
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Here, E′
2 should be treated as a function of E′

1 through the relation

E′2
2 = E′2

1 −m′2
1 +m′2

2 , (4.164)

which follows from the energy-momentum relation of free particles. Thus, the
argument of the delta function is a function of E′

1. We can simplify it by using
the formula for the delta function of a function of a variable,

δ
(
f(x)

)
=
∑

a

δ(x− xa)

|df/dx| (4.165)

where the quantities xa are the solutions of the equation f(xa) = 0. Solution
of E′

1, subject to the condition imposed by the delta function, was derived in
Eq. (2.65, p 27). Using it, we can write

δ(m− E′
1 − E′

2) =
1∣∣∣1 +
dE′

2

dE′
1

∣∣∣
δ

(
E′

1 −
m2 +m2

1 −m2
2

2m

)

=
E′

2

m
δ

(
E′

1 −
m2 +m2

1 −m2
2

2m

)
. (4.166)

Putting this back and performing the integration on E′
1, we obtain

dΓ0

dΩ
=

1

32π2m

p′

m
|M |2 . (4.167)

Substituting the solution for the common 3-momentum from Eq. (2.64, p 27),
we can write this as

dΓ0

dΩ
=
|M |2

64π2m

√√√√
[

1−
(
m′

1 +m′
2

m

)2
] [

1−
(
m′

1 −m′
2

m

)2
]
. (4.168)

Once we know the amplitude, we can perform the integration over the
angles and find the decay rate. However, it should be remembered that the
quantity |M |2 that appears in Eq. (4.168) has been obtained after performing
all delta function integrations which imply energy-momentum conservation.
Thus, in the expression for |M |2, we should put in all constraints that come
from energy-momentum conservation before we attempt to perform the an-
gular integrations.

4.11.3 Three-body decays

Let us now look for some insights from three-body decays. Starting from the
general formula of Eq. (4.156), we can write

Γ0 =
1

(2π)5
1

16m

∫
d3p′1
E′

1

∫
d3p′2
E′

2

δ(m− E′
1 − E′

2 − E′
3)
|M |2
E′

3

(4.169)
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in the rest frame of the decaying particle. In writing this form, we have
already integrated over the 3-momentum of the third particle, so that we can
impose

p′
1 + p′

2 + p′
3 = 0 . (4.170)

Clearly, for fixed energies of the decay products, the angles between the mo-
menta of the products are determined. Thus, there are only two independent
kinematical parameters in the final state, which can be taken to be E′

1 and
E′

2. The other energy, E′
3, is determined by energy conservation, i.e., from

the delta function that remains in the above expression for the decay rate.
We can use Eq. (4.170) to write the argument of the delta function ap-

pearing in Eq. (4.169) as

m− E′
1 − E′

2 −
√
p′21 + p′22 + 2p′1p

′
2 cos θ12 +m2

3 , (4.171)

where θ12 is the angle between p′
1 and p′

2. Using Eq. (4.165) now, we can
write the delta function as

E′
3

p′1p
′
2

δ

(
cos θ12 −

p′23 − p′21 − p′22
2p′1p

′
2

)
. (4.172)

Using Eq. (4.162), we can then write the decay rate in the form

Γ0 =
1

(2π)5
1

16m

∫
dE′

1dΩ′
1

∫
dE′

2dΩ′
2

×δ
(

cos θ12 −
p′23 − p′21 − p′22

2p′1p
′
2

)
|M |2 . (4.173)

The integration over the angular variables can be performed trivially. As we
said earlier, only the angle θ12 has any kinematical significance. Its integration
gives 1 because of the delta function. The other three angles present in dΩ′

1

and dΩ′
2 merely tell us the orientation of the plane containing the final state

momenta p′
1, p′

2 and p′
3. Their integration gives a factor 2(2π)2, so that

Γ0 =
1

(2π)3
1

8m

∫
dE′

1

∫
dE′

2 |M |2 . (4.174)

This expression can be written in an alternative form by using, instead of E′
1

and E′
2 as independent variables, the variables like m2

12 which were defined in
§2.6.3. Using the expression of m2

23 similar to that given in Eq. (2.74, p 29),
we see that in the rest frame of the decaying particle, one obtains

dm2
23 = −2mdE′

1 (4.175)

etc. Thus, Eq. (4.174) can also be written as

Γ0 =
1

(2π)3
1

32m3

∫
dm2

23

∫
dm2

13 |M |2 . (4.176)
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In fact, it is inconsequential which two quantities of the form m2
AB we use as

integration variables, since the sum of the three is a constant, as indicated in
Eq. (2.76, p 29).

Eq. (4.176) shows something quite interesting. In §2.6.3, we discussed
Dalitz plots. We found that, if we find out the values of dm2

23 and dm2
13

for a particular decay event and plot them as points in a graph using those
two variables as the two axes, the points would always lie within a certain
region, schematically shown in Fig. 2.1 (p 30), whose boundaries depend on
the masses of the decaying particle and its products. We now see from Eq.
(4.176) that the density of the points in a certain region of the graph is
proportional to the value of |M |2 for the decay. For example, if the Feynman
amplitude is a constant, independent of the momenta of the decay products,
then the points would be evenly spread on the Dalitz plot. Deviation from
the uniform distribution provides information about momentum dependence
of the Feynman amplitude.

4.12 Calculation of cross-sections

4.12.1 General formula

Decay processes contain one particle in the initial state. The next natural
issues to consider are processes which contain two particles in the initial state.
These are scattering processes. The rate of occurrence of such a process per
unit volume is given by

Γ

V
= n1n2vrelσ , (4.177)

where the two reactants have number densities n1 and n2, and vrel is the
relative velocity between them. The characteristics of the interaction are
buried in the quantity σ, called scattering cross-section. It is given by

σ =
1

4
√

(p1 · p2)2 −m2
1m

2
2

(
∏

a

∫
d3p′a

(2π)32E′
a

)

×(2π)4δ4(p1 + p2 −
∑

a

p′a)
∣∣∣M
∣∣∣
2

, (4.178)

where pµ
1 and pµ

2 represent the 4-momenta of the incoming particles, and the
index a counts particles in the final state. Recalling the discussion following
Eq. (4.156), we can conclude that the integration in these formulas gives a
Lorentz invariant result. Thus, the cross-section itself is Lorentz invariant.

The first factor on the right hand side of Eq. (4.178) depends only on the
properties of initial state particles, and can therefore be called the initial state
factor . Calculations of cross-sections are most often done in the CM frame
introduced in §2.7. In this frame, p1 and p2 are collinear. The collinearity is
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B(p1)

B(p2)

B(p′1)

B(p′2)

(a) B(p1)

B(p2)

B(p′1)

B(p′2)

(b)

Figure 4.3: Simplest diagrams for elastic scattering of scalar particles having a φ4

interaction.

also trivially true in the fixed target (FT) frame, where one of the 3-momenta
is zero. For such frames, it is easy to see that the prefactor of Eq. (4.178) can
be written as

4
√

(p1 · p2)2 −m2
1m

2
2 = 4E1E2

∣∣∣∣
p1

E1
− p2

E2

∣∣∣∣ = 4E1E2vrel. (4.179)

We will often use this latter form in calculations.
Most of the times, we will be concerned with the case where the final state

contains two particles as well, so it is worthwhile to write down the formula
for that case explicitly. It is

σ =
1

vrel

1

2E1

1

2E2

∫
d3p′1

(2π)32E′
1

∫
d3p′2

(2π)32E′
2

×(2π)4δ4(p1 + p2 − p′1 − p′2)
∣∣∣M
∣∣∣
2

. (4.180)

2 Exercise 4.23 As a generalization of Ex. 4.22 (p 96), show that if a
process involves Ni particles in the initial state and Nf in the final
state, the Feynman amplitude for the process will have mass dimen-
sion 4 − (Ni +Nf ).

4.12.2 Illustrative example

As an example, consider the elastic scattering process

B(p1) +B(p2)→ B(p′1) +B(p′2) , (4.181)

for some spinless particle B, where the quantities in parentheses stand for the
4-momenta of the particles. Suppose the particle B is its own antiparticle, so
that it is described by a real scalar field φ(x), whose Lagrangian has only one
interaction term:

Lint = − λ

4!
φ4 . (4.182)

In Fig. 4.3, we show two diagrams of how this process might happen.
Fig. 4.3a uses the interaction only once, so that it represents a contribution
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from first order in perturbation theory. Fig. 4.3b is second order. Note that
diagram 4.3b has a loop in it, because of which it falls into the category of
loop diagrams, or more specifically a 1-loop diagram. Fig. 4.3a, on the other
hand, has no loop of lines. Such diagrams are called tree diagrams.

According to the prescriptions laid down in §4.10, the Feynman amplitude
of the diagram in Fig. 4.3a is given by

iMa = −iλ , (4.183)

without any other numerical factor. In fact, this is the reason why we had put
the factor of 1/4! in defining the constant accompanying the accompanying
the field operators φ4 while writing down the interaction Lagrangian. The
Feynman amplitude for the loop diagram will involve two factors of λ, and
is expected to be smaller than the tree diagram, assuming λ is small because
we are using perturbation theory. In the calculation of the cross-section, we
neglect this diagram from now on.

2 Exercise 4.24 At the 1-loop level, Fig. 4.3b is not the only possible
diagram. There can be two more diagrams. Try to draw them. [Note :

We did not draw them because we are not taking the 1-loop contribution in the
calculation of the cross-section anyway.]

The Feynman amplitude is independent of the momenta of the particles
involved, so that we can take the absolute square of its magnitude outside the
integrals appearing in Eq. (4.180) very easily and write

σ =
λ2

4E1E2vrel

∫
d3p′1

(2π)32E′
1

∫
d3p′2

(2π)32E′
2

(2π)4δ4(p1 + p2 − p′1 − p′2)

=
λ2

64π2E1E2vrel

∫
d3p′1
E′

1

∫
d3p′2
E′

2

δ4(p1 + p2 − p′1 − p′2) . (4.184)

We first integrate over p′
2. This is easy. The δ-function appearing in the

integrand is a 4-dimensional one, which contains the three spatial components.
If we integrate over p′

2, the result will be

σ =
λ2

64π2E1E2vrel

∫
d3p′1
E′

1E
′
2

δ(E1 + E2 − E′
1 − E′

2) . (4.185)

Of course, the time component of the δ-function still remains. In addition, it
will have to be remembered that the spatial components p′

2 are not indepen-
dent variables any longer. Rather, after the integration over the spatial parts
of the δ-function, p′

2 has been fixed to have the value given by

p′
1 + p′

2 = p1 + p2 . (4.186)

Keeping this in mind, let us now look at the remaining integration in the
evaluation of the cross-section.

Before we can perform the integration, we need to decide on a frame of
reference. A very convenient choice is the center-of-mass or the CM frame



102 Chapter 4. A brisk tour of quantum field theory

introduced in §2.7. In this frame, the total 3-momentum of the initial particles
is zero, i.e.,

p1 + p2 = 0 . (4.187)

The magnitudes of p1 and p2 are thus equal. Since in the present case we are
talking of a situation where the two initial state particles have the same mass
as well, we conclude that their energies are also equal, so we can denote both
by the same symbol:

E1 = E2 ≡ E . (4.188)

Moreover, Eqs. (4.186) and (4.187) imply that, for a 2-to-2 scattering, we
must also have

p′
1 + p′

2 = 0 (4.189)

in the center-of-mass frame. By the same argument, we now conclude that

E′
1 = E′

2 ≡ E′ . (4.190)

The expression of Eq. (4.185) can then be written as

σ =
λ2

64π2E2vrel

∫
d3p′

E′2 δ(2E − 2E′) . (4.191)

The angular integrations can be performed trivially, and we can use the prop-
erty δ(2x) = 1

2δ(x), and obtain

σ =
λ2

32πE2vrel

∫
dp′p′2

E′2 δ(E − E′) , (4.192)

where p′ = |p′|. Utilizing Eq. (4.162) and performing the remaining integra-
tion, we obtain

σ =
λ2

32πE2vrel

p

E
. (4.193)

Notice that in the CM frame vrel = 2p/E, so that we can write the final result
as

σ =
λ2

64πE2
. (4.194)

Having obtained the result, let us discuss which aspects of the result could
have been guessed without going through the detailed calculations. Looking at
the interaction Lagrangian, it is clear that a vertex should obtain a factor of λ
in the amplitude. Since the cross-section involves the square of the amplitude,
it must contain a factor λ2. Next, the cross-section has the dimension of area,
i.e., of inverse mass-squared in natural units. Thus, there must be some
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factor with dimensions of inverse mass-squared in the cross-section, and this
can come only from the mass and the energy (or equivalently, energy and
momentum) of the particles. At very high energies where the mass can be
neglected, the relevant factor can only be 1/E2. In the other extreme, when
the 3-momenta are negligible, the relevant factor can only be 1/m2. There is
no way of telling, without doing the calculations, that the 1/E2 dependence
is valid for all energies. This is a speciality of this particular process, and
will not be valid for a general cross-section. So, for this process, even before
starting the calculation, we could have said that the cross-section would be
proportional to λ2/E2 at high energies and λ2/m2 at low energies.

In fact, once we knew that the Feynman amplitude in this case has no
angular dependence, we could have even predicted the factors of π in the
final formula. From the formula in Eq. (4.180), we see that there is, naively
speaking, an overall factor of 1/π2. Because the final amplitude is independent
of the scattering angle, the angular integration would produce a factor of 4π,
so we could guess that we would be left with a factor of π in the denominator,
and indeed that is the case in Eq. (4.194). In more complicated cases where
the Feynman amplitude would depend on the scattering angle, this simple-
minded expectation may not hold.

2 Exercise 4.25 Suppose, in addition to the quartic interaction shown
in Eq. (4.182), there is also a cubic interaction term involving the φ
fields. Show that now there are three more diagrams which contribute
to the scattering process of Eq. (4.181) at the tree level.

It might be worthwhile at this point to discuss how the permutation factors come into the
Feynman rules for vertices. Notice that in the interaction of Eq. (4.182), each factor of φ is of
the form given in Eq. (4.12), so that each factor of φ can either create a particle or annihilate a
particle. Recall also that a field operator φ can create or annihilate a particle of any momentum
since the expression for the field contains an integral over all momenta.

Consider first the particle in the initial state with momentum p1. It needs to be annihilated
from the initial state. This annihilation operator, with momentum p1, can come from any of the
four factors of φ present in the interaction Lagrangian. Hence we already obtain a factor of 4 in
the amplitude. For any of these choices made, we can annihilate the particle of momentum p2
from any of the remaining three field operators. Once that is done, the final state particle with
momentum p′1 can be created from the creation operator present in any of the two remaining
factors of φ. And for the last one, we will have no choice left, so that we obtain an overall
factor of 4× 3× 2 = 4!. This factor, along with the factor λ/4! that appears in the Lagrangian,
implies that the Feynman rule for the vertex should be −iλ.

We can perform a similar counting to understand how the symmetry factors come in. For
this, we look at Fig. 4.3b (p 100). Notice that the 4-momentum of both internal lines cannot be
determined by momentum conservation. If the 4-momentum flowing on one of them is denoted
by l, the momentum on the other can be written as p1 + p2 − l. Thus, the Feynman amplitude
of this diagram will be of the form

iMb =

„−iλ
4!

«2

K

Z

d4l

(2π)4
i

l2 −m2

i

(p1 + p2 − l)2 −m2
, (4.195)

where K is a numerical factor which comes from different assignments of the fields to the lines
in the diagram. To see what this factor is, first consider any one of the vertices. Among the
four factors of φ, we will need to decide which two go as internal lines. This can be done in
`4
2

´

or six ways. The remaining two can be assigned to the external lines in two different ways,
as described earlier for the tree diagram. On the other vertex, the same argument is repeated,
and we obtain the same factors. Finally, the two lines from each vertex selected to be internal
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lines can be joined in two different ways to complete the loop. Thus,

K = (6 × 2)2 × 2 =
(4!)2

2!
, (4.196)

so that

iMb =
(−iλ)2

2!

Z

d4l

(2π)4
i

l2 −m2

i

(p1 + p2 − l)2 −m2
. (4.197)

This is exactly what comes out of the prescriptions of §4.10: factors of (−iλ) for both vertices,
and a symmetry factor of 1/2! for two internal lines which have identical end points.

4.12.3 Mandelstam variables

From the discussion that follows Eq. (4.156) about the decay rates, it is clear
that the cross-section of a scattering process given in Eq. (4.178) is a Lorentz
invariant quantity. This piece of information is not conveyed in an obvious
manner if we look at the cross-section calculated in a given frame in terms
of energies and momenta values that apply to that frame, e.g., the formula
given in Eq. (4.194).

It is much more elegant and useful if instead we express the cross-section
of any process in terms of Lorentz invariant variables only. Such invariants
can be constructed by taking dot products of of the 4-momenta of incoming
and outgoing particles. Note that for any external momentum p, an invariant
of the form p2 is no good: it is not a variable, just the mass squared of the
corresponding particle. Only dot products of different momenta qualify as
variables.

For a 2-to-2 scattering, let us denote the 4-momenta of the two initial-state
particles by p1 and p2, and of the final-state particles by p′1 and p′2. We can
construct the following Lorentz invariants:

s = (p1 + p2)2 ,

t = (p1 − p′1)2 ,

u = (p1 − p′2)2 . (4.198)

These are called the Mandelstam variables. The definitions contain the dot
products of different 4-momenta in the external states.

In the CM frame, where Eq. (4.187) holds, the Mandelstam variable s

equals (E1 + E2)2. Thus the quantity
√

s can be interpreted as the total
energy of the incoming particles in the CM frame, called Etot in §2.7.1. The
interpretation of the other two Mandelstam variables is clumsy, or even un-
clear. The reason is that, given that there are two particles in the initial
state, it is not clear which one we call particle 1 and assign the 4-momentum
called p1. The same problem applies to the particles in the final state. Thus,
what might be called the invariant t by one person might be the invariant u

in another person’s way of defining things. Some conventions need to be set
up before one names the invariants.
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Suppose now we have set up some convention such that in the CM frame,
we call the angle between p1 and p′

1 the scattering angle, as was shown in
Fig. 2.2 (p 32). Then

t = m2
1 +m′2

1 − 2(E1E
′
1 − pp′ cos θ) , (4.199)

where m1 and m′
1 are the masses of the relevant particles, p = |p1| and

p′ = |p′
1|. We showed in Eq. (2.88, p 32) how E′

1 in the CM frame can be
expressed in terms of s. A similar expression can be derived for E1 as well.
Once we use these expressions, we can express the scattering angle in terms
of the Mandelstam variables s and t.

2 Exercise 4.26 Show that the three Mandelstam variables defined in
Eq. (4.198) are not independent by deriving the relation

s + t + u= m2
1 +m2

2 +m′2
1 +m′2

2 . (4.200)

2 Exercise 4.27 For a scattering where the initial state has two parti-
cles but the final state has N, show that the number of independent
Lorentz invariant variables is 1

2
(N − 1)(N + 2).

4.13 Differential decay rates and cross-sections

From an experimental point of view, it is useful considering the quantities
obtained by not performing the full integrations that appear in the definitions
of decay rate or cross-sections. If we do not perform the integration with
respect to a certain kinematical variable, the result that we obtain gives us the
differential rate of change of the total quantity with respect to that kinematical
variable. Such quantities are called differential rates or differential cross-
sections , depending on which total quantity would have been obtained if we
finished the integration.

4.13.1 Angular distribution in the CM frame

The most commonly studied quantity is the angular distribution. For 2-to-2
scattering viewed in the CM frame, this can be written in a compact form,
as we now show. We start from Eq. (4.180) and perform the integration over
p′

2. This gives

σ =
1

64π2E1E2vrel

∫
d3p′1
E′

1E
′
2

δ(E1 + E2 − E′
1 − E′

2)
∣∣∣M
∣∣∣
2

. (4.201)

We can now use Eq. (4.161), where p′ is, as before, the magnitude of momen-
tum of either of the final particles, which are equal in the CM frame. For
the differential cross-section, we do not perform the integration over the solid
angle Ω and write

dσ

dΩ
=

1

64π2E1E2vrel

∫
dp′ p′2

E′
1E

′
2

δ(
√

s− E′
1 − E′

2)
∣∣∣M
∣∣∣
2

, (4.202)
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using the Mandelstam variable s which is equal to the total initial energy in
the CM frame.

The solutions for the final energies that come out as a result of energy-
momentum conservation were deduced in Eq. (2.88, p 32), which show that

E′
2 =

√
E′2

1 −m′2
1 +m′2

2 . (4.203)

Putting this in the expression for the differential cross-section, we encounter
the delta function of a function of E′

1. Using Eq. (4.165), we obtain

δ(
√

s− E′
1 − E′

2) =
E′

2√
s
δ

(
E′

1 −
s2 + m′2

1 −m′2
2

2s

)
, (4.204)

using the solution of Eq. (2.88, p 32). The integration variable can also be
changed to E′

1 by using Eq. (4.162) with minimal notational change. Plugging
all this back into Eq. (4.202) and performing the integration overE′

1, we obtain

dσ

dΩ
=

p′

64π2
√

sE1E2vrel

∣∣∣M
∣∣∣
2

, (4.205)

where now p′, as well as the factor containing the amplitude, must be evalu-
ated by using the conservation laws, i.e., should be consistent with Eq. (2.88,
p 32).

In the CM frame,

vrel =

(
p

E1
+

p

E2

)
=

p
√

s

E1E2
, (4.206)

where we write the common magnitude of the 3-momentum of initial-state
particles as p. Thus, the expression for the differential cross-section can be
further simplified to

dσ

dΩ
=

1

64π2s

p′

p

∣∣∣M
∣∣∣
2

. (4.207)

For elastic scattering p = p′, so that the formula is further simplified. More
generally, the magnitudes p and p′ can be determined in terms of the Man-
delstam variable s and the masses of the particles, and one finally obtains

dσ

dΩ
=

1

64π2s

([
s− (m′

1 +m′
2)2
][

s− (m′
1 −m′

2)2
]

[
s− (m1 +m2)2

][
s− (m1 −m2)2

]
)1/2 ∣∣∣M

∣∣∣
2

.(4.208)

Remember that this angular distribution is obtained in the CM frame, i.e.,
the quantity dΩ is an element of solid angle in the CM frame.

2 Exercise 4.28 Show that in the CM frame, p can be expressed in
terms of s and the masses:

p =

r

h

s− (m1 +m2)2
ih

s− (m1 −m2)2
i

2
√

s
, (4.209)
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and p′ is given by an exactly similar expression with the masses of
the final-state particles instead of the initial-state ones.

Hence, verify the differential cross-section formula Eq. (4.208).

As an example, consider the scattering problem discussed in §4.12.2. Using
the amplitude from Eq. (4.183), we obtain

dσ

dΩ
=

λ2

256π2E2
(4.210)

from Eq. (4.208). Integration over the solid angle would produce a factor of
4π, giving the total cross-section of Eq. (4.194). Of course, this is a trivial
case because the differential cross-section is the same in all directions. This
will not be true in general, because the Feynman amplitude can depend on
the angular variables. Non-trivial differential cross-section would result from
such dependence, and the nature of its variation would provide important
information about the nature of the interaction.

For 2-to-2 scattering, Eq. (4.200) implies that there are only two Lorentz
invariant Mandelstam variables, which can be taken as s and t. In the CM
frame, the scattering process can be fully described by the center of mass
energy and the scattering angle. We said that the center of mass energy is a
function of s only, and that the scattering angle can be expressed as a function
of s and t. Thus the differential cross-section, which contains the scattering
angle, can depend on both s and t. The total cross-section is obtained by
integrating over all angles, and therefore can depend only on s.

4.13.2 Invariant form of angular distribution

It is also instructive to derive an expression for angular distribution of scat-
tering cross-section in a Lorentz invariant manner. For this, we first use the
fact that, for isotropic interactions, the cross-section can never depend on the
azimuthal angle, so that

dΩ = 2π d(cos θ) (4.211)

in any frame, where θ is the scattering angle in that frame. The Mandelstam
variable s does not depend on the scattering angle, but t and u do. Hence we
can replace the θ-variation in terms of the variation with respect to t or u. In
what follows, we take t, which is defined as

t = (p1 − p′1)2 = m2
1 +m′2

1 − 2(E1E
′
1 − p1p

′
1 cos θ) . (4.212)

In the CM frame, the magnitudes of the momenta of the outgoing particles
do not depend on the scattering angle. So we can write

dt = 2pp′d(cos θCM) , (4.213)
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where p and p′ denote the magnitudes of the 3-momentum of any particle in
the incoming and outgoing states. Combining this equation with Eq. (4.211),
we can write

dσ

dt
=

π

pp′
dσ

dΩCM
. (4.214)

Substituting the expression for the differential cross-section in the CM frame
that appears in Eq. (4.207), we find

dσ

dt
=

1

64πsp2

∣∣∣M
∣∣∣
2

=
1

16π

1[
s− (m1 +m2)2

][
s− (m1 −m2)2

]
∣∣∣M
∣∣∣
2

, (4.215)

using Eq. (4.209) for p. Notice that the right hand side involves s, the masses
and the Feynman amplitude, all of which are Lorentz invariant quantities.
Thus, this is a completely invariant form of the differential cross-section.

4.13.3 Angular distribution in FT frame

From the invariant form of the differential cross-section, one can derive the
angular dependence in any frame. Of particular interest is the fixed-target or
FT frame. Using the independence on azimuthal angle from Eq. (4.211), we
can write

dσ

dΩFT
=

1

2π

dt

d(cos θFT)

dσ

dt
, (4.216)

where the scattering angle is defined to be the angle between p1 and p′
1 in

the frame in which p2 = 0. For the Mandelstam variable t, we have already
given an expression in Eq. (4.212). Alternatively, we can also write

t = (p2 − p′2)2 = m2
2 +m′2

2 − 2m2E
′
2

= m2
2 +m′2

2 − 2m2(E1 +m2 − E′
1) . (4.217)

Therefore,

dt

d(cos θFT)
= 2m2

dE′
1

d(cos θFT)
. (4.218)

Equating the two expressions for t from Eqs. (4.212) and (4.217) and taking
derivatives with respect to cos θ, we obtain

(E1 +m2)
dE′

1

d(cos θFT)
= p1

(
p′1 + cos θFT

dp′1
d(cos θFT)

)
. (4.219)

The derivative of p′1 can easily be changed to the derivative of E′
1 by using

the energy-momentum relation, as shown in Eq. (4.162). Once that is done,
one easily obtains

dE′
1

d(cos θFT)
=

p1p
′2
1

p′1(E1 +m2)− p1E′
1 cos θFT

. (4.220)
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Further, in this frame, s = m2
1 + m2

2 + 2E1m2. Putting this into Eq. (4.215)
and using Eqs. (4.216) and (4.218), we obtain

dσ

dΩFT
=

1

64π2m2p1

p′21
p′1(E1 +m2)− p1E′

1 cos θFT

∣∣∣M
∣∣∣
2

. (4.221)

The expression is compact but misleading, because the angular dependence
does not come only through the term cos θFT occurring in the denominator
and also possibly through the Feynman amplitude: p′1 and therefore E′

1 also
depend on the scattering angle. The expressions for the angular dependence
of p′1 and E′

1 are quite cumbersome.

2 Exercise 4.29 Show that

E′
1 =

µ2(E1 +m2) + p1 cos θFT

p

µ4 − 4m′2
1 M

2
θ

2M2
θ

, (4.222)

where

µ2 = m2
1 +m2

2 +m′2
1 −m′2

2 + 2E1m2 ,

M2
θ = (E1 +m2)

2 − p
2
1 cos2 θFT . (4.223)

For m′
1 = 0, the expression simplifies considerably. In this case, one ob-

tains

dσ

dΩFT
=

m2
1 +m2

2 −m′2
2 + 2E1m2

128π2m2p1

(
E1 +m2 − p1 cos θFT

)2

∣∣∣M
∣∣∣
2

. (4.224)

If we consider elastic scattering with m1 = m′
1 = 0 and m2 = m′

2, the formula
reduces to something that looks even simpler:

dσ

dΩFT
=

1

64π2

1

(m2 + E1 − E1 cos θ)2

∣∣∣M
∣∣∣
2

. (4.225)

2 Exercise 4.30 Consider the case m1 = m′
1 = 0. Starting from the basic

formula for 2-to-2 scattering cross-section, Eq. (4.180), or from the
form obtained in Eq. (4.201) after the integration over p′

2, perform
the integration over E′

1 and arrive at Eq. (4.224) with m1 set to zero.

2 Exercise 4.31 Show that, for elastic scattering with m1 = 0, Eq.
(4.222) reduces to

E′
1 =

m2E1

m2 +E1(1 − cos θ)
. (4.226)

4.13.4 Other differentials

We can use the differentials for decay rates as well. One can measure how
the decay products are distributed angularly, or the differential decay rate.
Besides, one can also consider other kinds of differential cross-sections or decay
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B(p1)

B(p2)

B(p′1)

B(p′2)

(a) B(p1)

B(p2)

B(p′1)

B(p′2)

(b)

Figure 4.4: Some loop diagrams for elastic scattering of scalar particles that were
not shown in Fig. 4.3 (p 100). We have omitted the arrows on the external lines. Some
regions of the diagrams have been shaded. The reason for this has been explained in
the text.

rates, where the distribution of final particles is seen not as a function of
angles, but of the energy of a certain particle. Of course, this question does
not arise if the final state contains only two particles, because then the energy
of both of them will be determined by the properties of the initial state, and
one cannot observe the product particles at various energies. But it can be
done for any final state with three or more particles.

2 Exercise 4.32 Suppose a particle of mass m is moving in a certain
frame with a speed v. It decays to another particle of mass m′, and
a massless particle. Show that the differential decay rate is given by

dΓ

dΩ
=

„

m2 −m′2

64π2m3

«

(1 − v2)
3/2

(1 − v cos θ)2

˛

˛

˛

˛

M

˛

˛

˛

˛

2

, (4.227)

where θ is the angle between the 3-momenta of the initial particle and
the massless particle in the final state.

4.14 Feynman diagrams that do not represent

physical amplitudes

So far we have used Feynman diagrams to represent physical amplitudes.
Sometimes, it is useful to draw a Feynman diagram that does not correspond
to a physical amplitude, but is very useful nevertheless.

We will make the point with the help of an example. Consider the elastic
scattering between two spinless bosons, as discussed in §4.12.2. In Fig. 4.3
(p 100), we have shown two diagrams that contribute to this process. With
only a φ4 interaction present in the theory, there is only one tree diagram,
which has been shown. In addition, we have shown a 1-loop diagram. Of
course, there can be other loop diagrams. Some samples have been shown in
Fig. 4.4.

Obviously, such samples suggest other diagrams. For example, in Fig. 4.4a,
we see two external lines have been joined by other lines. The two external
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(a) (b)

Figure 4.5: Representation of 4-point and 2-point functions in a theory with λφ4

interaction. The 4-momenta on the external lines need not satisfy the energy-momentum
relation. The dark blobs represent any combinations of lines and vertices consistent with
the interactions of the theory.

lines joined in this fashion need not be the two outgoing lines. They can be any
two of the four external lines. Similarly, the extra blob appearing in Fig. 4.4b
can appear on the other internal line, or even on both internal lines. Instead
of considering all these diagrams from scratch, it would be much helpful if we
have a ready-made factor for the kinds of objects shown in the shaded regions
of Fig. 4.4. In the diagram on the left, the shaded region has four legs. For
the diagram on the right, the shaded region has two legs. The factors to be
put in place of the shaded objects are called, accordingly, contributions to
the 4-point function and the 2-point function, respectively. More generally,
the 4-point function can be denoted symbolically by Fig. 4.5a, and the 2-point
function by Fig. 4.5b, where the blobs can represent any collection of lines and
vertices consistent with the Lagrangian of the underlying theory. In general,
a diagram with n external legs will contribute a factor that will be called an
n-point function. A more elaborate name would be n-point Green function.
They are functions of the momenta of the legs that go into or come out of
these diagrams.

One cannot fail to notice that, apart from shapes and orientations of the
lines which are irrelevant, the shaded region of Fig. 4.4a is exactly the same
as the diagram of Fig. 4.3b (p 100). In other words, the two have the same
topology. There is a difference which does not show in the diagram, however.
In Fig. 4.3b (p 100), the lines going out of the loop are all external lines, which
represent physical particles. The 4-momentum of any these lines, therefore,
satisfies the energy-momentum relation, Eq. (2.37, p 22), with the appropriate
value of the mass. For the shaded region of Fig. 4.4a, this is not the case. Two
of the lines coming out of this shaded region are internal lines of the diagram,
which represent virtual particles. In general, for an n-point function, none of
the external lines need to represent an on-shell particle. The momenta can
be kept general, except for the fact that total 4-momenta must be conserved.
We will see in later chapters that such n-point functions are quite useful for
evaluating loop diagrams.



Chapter 5

Quantum electrodynamics

As noted earlier in this book we will discuss three of the four fundamental
interactions: the strong, the weak and the electromagnetic. Among the three,
there are many reasons why the electromagnetic interaction should be dis-
cussed first. First, this is the only one among the three for which there was
a classical theory, and the insight from the classical theory might be helpful
in discussing the quantum theory. Second, the quantum theory of the elec-
tromagnetic interactions, called quantum electrodynamics or QED for short,
was developed earlier than the quantum theories of strong and weak interac-
tions, so historically also this interaction comes first. And lastly, the theory is
based on a local internal symmetry. This idea was taken over from QED and
generalized to develop the present theories of weak and strong interactions.
Because of this reason, and because the internal symmetry is much simpler
for QED than for the theories strong and the weak interactions, it would be
appropriate to study electromagnetic interactions first. This is what we do in
this chapter.

5.1 Gauge invariance

5.1.1 Global phase symmetry

We mentioned an internal symmetry in the preface to this chapter. Let us
start by exposing the nature of this symmetry.

Consider the free Dirac Lagrangian, given earlier in Eq. (4.102, p 81), and
repeated here for the sake of convenience:

L0 = iψγµ∂µψ −mψψ . (5.1)

Obviously, this Lagrangian is invariant under a change of phase of the field
ψ. Explicitly, suppose we change over to a new field

ψ′(x) = exp(−ieQθ)ψ(x) , (5.2)

112
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where e, Q and θ are all real numbers, with different interpretations. The
quantity e represents a universal constant which sets up the scale of the phase,
Q is a characteristic of the field ψ and may therefore vary from one kind of
field to another, and θ is a variable which determines how large the phase is.
Note that we have not changed the spacetime co-ordinates at all: the new
field is defined in terms of the old field at the same spacetime point. Such
symmetries are called internal symmetries, as was first mentioned in §3.3.2.

Since ψ involves the hermitian conjugate of ψ, Eq. (5.2) implies the fol-
lowing transformation on it:

ψ
′
(x) = ψ(x) exp(+ieQθ) . (5.3)

Eqs. (5.2) and (5.3) show that

iψ
′
γµ∂µψ

′ −mψ′
ψ′ = iψγµ∂µψ −mψψ , (5.4)

because the phase cancels between the ψ and the ψ. Thus, the Lagrangian of
Eq. (5.1) is invariant under the transformation given in Eq. (5.2).

The statement just made is true provided θ is independent of the spacetime
co-ordinates, i.e., is a constant over spacetime. Such symmetries are called
global symmetries, as mentioned in §3.3.2. It can be easily seen that such a
global symmetry exists also in the free Lagrangian of a complex scalar field,
Eq. (4.100, p 81).

What is the symmetry group? Note that the transformation of the fields
involve a complex number of modulus unity, i.e., a phase transformation. The
relevant group is called U(1), which was explained in §3.3.1(b).

In Eq. (5.2), we seem to have defined e, Q and θ all through the same expression. Certainly
this is not possible. θ is a U(1) parameter, so this can be defined independent of Eq. (5.2). But
then it needs to be multiplied by eQ, which depends on the kind of field on which we apply the
U(1) transformation. So it seems that only the product of these two quantities is determined,
leaving an arbitrariness of specifying either of these two quantities. Indeed that is true: the
definition of any U(1) charge has a multiplicative arbitrariness.

5.1.2 Local symmetry

Suppose we now want to see what happens if the parameter θ, appearing in
Eq. (5.2), depends on spacetime co-ordinates. In this case, we obtain

∂µψ
′(x) = exp(−ieQθ)

[
∂µψ(x)− ieQ(∂µθ)ψ(x)

]
. (5.5)

There is an extra term, involving the derivatives of θ. Because of this, the
Lagrangian will not be invariant under the transformation. In fact, if we
change ψ to ψ′, the Lagrangian L0 changes to L ′

0, where

L ′
0 −L0 = eQ(∂µθ)ψ(x)γµψ(x) . (5.6)

If we want the local symmetry, we would need to work with a modified
Lagrangian. So, instead of the Lagrangian of Eq. (5.1), let us try

L = iψγµDµψ −mψψ , (5.7)
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where

Dµ = ∂µ + ieQAµ , (5.8)

bringing in a new Aµ. This Dµ is usually called the covariant derivative. The
prescription of replacing ordinary derivatives by covariant derivatives is called
minimal substitution.

Let us now demand that this Aµ also transforms non-trivially when the
phase of the fermion field is changed, in such a way that the new Lagrangian
is invariant under the local symmetry. That would mean that, under the local
symmetry, Aµ changes to A′

µ such that

L ′
0 − eQψ

′
γµψ′A′

µ = L0 − eQψγµψAµ , (5.9)

or

A′
µ = Aµ + ∂µθ . (5.10)

But this is exactly the redefinition that we talked about in Eq. (4.22, p 66).
We can thus identify Aµ with the photon field and conclude that, in the urge
for making the global phase symmetry local, we have introduced the photon
field in a natural manner.

Once the photon field has entered into our discussion, it is imperative that
we add terms in the Lagrangian that involve the photon field only. Such terms
were shown in Eq. (4.106, p 82). Adding these terms, we can now write down
the Lagrangian involving the fields ψ(x) and Aµ(x) in the form

L = iψγµDµψ −mψψ −
1

4
FµνF

µν − 1

2ξ
(∂µA

µ)2 . (5.11)

This is the Lagrangian of quantum electrodynamics, or QED.

2 Exercise 5.1 In the Lagrangian for the complex scalar field, Eq.
(4.100, p 81), if we replace the derivatives by Dµ defined in Eq. (5.8),
show that the resulting Lagrangian is invariant under a local phase
symmetry of the field φ. This is the Lagrangian of the so-called scalar
QED .

Local symmetries are also called gauge symmetries. Theories incorporat-
ing gauge symmetries are called gauge theories . The spin-1 particles which
are necessary to keep the gauge invariance are called gauge bosons. QED is
therefore a gauge theory, based on the gauge group U(1) whose elements give
transformations of fields ψ(x). The gauge boson for QED is the photon. We
will see later that the theories of strong and weak interactions are also gauge
theories, based on other gauge groups.

5.1.3 Charge conservation

Noether’s theorem tells us that a continuous symmetry implies a divergence-
less current, which in turn implies a conserved quantity. The recipe for find-
ing the conserved current or the Noether current was given in §4.6. Using
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the technique elaborated there, we can calculate the Noether current for the
Lagrangian of Eq. (5.1) and obtain

jµ = eQψγµψ . (5.12)

It is purely a matter of convention whether we define the Noether current
with or without the overall factor of e, or even with an extra overall numerical
factor. Since the expression given on the right hand side of Eq. (5.12) has
zero divergence and since the basic unit of electric charge, e, is a universal
constant, the quantity without the factor of e is also divergenceless.

What is the conservation law that follows from this symmetry? If we have
just one fermion field as shown in §5.1.1 and §5.1.2, we can write down the
conserved current without the factor eQ that appears in Eq. (5.12). The
conserved quantity corresponding to this current is the number of particles
minus the number of antiparticles associated with the field ψ.

In the real world, more than one fermion field interacts with the pho-
ton. The Lagrangian containing all fermion fields and their electromagnetic
interactions is then of the form

L =
∑

A

(
iψAγ

µDµψA −mAψAψA

)
− 1

4
FµνF

µν (5.13)

plus the gauge-fixing term. The Lagrangian is invariant under transformations
of the photon field shown in Eq. (5.10), and of the fermion fields which are of
the type shown in Eq. (5.2). The infinitesimal form of these transformations
can be written as

δψA = −ieQAψA . (5.14)

The Noether current is then given by

jµ = e
∑

A

QAψAγ
µψA . (5.15)

This sum of current densities of individual fields, weighted by their electric
charge, is called the electric current density. The corresponding conserved
quantity is the electric charge.

We commented that the Lagrangian of Eq. (5.13) is invariant under the transformations shown
in Eqs. (5.2) and (5.10). One might wonder, since a gauge-fixing term has to be introduced in
the Lagrangian, whether this statement, as well as the conclusions about Noether charges and
currents derived from it, can be trusted.

Without the gauge-fixing term, any differentiable function of spacetime co-ordinates θ(x)
can appear in Eq. (5.10). Once we introduce the gauge-fixing term, we will have to make sure
that this term is also invariant under the symmetry. Taking the 4-divergence of each side of Eq.
(5.10), we see that this is achieved if

2θ(x) = 0 . (5.16)

So the gauge symmetry of Eqs. (5.2) and (5.10) is still there, although in a somewhat restricted
form in the sense that not any arbitrary function θ(x) can be used in defining the gauge
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transformations: one has to use the functions which satisfy Eq. (5.16). Accordingly, the gauge-
fixing term does not change any of our conclusion about Noether charges and currents. In
fact, one of the solutions of Eq. (5.16) is a constant θ for all x, which gives the global U(1)
symmetry mentioned in §5.1.1. This global symmetry is enough to draw conclusions about
Noether charges and currents.

5.2 Interaction vertex

Let us now look closely at the Lagrangian of Eq. (5.11). Of course it contains
the quadratic terms for the Dirac field and the photon field. Apart from those,
there is only one more term, which is

Lint = −eQψγµψAµ . (5.17)

This term involves three field operators and must therefore be an interaction
term. We have put a subscript to the Lagrangian to remind us of that. The
universal quantity e thus appears in all electromagnetic interactions, and can
be called the coupling constant of the U(1) group itself, or the gauge coupling
constant . Q, on the other hand, depends on the particular field ψ, and will
be called the electric charge of the field. As mentioned earlier, there is a
multiplicative arbitrariness in the definitions of e and Q. In what follows, we
will use a convention in which the proton has Q = +1 and the electron has
Q = −1.

We said that the fields are operators in quantum field theory. Any term
in the Lagrangian, being a combination of operators, must be an operator
itself. In particular, the interaction term of Eq. (5.17) is an operator, and
we can ask what it might do. The field operator ψ can annihilate a particle
or create an antiparticle. The operator ψ can do just the opposite. And the
photon field operator Aµ can either create or annihilate a photon. Taking
everything together, we see that there are eight possibilities of events at an
interaction vertex, as described in §4.9. We summarize all these possibilities
in graphical form in Fig. 5.1, taking the fermion to be an electron for the sake
of definiteness.

Let us explain the convention of arrows used in Fig. 5.1. There exist many
conventions regarding arrows. Some people always put an inward-going arrow
on the leg that corresponds to the operator ψ and an outward-going arrow on
the leg that corresponds to ψ. Thus, if an electron is going into the vertex,
it is annihilated by the operator ψ, so this obtains an inward arrow. The
same arrow is given if a positron is going out of the vertex. Some people find
this convention confusing, because they want an outward arrow to represent
anything, i.e., particle or antiparticle, coming out of the vertex, and an inward
arrow for anything going into the vertex. We have made a compromise here
by using the first kind of arrows on the line, but in addition, in the legend for
the line, putting a negative sign if the direction of momentum is opposite to
the direction of the arrow. For example, in the diagram of Fig. 5.1b, the upper
left line represents a positron, but then the momentum of the positron is −p′
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(a)e
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p ′)

Figure 5.1: Possibilities of creation and annihilation of particles at the basic QED
vertex. See text for the arrow convention on the fermion lines. No arrow is drawn on
the photon line. For each of the four possibilities shown here, the photon can either be
emitted or be absorbed at the vertex, making a total of eight possibilities.

in the direction of the arrow shown, so it is really a positron coming into the
vertex with a momentum p′. This diagram then represents a vertex where
an electron and a positron are annihilated. In Fig. 5.1c, an electron as well
as a positron are created at the vertex. And finally, in Fig. 5.1d, the creation
of a positron is shown by the lower line, whereas the upper line represents
the annihilation of a positron. In each case, the photon might be created or
annihilated at the vertex, because the photon field Aµ contains both creation
and annihilation operators. No matter which of these eight possibilities is
realized at a vertex, the Feynman rule for the vertex is the same, and it has
been shown in Fig. 5.2 (p 118).

The enumeration of the possibilities should not be taken to signify that
there are physical processes whose initial and final state particles have been
represented by the diagrams of Fig. 5.1. The possibilities shown in Fig. 5.1 only
show the combination of creation and annihilation that can occur at a vertex.
In order for this combination to be a physical process, other constraints need
to be satisfied, like energy-momentum conservation.

For example, let us consider whether we can have the process

e(p)→ e(p′) + γ(q) , (5.18)

where in parentheses we have put our notation for the 4-vector corresponding
to each particle. Let us use the on-shell conditions for the initial and the final
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Feynman rule:

−ieQγµ

Figure 5.2: Feynman rule for the QED vertex.

electrons,

p2 = m2 , p′2 = m2 , (5.19)

and try to see what conditions will the photon have to satisfy in order that
such a process might be possible.

Energy-momentum conservation would imply

pµ − qµ = p′µ . (5.20)

Squaring both sides and using Eq. (5.19), we obtain

q2 = 2p · q . (5.21)

Writing

pµ = (E, pp̂) , qµ = (ω, qq̂) , (5.22)

where p̂ and q̂ are unit vectors in the directions of p and q, we obtain

ω2 − q2 = 2(Eω − pqp̂ · q̂) . (5.23)

The quantity p̂ · q̂ is just the cosine of the angle between p and q, whose value
must be within −1 and +1. Thus we obtain the inequalities

Eω − pq ≤ 1

2
(ω2 − q2) ≤ Eω + pq . (5.24)

For a photon, we expect ω = q, so that the expression in the middle is zero.
However, on the left side we now have (E− p)q, which is positive since E > p

by dint of the on-shell conditions in Eq. (5.19). So at least the left part of the
inequalities in Eq. (5.24) cannot be satisfied, which means that the electron
cannot emit a photon.

The statement above applies for free electrons. If, e.g., the electron is bound within an atom,
the conclusion would be different because the on-shell conditions of Eq. (5.19) would not apply.
Alternatively, even with free electrons, we can check whether the inequalities of Eq. (5.24) can
be satisfied for any combination of photon energy ω and photon momentum q, allowing for
the possibility that, for the photon, they are not necessarily related by a free particle dispersion
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relation of the type given in Eq. (2.44, p 23). Since E > p, Eω − pq > E(ω − q). So we can
strengthen the left inequality by writing E(ω − q) < 1

2
(ω2 − q2). Now, if ω > q, i.e., ω − q is

positive, this newly found inequality would translate to 2E < ω + q. We can again strengthen
this inequality by replacing the q on the right hand side by ω, which gives E < ω. This is
certainly not possible because of energy conservation.

We are thus left with the option ω < q. If this is the case, then the quantity in the middle
of Eq. (5.24) is negative. Since the rightmost quantity is obviously positive, the right side of
the inequality is automatically satisfied. The left side then produces a subsidiary condition

Eω − pq < 0 , (5.25)

or p/E > ω/q. The left hand side of this inequality is the speed of the initial electron, whereas
the right hand side is the phase velocity of light. Thus the process shown in Eq. (5.18) is
possible, i.e., an electron can spontaneously emit a photon, if the process takes place in a
medium in which the speed of light is less than the speed of the initial electron. Such a process
is called Čerenkov radiation. In the vacuum, it cannot take place.

Proceeding in similar fashion, we can show that none of the vertices shown
in Fig. 5.1 can give rise to a physical process in the vacuum. It implies that
in the first order in the QED interaction, no physical process is possible.

2 Exercise 5.2 There is a much simpler way of showing that processes
like that shown in Eq. (5.18) cannot take place. Consider a frame in
which the initial electron is at rest. Its energy must then be m. Show
that the energy of the final particles is definitely greater than m, so
that energy conservation cannot be satisfied.

5.3 Elastic scattering at second order

We therefore are compelled to look for physical processes in the second order
of interaction, which correspond to Feynman diagrams containing two of the
vertices shown in Fig. 5.1. For example, consider two copies of the possibility
shown in Fig. 5.1a. Take the photon to be outwardly going at one vertex and
inwardly coming at the other. We can then join the two vertices so that the
same photon that leaves one vertex arrives at the other. This gives us the
diagram of Fig. 5.3. There are many such diagrams possible at the second
order, giving rise to a variety of physical phenomena. In this section, we will
consider elastic scattering processes only.

5.3.1 Electron–electron scattering

Looking at Fig. 5.3, we see that it represents the process

e−(p1) + e−(p2)→ e−(p′
1) + e−(p′

2) , (5.26)

which is elastic scattering between two electrons. Here the subscripts on
the momentum vectors do not represent any component of those vectors.
Rather, a letter along with a numerical subscript stands for the name of a
4-momentum. Following the recipe given in Ch. 4, let us try to write down
the amplitude for this diagram.
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− (p

′
2
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Figure 5.3: A Feynman diagram for electron–electron scattering at the second order
in perturbation theory. There is a different diagram at the same order, which has been
described in the text.

First, follow one solid line in the diagram, say the one on the left. Mov-
ing against the arrows, we encounter first an outgoing electron line, then a
vertex, and finally an incoming electron line. Combining the Feynman rules
corresponding to each of these elements of the picture, we obtain the factors

up′
1,s′

1
ieγµ up1,s1 . (5.27)

Notice that since we are talking about the electron field, we have used Q = −1
in the Feynman rule for the vertex. The subscripts s1 and s′1 correspond to
the particular form of the positive energy solution that have been created and
annihilated at the vertex.

The factors coming from the other solid line are similar, except that the
momenta are different. And finally, there is the propagator of the photon field,
which we use in the ’t Hooft–Feynman gauge. Combining all these factors, we
can write the amplitude for the diagram in Fig. 5.3 as

[
up′

1,s′
1
ieγµ up1,s1

]( −igµν

(p1 − p′1)2

)[
up′

2,s′
2
ieγν up2,s2

]
. (5.28)

This is not really the full amplitude at the second order in perturbation
theory. The reason is that another diagram contributes to the same process at
this order. In the diagram we have shown, the electron with momentum p′

1 is
created at the same vertex with the electron with momentum p1 is annihilated.
But that need not be the case. It is also possible that, at the vertex where
the electron with momentum p1 is annihilated, the electron created has the
momentum p′

2. This gives another diagram which looks much the same as that
in Fig. 5.3, but with the outgoing lines exchanged. Invoking the antisymmetry
rule stated in §4.10.4, we can then write down the full amplitude at the second
order as

iM = ie2
([
up′

1,s′
1
γµ up1,s1

][
up′

2,s′
2
γµ up2,s2

]

(p1 − p′1)2

−
[
up′

2,s′
2
γµ up1,s1

][
up′

1,s′
1
γµ up2,s2

]

(p1 − p′2)2

)
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≡ ie2
(
T1

t
− T2

u

)
. (5.29)

In the last step, we have introduced a shorthand notation for the numerators.
The denominators, it should be noted, are precisely the Mandelstam variables
t and u.

In calculating the absolute square of the modulus and hence the cross-
section, we will neglect the mass of the electron, assuming that the energies
involved are much higher than the electron mass. We will also assume that
we do not have any preference about the spin orientations of the incoming as
well as the outgoing electrons. It means that, for the initial electrons, we have
an equal mixture of both kinds of spin, so we will average over them. For the
final electrons, we don’t care what their spins are, so we sum over them. Since
the different spin channels are incoherent, meaning that they can, in principle,
be separated out, the contributions from different spin combinations in the
external lines should add in the probability and not in the amplitude. Thus,
the differential cross-section will be given by

dσ

dΩ
=

1

64π2s
|M |2 , (5.30)

where

|M |2 =
1

4

∑

spins

∣∣∣M
∣∣∣
2

, (5.31)

the factor of 1
4 coming from the averaging of spins in the initial state.

The complex conjugation of the amplitude can be performed by using the
rules shown in §F.3.2 of Appendix F, utilizing the rules for spin sums given in
Eq. (F.104, p 749). This gives
∑

spins

T1T
∗
1 = Tr

(
p/1γ

νp/′1γ
µ
)
× Tr

(
p/2γνp/

′
2γµ

)

= 16
(
pµ
1p

′ν
1 + pν

1p
′µ
1 − p1 · p′1gµν

)(
p2µp

′
2ν + p2νp

′
2µ − p2 · p′2gµν

)

= 32
(

(p1 · p2)2 + (p1 · p′2)2
)
. (5.32)

In writing the last step, we have used kinematic relations like

p1 · p2 = p′1 · p′2 , p′1 · p2 = p1 · p′2 , (5.33)

which follow from 4-momentum conservation and the equality of the masses
of all external particles. Note that in this limit where the electron mass is
neglected, the Mandelstam variables are given by

s = 2p1 · p2 , t = −2p1 · p′1 , u = −2p1 · p′2 , (5.34)

so that we can also write
∑

spins

T1T
∗
1 = 8(s2 + u2) . (5.35)
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Then we note that T2 is obtained from T1 by interchanging the momenta
p′1 and p′2, so that

∑

spins

T2T
∗
2 = 32

(
(p1 · p2)2 + (p1 · p′1)2

)
= 8(s2 + t2) . (5.36)

There are also the cross terms. Employing the same methods, we obtain
∑

spins

T1T
∗
2 = Tr

(
p/1γ

νp/′2γµp/2γνp/
′
1γ

µ
)
. (5.37)

These can be simplified by using the Dirac matrix contraction formulas shown
in §F.1.3 of Appendix F. Thus,

∑

spins

T1T
∗
2 = −2 Tr

(
p/1p/2γµp/

′
2p/

′
1γ

µ
)

= −8 Tr
(
p/1p/2p

′
2 · p′1

)
= −32(p1 · p2)2 = −8s2 . (5.38)

The other cross term is the complex conjugate of this term. Since this term
turned out to be real, the other term would be equal to it. Organizing all the
terms obtained, we can now write

|M |2 = 2e4
(

s2 + u2

t2
+

s2 + t
2

u2
+

2s2

tu

)
. (5.39)

Plugging this into Eq. (5.30), we obtain the differential cross-section as

dσ

dΩ
=
α2

2s

(
s2 + u2

t2
+

s2 + t2

u2
+

2s2

tu

)
, (5.40)

where, instead of using e for which there are many conventions, we have used
the fine-structure constant . In the unit of electric charge that we have been
using, the relation between them is

α =
e2

4π
. (5.41)

Earlier, we commented that the total cross-section is Lorentz invariant. There is no reason why
the differential cross-section should be Lorentz invariant. A formula like Eq. (5.40), expressed
completely in terms of Mandelstam variables, should not be taken to imply that the differential
cross-section is Lorentz invariant. The absolute square of the amplitude is of course Lorentz
invariant, as seen from Eq. (5.39). But, in writing the differential cross-section, we have used
Eq. (4.202, p 105), which is a formula valid only in the CM frame. In any other frame, the
square of the matrix element would be multiplied by different factors, thus making the differential
cross-section a frame-dependent quantity.

The formula given in Eq. (5.40) can be rewritten by using the scattering
angle. In the CM frame that we have been using, the different 4-momenta
can be written as follows if we neglect electron mass:

pµ
1 = (E,En̂) , pµ

2 = (E,−En̂) ,

p′µ1 = (E,En̂
′) , p′µ2 = (E,−En̂

′) , (5.42)
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where n̂ and n̂
′ are unit 3-vectors, the angle between them being the scattering

angle θ. Then

s = 4E2 , (5.43a)

t = −2E2(1− cos θ) = −4E2 sin2 θ

2
, (5.43b)

u = −2E2(1 + cos θ) = −4E2 cos2
θ

2
. (5.43c)

Plugging these back into Eq. (5.40), we obtain

dσ

dΩ
=
α2

2s

(
1 + cos4 θ

2

sin4 θ
2

+
1 + sin4 θ

2

cos4 θ
2

+
2

sin2 θ
2 cos2 θ

2

)
. (5.44)

Using standard trigonometric identities, this can be put in a form which looks
a lot simpler:

dσ

dΩ
=
α2

s

(
1

sin4 θ
2

+
1

cos4 θ
2

+ 1

)
. (5.45)

The total cross-section can be obtained by integrating this expression over the
angles. However, there is an important point that needs to be remembered
while performing this integration. The expression for cross-section given in
Eq. (4.178, p 99) contains integrations over the phase spaces of the final state
particles. In the process under discussion here, the final state contains two
identical particles. We cannot treat their phase spaces independently. The
delta function that appears in the formula ensures that the two electrons will
come out back to back in the CM frame. However, one electron going in
the direction marked by the unit vector n̂

′ and the second one going in the
direction −n̂

′ is indistinguishable from the first electron going along −n̂
′ and

the second along n̂
′, and these two situations cannot be considered different.

So we can take n̂
′ to be in one hemisphere only. While integrating Eq. (5.45)

over the solid angle, we should let θ run between 0 and π/2. Equivalently, we
can integrate over the full solid angle but then divide the result by 2 at the
end.

2 Exercise 5.3 Verify that Eq. (5.45) indeed follows from Eq. (5.44).

In passing, we should comment on which features of this result should have
been obvious from the beginning. Once we see the diagrams, we know that
there are two vertices. The Feynman rule for each vertex has a factor of e, so
that the amplitude must contain a factor e2. In the cross-section, the square of
the amplitude is involved, which must therefore contain a factor e4, i.e., must
be proportional to α2. Then comes the question of dimension. Cross-section
has the dimension of the square of length, which is M−2 in natural units. So
we must have something in the denominator that has the dimension of square
of energy. Since we are working in the energy range where the electron mass
can be neglected, electron energy is the only independent variable having the
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dimension of energy. Hence the formula for the cross-section must contain a
factor of 1/E2, i.e., a factor of 1/s. Combining this with the vertex factors,
we find that the cross-section must be of the form

σ =
α2

s
× (numerical factors) , (5.46)

where the numerical factors cannot be determined without detailed calcu-
lation. In the case of differential cross-section, these numerical factors can
depend on the scattering angle.

We can use similar arguments to figure out the momentum dependence
of the cross-section in the very low energy limit, where the electrons can
be considered non-relativistic. Although this limit is not very useful in the
context of particle physics where the focus is on high energy, we discuss it in
order to gain some experience in dimensional arguments. We see in Eq. (5.29)
that the denominators of the Feynman amplitude contain the Mandelstam
variables t and u, and this feature is independent of the electron energy: it
comes from the photon propagator. It is easy to see that, in the CM frame,
the values for these two Mandelstam variables are given by

t = −4p2 sin2 θ

2
, u = −4p2 cos2

θ

2
, (5.47)

without again any assumption about the magnitude of the electron energy.
Thus the Feynman amplitude has an overall factor of 1/p2. In the expression
for the cross-section, we will have to square the Feynman amplitude, which
will therefore have a factor of 1/p4. In order to obtain the right dimension, we
must have a numerator which has the dimension of (mass)2. We can use the
electron mass and p to obtain this: the energy will not give an independent
term. Since p≪ m in the non-relativistic limit, the mass terms will dominate,
and so we should obtain

σ =
α2m2

p4
× (numerical factors) . (5.48)

It is interesting to note that the momentum dependence in the non-relativistic
limit is the same as that obtained by a classical treatment of Rutherford
scattering.

2 Exercise 5.4 Verify Eq. (5.47). Remember not to make any assump-
tion about the magnitude of the electron energy.

2 Exercise 5.5 We have used the ’t Hooft–Feynman gauge for the pho-
ton propagator in the calculation. More generally, the photon propa-
gator is given by Eq. (4.148, p 92), which contains some extra terms.
With the help of the Dirac equation for the spinors, show that these
extra terms do not contribute to the amplitude.

5.3.2 Electron–positron scattering

For an experimental particle physicist, this is a much more important process
than electron–electron scattering. The reason is that it is much easier to



§5.3. Elastic scattering at second order 125
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Figure 5.4: Diagrams for electron–positron scattering at the second order in pertur-
bation theory.

arrange high energy collision between an electron and a positron. Because
they have opposite electric charges, the electron and the positron can be
accelerated in opposite directions by using the same machinery, and then can
be made to collide. The initial state has no electric charge, so that in the final
state, any particle-antiparticle pair can be produced provided there is enough
energy. Thus, these collisions can be used very effectively for new particle
searches.

Production of new particles involves inelastic collisions, a typical example
of which will be seen in some detail in §5.4.2. Here, we want to discuss
the elastic scattering part, which would provide a background to all inelastic
processes. Like the electron–electron scattering, there are two diagrams for
this elastic scattering process,

e−(p1) + e+(p2)→ e−(p′
1) + e+(p′

2) , (5.49)

at the second order of perturbation. These have been shown in Fig. 5.4.
The amplitude for each of these diagrams can be written down easily,

following the Feynman rules described earlier. We obtain

iMa = ie2
[up′

1,s′
1
γµup1,s1 ][vp2,s2γµvp′

2,s′
2
]

(p1 − p′1)2
≡ ie2T1/t, (5.50a)

iMb = ie2
[vp2,s2γ

µup1,s1 ][up′
1,s′

1
γµvp′

2,s′
2
]

(p1 + p2)2
≡ ie2T2/s, (5.50b)

introducing the shorthands T1 and T2, and using the Mandelstam variables s

and t. The total amplitude is given by

M = Ma −Mb , (5.51)

since the two diagrams differ by the exchange of two of the external lines
which are both fermionic lines.

At this point, we want to introduce a little bit of jargon. Since the amplitude of Eq. (5.50b)
contains the Mandelstam variable s in the denominator, the corresponding diagram, i.e., the
one shown in Fig. 5.4b, is often called an s-channel diagram. By the same token, the diagram
in Fig. 5.4a can be called a t-channel diagram.
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We are interested in calculating the cross-section for the case where the
initial state has unpolarized particles, and the final state spins are summed
over. It means that we need the quantity

|M |2 =
1

4

∑

spins

∣∣∣M
∣∣∣
2

=
e4

4

∑

spins

(
T1T

∗
1

t2
+
T2T

∗
2

s2
− T1T

∗
2 + T2T

∗
1

st

)
. (5.52)

Here,

∑

spins

T1T
∗
1 = Tr

(
p/1γ

νp/′1γ
µ
)
× Tr

(
p/2γµp/

′
2γν

)

= 8(s2 + u2) , (5.53)

neglecting electron mass and following some the same steps that we had gone
through for the electron–electron scattering. Similarly,

∑

spins

T2T
∗
2 = Tr

(
p/1γ

νp/2γ
µ
)

Tr
(
p/′2γ

νp/′1γ
µ
)

= 32
(

(p1 · p′2)2 + (p1 · p′1)2
)

= 8(u2 + t
2) . (5.54)

The cross terms can also be evaluated in a similar manner, yielding
∑

spins

T1T
∗
2 =

∑

spins

T2T
∗
1 = −32(p1 · p′2)2 = −8u2 . (5.55)

Finally, then, we obtain

dσ

dΩ
=
α2

2s

(
s2 + u2

t2
+

u2 + t2

s2
+

2u2

st

)
. (5.56)

This can be easily written in terms of the scattering angle by using Eq. (5.43):

dσ

dΩ
=
α2

2s

(
1 + cos4 θ

2

sin4 θ
2

+ (cos4
θ

2
+ sin4 θ

2
)− 2 cos4 θ

2

sin2 θ
2

)
. (5.57)

It looks a little less intimidating if we use the trigonometric identity

cos4
θ

2
+ sin4 θ

2
=

1

2
(1 + cos2 θ) . (5.58)

5.3.3 Compton scattering

Compton scattering is the name given to the elastic scattering of a free electron
with a photon:

e−(p) + γ(k)→ e−(p′) + γ(k′) . (5.59)
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Figure 5.5: Diagrams for Compton scattering at the second order in perturbation
theory.

There are two diagrams corresponding to this process at the second order,
shown in Fig. 5.5.

Let us write the amplitude in the form

iM = e2ǫµ(k)ǫ∗µ′(k′)u(p′) iΓµµ′

u(p) , (5.60)

separating out the factors which will be the same for both diagrams. The
difference between the diagrams lies in Γµµ′

, which receives the following
contribution from the two diagrams:

iΓµµ′

a = iγµ′ i(p/+ k/+m)

(p+ k)2 −m2
iγµ ,

iΓµµ′

b = iγµ i(p/− k/′ +m)

(p− k′)2 −m2
iγµ′

. (5.61)

The total Γµµ′

is equal to Γµµ′

a + Γµµ′

b .
The absolute square of the matrix element, summed over final as well as

averaged over initial spin and polarization, is given by

|M |2 =
e4

4

(∑

pol

ǫµ(k)ǫν(k)∗
)(∑

pol

ǫµ′(k′)∗ǫν′(k′)

)

×
∑

spins

[
u(p′) Γµµ′

u(p)
] [
u(p′) Γνν′

u(p)
]∗
. (5.62)

The polarization sums, of course, are on the physical states of polarization.
To perform the sums, we use Eq. (4.36, p 68) and obtain

|M |2 =
e4

4

∑

spins

[
u(p′) Γµµ′

u(p)
]

[u(p′) Γµµ′ u(p)]
∗

=
e4

4
Tr
[
(p/+m)Γ‡

µµ′ (p/
′ +m)Γµµ′

]
, (5.63)

where, for any matrix F that is either a Dirac matrix, or some combination
of them including the unit matrix, we use the notation

F ‡ = γ0F
†γ0 . (5.64)
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We digress here to talk about a property of Feynman amplitudes involving photons as external
lines. If a process has n external photons, we can write the amplitude as

M = ǫµ1 (k1) · · · ǫµn (kn)M µ1···µn , (5.65)

separating out the polarization vectors. For the photons in the final state, the polarization
vectors will be complex conjugated, something which is not shown in the expression above.
Now, Eq. (5.10) shows the effect of a gauge transformation. If we write the same formula in
terms of the Fourier expansion, it will show that a gauge transformation involves the change

ǫµ → ǫ′µ = ǫµ + kµ × (arbitrary number) (5.66)

for any photon. Since the theory is gauge invariant, such changes can leave amplitudes un-
changed only if

(k1)µ1M µ1···µn = 0 , (5.67)

and similar conditions with other momenta are also met. For the amplitude of Compton scat-
tering, it means that we should have

kµu(p
′)Γµµ′

u(p) = 0 , k′µ′u(p′)Γµµ′

u(p) = 0 , (5.68)

which can be verified in a straightforward manner.
This feature has another important implication. In deriving the polarization sum formula

in §4.2, we first showed that the sum over physical polarization vectors is given by Eq. (4.35,
p 68), and then commented that in this sum, the terms containing the momentum vector of the
photon do not contribute to physical amplitude. The reason for this comment is now clear: if
there is a term in the polarization sum containing the factor kµ, this term does not contribute
because of the gauge invariance condition, Eq. (5.68).

2 Exercise 5.6 Take the expressions given in Eq. (5.61) and verify Eq.
(5.68). [Note : Don’t forget to use the Dirac equation for the spinors, and also
the 4-momentum conservation equation p+ k = p′ + k′.]

For the rest of the calculation, we will assume that the energies are high
so that the electron mass can be neglected in |M |2. Using the expression of
Γµµ′

from Eq. (5.61), we obtain

|M |2 =
e4

4
Tr

[
p/

(
γµ(p/ + k/)γµ′

s
+
γµ′(p/ − k/′)γµ

u

)

p/′
(
γµ′

(p/ + k/)γµ

s
+
γµ(p/ − k/′)γµ′

u

)]
. (5.69)

The traces can be evaluated in a straightforward manner. For example, the
term containing 1/s2 in the trace is simplified as follows, with the help of the
cyclicity of the trace operation and the contraction formulas given in §F.1.3
of Appendix F:

1

s2
Tr
[
γµp/γµ(p/ + k/)γµ′p/′γµ′

(p/ + k/)
]

=
4

s2
Tr
[
p/(p/+ k/)p/′(p/+ k/)

]
. (5.70)

We can now use the trace formulas, along with the expressions for the Man-
delstam variables,

s = 2p · k , t = −2p · p′ , u = −2p · k′ , (5.71)
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which are valid when the electron mass is neglected. These relations allow us
to write

4

s2
Tr
[
p/(p/+ k/)p/′(p/+ k/)

]
= −8u

s
. (5.72)

The term with u in both denominators will similarly give a contribution of
−8s/u. Finally, there are two interference terms. One of them will produce a
contribution

1

su
Tr
[
p/γµ(p/+ k/)γµ′p/′γµ(p/ − k/′)γµ′

]
= − 2

su
Tr
[
p/p/′γµ′(p/+ k/)(p/− k/′)γµ′

]

= − 32

su
(p+ k) · (p− k′)p · p′

=
8(s+u+t)t

su
, (5.73)

which vanishes if the electron mass is neglected, as can be seen from Eq.
(4.200, p 105). Similarly, the other interference term vanishes in this limit,
and we obtain

|M |2 = −2e4
s2 + u2

su
. (5.74)

The differential cross-section in the CM frame can then be written down easily
by using Eq. (4.207, p 106). We obtain

dσ

dΩ
= −α

2

2s

s2 + u2

su
. (5.75)

The overall minus sign might look perplexing, but we need to remember that
the Mandelstam variable u is negative.

2 Exercise 5.7 Obtain the leading contribution to the differential cross-
section in the FT frame where the initial electron is at rest. Express
the answer in terms of the initial photon energy ω and the scattering
angle θ.

2 Exercise 5.8 Redo the calculation in the opposite limit, i.e., for ω ≪
m. Show that the differential cross-section in this limit, in the FT
frame of the electron, is given by

dσ

dΩ
=

α2

2m2
(1 + cos2 θ) , (5.76)

where θ is the angle between the directions of k and k′.

2 Exercise 5.9 On integrating Eq. (5.76) over the scattering angle, one
obtains

σ =
8πα2

3m2
, (5.77)

an expression obtained from classical electromagnetic theory for the
cross-section of scattering of electromagnetic radiation by a free elec-
tron. Find this cross-section in the unit cm2. [Note : This cross-section
is called the Thomson cross-section, and is often used as a benchmark value for elec-
tromagnetic cross-sections.]
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2 Exercise 5.10 Suppose that the initial photon is virtual, with an in-
variant 4-momentum squared equal to Q

2
. Show that in this case one

obtains

|M |2 = −2e4
s2 + u2 − 2tQ

2

su
. (5.78)

5.4 Inelastic scattering at second order

A scattering is inelastic when the final state particles and the initial state
particles are not the same. We discuss a few examples of such processes.

5.4.1 Pair creation and pair annihilation

By ‘pair creation’, we mean the creation of an electron–positron pair from the
annihilation of two photons, i.e.,

γ(k1) + γ(k2)→ e−(p1) + e+(p2) . (5.79)

‘Pair annihilation’ means the opposite process, in which an electron–positron
pair annihilates into two photons:

e−(p1) + e+(p2)→ γ(k1) + γ(k2) . (5.80)

The diagrams for these processes are very similar to those responsible for
Compton scattering. In fact, they are so similar that we need not display
them separately. Just take a diagram for the Compton process, reinterpret an
outgoing photon line as an incoming photon line, and an incoming electron
line as an outgoing positron line, and the result is a pair creation process. Note
that the changes that we just mentioned do not need any different combination
of field operators. The same operator that can create a photon can also
annihilate a photon. Similarly, the same field operator that annihilates an
electron can create a positron. Processes which are related by renaming of
this sort are said to be related by crossing symmetry.

When two processes are related like this, the amplitude squared of one of
them can be easily found from the amplitude squared of the other. To see
how, let us write down the renamings or redefinitions needed for going from
the Compton scattering process of Eq. (5.59) to the pair creation process of
Eq. (5.79). As described a bit earlier, these would be

k → k1 , k′ → −k2 , p→ −p2 , p′ → p1 . (5.81)

The negative sign over an entire 4-vector changes an incoming line to an
outgoing line, and vice versa. Now look at the Mandelstam invariants for the
two processes, and make a little chart of what happens to each of them as we
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make the transformations shown in Eq. (5.81):

Compton process Pair creation
s≡ (p+ k)2 =⇒ (−p2 + k1)2 ≡ t

t ≡ (p− p′)2 =⇒ (−p2 − p1)2 ≡ s

u≡ (p− k′)2 =⇒ (−p2 + k2)2 ≡ u

(5.82)

It means that the roles of the Mandelstam variables s and t have inter-
changed. We should make the same adjustments while writing the matrix
element squared for the process at hand. In addition, we should introduce an
extra minus sign for each fermion that has been crossed from the initial state
to the final state, or vice versa. In this case, there is only one such crossing, so
the square of the matrix element can be obtained from Eq. (5.74) by making
this replacement:

|M |2 = 2e4
t2 + u2

tu
. (5.83)

The differential cross-section for pair creation is therefore given by

dσ

dΩ
=
α2

2s

t2 + u2

tu
. (5.84)

2 Exercise 5.11 Find the differential cross-section for the pair creation
process using crossing symmetry.

2 Exercise 5.12 Verify that |M |2 for electron–positron scattering can be
deduced from Eq. (5.39) by using crossing symmetry.

5.4.2 Muon pair production

In §5.1, we showed how the requirement of local phase invariance leads to the
introduction of the photon field. It of course does not matter which field ψ we
started with: we would have reached the same conclusion. Moreover, notice
that the transformation property of the photon field, shown in Eq. (5.10),
does not depend on any characteristic of the fermion field ψ. For example, it
does not depend on the parameter Q which denotes the charge of the particle
corresponding to the field ψ. Thus, no matter which field we start with, or
how many of them, it is the same photon field that can ensure local gauge
invariance.

So suppose we want to discuss some process where both electrons and
muons are involved. We will write down the free Lagrangians for both fields.
Then we will consider phase rotations of these fields. Both fields will have
Q = −1, since muons have the same charge as the electrons. Once we make
the symmetry local, the photon field will come in and the muon field will
have the same kind of interaction term with the photon field. With this
added interaction, we will be able to deal with many more kinds of scattering
processes. One such process, which is very important, is

e−(p1) + e+(p2)→ µ
−(p′

1) + µ
+(p′

2) . (5.85)
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Figure 5.6: Diagram for muon–antimuon production at the second order in pertur-
bation theory.

Here, a muon–antimuon pair is produced from the electron–positron pair.
Obviously, since the masses in the initial and final states are different, it is an
inelastic process.

The process has similarities with electron–positron elastic scattering that
was discussed in §5.3.2. As for diagrams, we will have a diagram that looks
like Fig. 5.4b (p 125), except that the final state lines will now correspond to a
muon and an antimuon. It has been shown in Fig. 5.6, but the similarity ends
there, because there is no diagram that would look like Fig. 5.4a (p 125). The
reason is that, the photon field couples to only one kind of field: it does not
have any vertex that involves both the electron and the muon fields. This is
obvious from the derivation given in §5.1.

Given the diagram, we can write down the amplitude easily. We get

iM = [vp2
ieγµup1

]

( −igµν

(p1 + p2)2

)
[up′

1
ieγνvp′

2
] , (5.86)

or

M =
e2

s
[vp2

γµup1
][up′

1
γµvp′

2
] . (5.87)

We have not shown the other indices on the spinors: they are implied. Also,
we are using the same notation for the electron spinors and muon spinors: the
primes on the momenta will remind us that the corresponding spinor belongs
to the muon field.

The muon is more than 200 times heavier than the electron. So, in order
that the given process is possible, the electron–positron pair in the initial state
must possess a huge energy, at least equal to the rest energy of the muon–
antimuon pair. At such high energies, the electron mass can be neglected. So
we obtain

|M |2 =
1

4

∑

spins

∣∣∣M
∣∣∣
2

=
e4

4s2
Tr
(
p/1γ

νp/2γ
µ
)

Tr
(

(p/′2 −M)γν(p/′1 +M)γµ

)
, (5.88)
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where M is the mass of the muon. Note that we have averaged over the initial
spins and summed over the final ones. Evaluating the traces in the usual way,
we obtain

|M |2 =
4e4

s2

(
pµ
1p

ν
2 + pν

1p
µ
2 − p1 · p2g

µν
)

×
(
p′1µp

′
2ν + p′1νp

′
2µ − (p′1 · p′2 +M2)gµν

)

=
8e4

s2

(
(p1 · p′1)2 + (p1 · p′2)2 +M2p1 · p2

)
. (5.89)

In writing the last step, we have used kinematical relations like

p1 · p′1 = p2 · p′2 , p1 · p′2 = p2 · p′1 , (5.90)

which follow from momentum conservation.
In the CM frame, we can write the different 4-momenta as

pµ
1 = (E, pn̂) , pµ

2 = (E,−pn̂) ,

p′µ1 = (E, p′n̂′) , p′µ2 = (E,−p′n̂′) , (5.91)

where n̂ and n̂
′ are unit 3-vectors, with n̂ · n̂′ = cos θ, θ being the scattering

angle. Since we have neglected the electron mass, we have p = E = 1
2

√
s.

This gives

p′ =
√
E2 −M2 =

1

2

√
s− 4M2 . (5.92)

Putting these in, we obtain

|M |2 = e4
(

1 +
1

E2
(p′2 cos2 θ +M2)

)

= e4
(

(1 + cos2 θ) +
M2

E2
(1− cos2 θ)

)
. (5.93)

Putting this result into Eq. (4.207, p 106) and using Eq. (5.92), we obtain

dσ

dΩ
=
α2

4s

√
1− 4M2

s

(
(1 + cos2 θ) +

4M2

s
(1− cos2 θ)

)
. (5.94)

The total cross-section is given by

σ =

∫ +1

−1

d(cos θ)

∫ 2π

0

dϕ
dσ

dΩ

=
4πα2

3s

√
1− 4M2

s

(
1 +

2M2

s

)
. (5.95)

2 Exercise 5.13 � Express the angular cross-section in terms of the
Mandelstam variables. At high energies where the muon mass can
be neglected, show that

dσ

dt
=

2πα2

s2

t2 + u2

s2
(5.96)

using Eq. (4.215, p 108).
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2 Exercise 5.14 What will be the differential cross-section for the elas-
tic scattering eµ → eµ at energies when both electron and muon
masses can be neglected? [Hint : Use crossing symmetry.]

There are many interesting aspects of these results that we have deduced. As
a sample, let us take a look at the differential cross-section in Eq. (5.94). We
notice that its angular dependence comes only through cos2 θ, which implies
that the probability for a muon coming out at a certain angle θ with the
original electron direction is the same as that for coming out at the angle π−θ.
When this happens, we say that the process is forward-backward symmetric,
or alternatively that the forward-backward asymmetry of the process is zero.
This was also the case with the electron–electron scattering, as seen from
Eq. (5.45). But in that case, the reason is easy to understand. There are
two electrons produced in the final state. If one of them goes at an angle θ
with the original beam direction, the other must go at an angle π − θ. Thus,
the number of scattered particles at angles θ and π − θ must be the same.
But when a muon–antimuon pair is produced, this argument does not hold.
We can ask, what is the reason that this scattering turns out to be forward-
backward symmetric? The answer depends on matters that we will discuss
later, and will appear in §16.7.

Let us now look at another aspect. Suppose we are performing an exper-
iment where electrons and positrons are collided, and we are measuring the
total cross-section, irrespective of the final state. In other words, we are mea-
suring the cross-section of electron and positron going to anything in the final
state. Also suppose that we are ignorant about any particle of higher mass,
so that we are expecting only the elastic scattering. The elastic cross-section
goes down like 1/s for large CM energy, a comment made in the context
of electron–electron collision in Eq. (5.46) but is obviously also valid in this
case. So, if we plot the quantity σs versus s itself, we will obtain a horizontal
straight line if elastic scattering is the only contributing process. As we keep
increasing s and go past a certain value, a new channel opens in the form of
muon–antimuon, and there is an extra contribution to the cross-section. The
value of σs then rises to a higher value. The higher value then indicates that
the CM energy of the electron or the positron is now higher than the mass
of another particle. Thus, by looking at electron–positron cross-section, we
can discover new particles. Said another way, electron–positron collision is a
very good probe for discovering new particles. Many high energy machines
use this technique.

Why are we making such a big deal about electrons and positrons? Can
we not do the same thing by colliding, say, muons with antimuons, or protons
with antiprotons? The problem is that muons are unstable, with a short
lifetime. So it is not easy to create and maintain a beam of them. Protons
do not have a problem with lifetimes, and they can of course be used. They
are used in some of the biggest machines in the world. There are advantages
and disadvantages of using proton-antiproton machines compared to electron–
positron machines, some of which will be discussed in Ch. 9.
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p p′

Aµ

Feynman rule:

ieQ(p+ p′)µ

Aµ Aν

Feynman rule:

2i(eQ)2gµν

Figure 5.7: Feynman rules for scalar QED vertices.

5.5 Scalar QED

Electromagnetic interactions of scalar particles can also be described through
minimal substitution, as has been hinted in Ex. 5.1 (p 114). The Lagrangian
for this theory is

L =
(
Dµφ

)†(
Dµφ

)
−m2φ†φ− 1

4
FµνF

µν − 1

2ξ
(∂µA

µ)2 , (5.97)

where φ(x) is a complex scalar field and Dµ, as before, is given by Eq. (5.8).
Note that this Lagrangian contains two different kinds of vertices involving
the photon field: a cubic vertex with one photon field, and a quartic vertex
with two photon fields. The Feynman rules for these vertices are shown in
Fig. 5.7.

The Noether current for the free Lagrangian of a scalar field was given
in Eq. (4.116, p 83). It should be remembered that Noether currents come
from terms in the Lagrangian that contain derivatives of fields, as seen in Eq.
(4.109, p 82). With the introduction of photon field in the Lagrangian through
the prescription of minimal substitution, there are now new terms involving
∂µφ and ∂µφ

† which were not present in the free Lagrangian of the scalar
field. As a result, the expression for the Noether current will change:

Jµ = −ieQ(∂µφ
†)φ+ ieQ(∂µφ)φ† − 2(eQ)2φ†φAµ . (5.98)

2 Exercise 5.15 Derive the expression for the Noether current given in
Eq. (5.98) and show that it is gauge invariant.

2 Exercise 5.16 Derive the Euler–Lagrange equation for the photon
field from Eq. (5.97) and verify that it is of the standard form given
in Eq. (4.19, p 66), where the current density 4-vector is given by the
expression on the right hand side of Eq. (5.98).
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5.6 Multi-photon states

5.6.1 Generalities

A state containing n photons is obviously defined as

|k1, ǫ1; k2, ǫ2; · · · kn, ǫn〉 = a†(kn, ǫn) · · · a†(k2, ǫ2)a†(k1, ǫ1) |0〉 , (5.99)

where a†(k1, ǫ1) denotes the creation operator for a photon with 4-momentum
k1 and polarization vector ǫ1. There will in general be a normalizing factor
on the right hand side as well, but that is not relevant for our discussion here.

If we write down the wavefunction of the state in Eq. (5.99) in the momen-
tum representation, it will of course contain the momenta and the polarization
vectors of the photons. Polarization vector of a photon is not uniquely de-
fined. It depends on the choice of gauge, as remarked earlier in Eq. (4.27, p 67).
For the present purpose, it is most convenient to use a gauge in which the
time components of all polarization vectors are zero. As for the momentum 4-
vector, we notice that its time component, i.e., the energy, is not independent
of the 3-momentum. Thus, we can use only the 3-vectors of polarization and
momentum for each photon in the expression for the states. Also, we cannot
use the dot product of the momentum and polarization of the same photon,
since

ǫ1 · k1 = 0 (5.100)

in this gauge, along with similar equations for all other photons.
How will a multi-photon state be created in a physical process? It will of

course be created through interactions, and each photon will be created from
a factor of the photon field operator Aµ in the Lagrangian. While explaining
the Feynman rules for photons, we noted in Table 4.1 (p 91) that each photon
creation should provide a factor of ǫ∗µ to the amplitude. Thus, the n-photon
state should have one factor — no more, no less — of the polarization vector
for each of the photons. In what follows, we will assume that we have taken
linear polarization vectors which have real components, and therefore do not
write the complex conjugation sign.

The rotational properties of the wavefunction will depend on the angular
momentum of the state. For example, if we want to construct a state with
zero angular momentum, J = 0, the wavefunction should be a scalar. For a
J = 1 state, the wavefunction should be a vector.

Finally, since photons are bosons, all multi-photon states must be Bose-
symmetric, i.e., they must be completely symmetric under the exchange of
any two photons. With these things in mind, let us now explicitly see the
wavefunctions with two and three photons. We will proceed as follows. First,
we will disregard Bose symmetry and construct the wavefunction consistent
with all other requirements. Then we will invoke Bose symmetry and pick up
only the symmetric wavefunctions.
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5.6.2 Two-photon states

a) J = 0 states

Let us first consider J = 0 states of two photons. We can discuss the problem
in the center-of-mass frame of the two photons, so that the momenta of the
photons can be written as

k1 = k , k2 = −k . (5.101)

This k, and the polarization vectors of the two photons should be used to
construct the wavefunction.

As stated earlier, the wavefunction must have one power of each polariza-
tion. We can construct the scalar

ǫ1 · ǫ2f(k) , (5.102)

where k = |k|, and f(k) denotes an arbitrary function of the argument. This
is Bose symmetric, and is therefore an acceptable state. Another example of
a scalar is

ǫ1 × ǫ2 · kf(k) . (5.103)

The cross product is antisymmetric under the interchange of the two photons,
but notice that k changes sign under such an interchange, so that overall the
expression is symmetric. It is therefore a different J = 0 state of two photons.

b) J = 1 states

We now try to construct J = 1 states with two photons. These wave func-
tions should behave like vectors. Without involving the momentum, we can
construct the combination

ǫ1 × ǫ2f(k) . (5.104)

But this is antisymmetric under the interchange of the two photons, and
therefore is not allowed. For the same reason,

(ǫ1 · ǫ2)kf(k) (5.105)

is not allowed. How about

(ǫ1 × ǫ2)× kf(k)? (5.106)

It passes the interchange test because it is symmetric, but it is of no use
because the triple cross product is in fact zero. This can be easily seen from
the formula

(A×B)×C = (A ·C)B − (B ·C)A (5.107)
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that applies for any three vectors A, B and C.
Here we run out of possibilities. There does not seem to be any vector

combination of polarizations and momenta of two photons that is Bose sym-
metric. The conclusion is that two photons cannot be in a J = 1 state. This
is called Yang’s theorem.

2 Exercise 5.17 Prove Eq. (5.107) by using the identity given in Eq.
(D.22a, p 731) of AppendixD.

5.6.3 Three-photon states

a) J = 0 states

Consider the following wavefunctions:

Ψ1 = (ǫ1 × ǫ2) · ǫ3f(k1, k2, k3) (5.108)

Ψ2 = ǫ1 · k23 ǫ2 · k31 ǫ3 · k12 f(k1, k2, k3) . (5.109)

where

k12 ≡ k1 − k2 (5.110)

etc. For J = 0 states, the wavefunction should be a scalar under rotation.
Thus, the function f(k1, k2, k3) should be a scalar. As long as this scalar is
antisymmetric under the interchange of any two photons, the overall wave-
function would be symmetric and would therefore be acceptable. An example
of a completely antisymmetric function is

f(k1, k2, k3) = (ω2 − ω3)(ω3 − ω1)(ω1 − ω2) , (5.111)

where ω = |k| for any photon.

b) J = 1 states

For J = 1, we need vector combinations. Here are some:

Ψ1 =
[
(ǫ1 · ǫ2)ǫ3 + (ǫ2 · ǫ3)ǫ1 + (ǫ3 · ǫ1)ǫ2

]
F (k1, k2, k3) (5.112)

Ψ2 =
[
(ǫ1 · ǫ2)(k12 × ǫ3) + cyclic permutations

]
f(k1, k2, k3) . (5.113)

Here, F (k1, k2, k3) must be completely symmetric and f(k1, k2, k3) completely
antisymmetric in order that the states are symmetric under the interchange
of any two photons.

5.7 Higher-order effects

5.7.1 Electromagnetic form factors

The lowest order contribution to the QED vertex was shown in Fig. 5.2 (p 118),
where also the Feynman rule for this vertex was presented. This is the basic
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p

p′

Figure 5.8: General form for the coupling between a fermion and the photon. The
momenta carried by the fermions are shown.

vertex. But, in an experiment, we may not always probe the basic vertex.
If we see the coupling of a fermion with a single photon, all we can say is
that we are seeing the effect of something that has been schematically shown
in Fig. 5.8, where the blob in the middle can contain any number of lines of
any kind. Together, they will give rise to an effective vertex, which is what
we will probe in an experiment. We can ask the question, what will be the
characteristics of this effective vertex?

In the classical Lagrangian density, the interaction of particles with the
electromagnetic field is contained in a term −jµ(x)Aµ(x), where jµ(x) is the
4-vector for current density. In quantum field theory, of course, jµ(x) is an
operator that involves creation and/or annihilation of particles and antiparti-
cles. In a situation depicted by Fig. 5.8, we are effectively probing the matrix
element of jµ(x) between two 1-particle states

∣∣f(p)
〉

and
∣∣f(p′)

〉
, where the

symbols in the parentheses denote the 4-momentum eigenvalues of the states.
We will use the shorthand notation

〈jµ(x)〉 ≡ 1√
2EpV

√
2Ep′V

〈f(p′) |jµ(x)| f(p)〉 . (5.114)

Here, V is the volume of the entire system in which we consider all physical
processes to take place. The necessity for using this volume was first noted in
§4.8 where we discussed the normalization of one-particle states. In fact, the
two square roots in the denominator of the right hand side of Eq. (5.114) occur
precisely so that the quantity defined on the left side has the same dimension
as jµ, and becomes the expectation value of the current density in the limit
p = p′. Now note that, by using the momentum operator P , we can write

jµ(x) = eiP ·xjµ(0)e−iP ·x . (5.115)

Acting on momentum eigenstates, the exponentials involving the momentum
operator would produce exponentials involving the momentum eigenvalues of
the states. Therefore,

〈f(p′) |jµ(x)| f(p)〉 = e−iq·x 〈f(p′) |jµ(0)| f(p)〉 , (5.116)
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where

q = p− p′ (5.117)

is the momentum carried away by the photon. The remaining matrix ele-
ment on the right hand side of Eq. (5.116) does not have any co-ordinate
dependence. Let us write it as

〈f(p′) |jµ(0)| f(p)〉 = e u(p′)Γµ(p, p′)u(p) , (5.118)

which defines the quantity Γµ(p, p′), called the vertex function. We have put
in an explicit factor of e in the definition, because somewhere or other within
the blob, there must be an electromagnetic vertex involving the photon, and
all such vertices have a factor of e. The spinors u(p′) and u(p) occur because
of the Feynman rules for creating and annihilating on-shell fermions. It should
be noted that, since we have taken the fermion lines to be on-shell, the photon
cannot be on-shell, as argued in §5.2. Thus, the vertex function is not the
amplitude of a physical process. It is the type of Green function discussed in
§4.14.

2 Exercise 5.18 Show that the definition of Eq. (5.118) implies that
the vertex function is dimensionless. [Note : Recall the dimension of
one-particle states from Eq. (4.137, p 87).]

The vertex function carries a Lorentz index. This can come from the
momenta involved, and also from the Dirac matrices. It is to be remembered
that there might be interrelations between different such terms. For example,
the Gordon identity, presented in Eq. (F.123, p 752) of Appendix F, shows that
it is not necessary to consider a term with (p+ p′)µ in the expression for the
vertex function. In addition, the electromagnetic current is conserved,

∂µj
µ(x) = 0 . (5.119)

So, taking the divergence of Eq. (5.116), we obtain the condition

qµ u(p′)Γµ(p, p′)u(p) = 0 , (5.120)

which must be satisfied by the vertex function. Subject to this constraint, the
most general form of the vertex function is given by

Γµ = F1γµ + (iF2 + F̃2γ5)σµνq
ν + F̃3(q/qµ − q2γµ)γ5 , (5.121)

where F1, F2, F̃2 and F̃3 are Lorentz invariant quantities, which are called
form factors.

It should be noticed that we have used nothing except Lorentz invariance
and gauge invariance in order to arrive at the expression for the vertex func-
tion given in Eq. (5.121). Thus, this form of the vertex can be used even
for fermions which are not elementary particles, e.g., for the proton and the
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neutron. And although the neutron has no electric charge, the vertex function
shows that it can still have interactions with a photon because of its substruc-
ture. Our subsequent discussion will show that some of the effects of these
interactions can be interpreted as a magnetic dipole moment of the neutron.

The form factors are not necessarily constants. They can be functions of
Lorentz invariant combinations of the various momenta involved. Two such
combinations are p2 and p′2, but they are irrelevant because both of them are
equal to the square of the mass m of the relevant fermion:

p2 = p′2 = m2 . (5.122)

The dot product p · p′ is a variable, and it can be traded for q2, because
they are related through Eq. (5.117). Thus, all form factors can be treated as
functions of q2.

2 Exercise 5.19 In Eq. (5.121), there are terms with γµ and σµν, as
well as with a factor of γ5 attached to both. In addition, we see a
term with q/γ5, but no counterpart without the γ5. Why?

2 Exercise 5.20 In Eq. (5.121), we have put a factor of i with the term
having σµν, but no such factor for the term having σµνγ5. This has
been done to ensure that the relevant form factors are real. Prove
this statement. [Hint : jµ(x) must be hermitian since the interaction will have
to be hermitian, and Aµ itself is hermitian.]

2 Exercise 5.21 Consider the possibility of a massive spin-1 particle
decaying into two photons. The Feynman amplitude can be written
in the form

M = E α(q)ǫµ(k)ǫν(k′)Tαµν , (5.123)

where E denotes the polarization vector of the decaying spin-1 par-
ticle, and q = k + k′. Write down the most general form for Tαµν

involving form factors, using only the momenta k and k′, as well as
the metric tensor gµν and the completely antisymmetric tensor εµνλρ

which are properties of spacetime. Now write down the conditions
for electromagnetic current conservation which are analogous to Eq.
(5.120) for the present case. Next, use Bose symmetry, which implies

Tαµν(k, k′) = Tανµ(k′, k) . (5.124)

In addition, each polarization 4-vector is orthogonal to the respective
momentum 4-vector. After imposing all these conditions, show that
Tαµν vanishes, in compliance with Yang’s theorem.

5.7.2 Form factors in non-relativistic limit

Some physical insight into these form factors can be obtained by considering
their non-relativistic limits. Let us consider them one by one.

a) Form factor F1

The form factor F1(q2) appears with the bilinear involving γµ. We first use
the Gordon identity, Eq. (F.123, p 752), to write

u(p′)F1(q2)γµu(p) =
F1(q2)

2m
u(p′)

[
(p+ p′)µ − iσµνq

ν
]
u(p) . (5.125)
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Now, first consider the limit where the external fermion lines are both at rest,
i.e., qµ = 0 and pµ = p′µ = (m,0). In this case, the effective coupling to the
electromagnetic field will be

−〈jµ(x)〉Aµ(x) = −eF1(0)

2mV
u(0)u(0)A0(x)

= −eF1(0)

V
A0(x) , (5.126)

where we have made use of the normalization condition in the form given in
Eq. (F.128, p 753). In the effective Hamiltonian density, the term would be
present with an opposite sign. Since A0 is the scalar potential, the quantity
multiplying it in the Hamiltonian density should be the charge density. Multi-
plying by the volume V , we conclude that eF1(0) is the charge of the fermion
whose coupling we are considering, i.e.,

F1(0) = Q , (5.127)

in the notation that we had introduced in Eq. (5.2).
When we start considering non-zero values of the photon momentum q, the

second term in the right hand side of Eq. (5.125) will also contribute. Notice,
however, that the structure of this term is exactly the same as that of the
F2-term. Let us then clump this part with F2 and consider its interpretation.

b) Form factor F2

Once the Gordon identity of Eq. (5.125) is employed, we find that the terms
involving the σµν matrices are of the form

Fm(q2)u(p′)iσµνq
νu(p) , (5.128)

where

Fm(q2) = −F1(q2)

2m
+ F2(q2) . (5.129)

Now consider expanding Fm(q2) in a power series and take only the first
term, i.e., the constant term Fm(0). We also consider the limit in which the
initial and the final fermions are both non-relativistic, so that we can use the
zero-momentum spinors, and also put the energy equal to the mass as a first
approximation. In the effective interaction, we can identify this contribution
as

−〈jµ(x)〉Aµ(x) = −eFm(0)e−iq·x

2mV
u(0)iσµνq

νu(0)Aµ(x) . (5.130)

This can be rewritten as

−〈jµ(x)〉Aµ(x) =
eFm(0)∂ν(e−iq·x)

2mV
u(0)σµνu(0)Aµ(x)

= −eFm(0)e−iq·x

2mV
u(0)σµνu(0)∂νAµ(x) + · · · , (5.131)
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where the dots now contain a total derivative term. This should be of no con-
sequence, and so we will omit it in subsequent steps. Using the antisymmetry
of the σ-matrices in the Lorentz indices, this can be written as

−〈jµ(x)〉Aµ(x) =
eFm(0)e−iq·x

4mV
u(0)σµνu(0)Fµν(x) . (5.132)

In §F.3.3 of Appendix F, we demonstrate that the matrices σ0i, sandwiched
between rest solutions of spinors, vanish. Thus the contributions come from
σij terms only. It was pointed out in §4.4 that 1

2σµν are the representations
of the Lorentz group generators. The subset 1

2σij form the representation of
the rotation group generators, i.e,. of spin. The spin vector can be denoted
by S:

1

2
σij = εijkS

k . (5.133)

Then

σijF
ij = 2εijkF

ijΣk = 4BkS
k , (5.134)

where Bk are the components of the magnetic field. In the Hamiltonian
density, we will therefore have the negative of this, which is 4B ·S. The term
is then an interaction with the magnetic field, which is written as −µ ·B in
classical electrodynamics. Using this analogy, we conclude that the magnetic
moment of the particle is given by

µ = −eFm(0)

m
u(0)Su(0) . (5.135)

The expectation value of spin is given by

〈S〉 =
u†(0)Su(0)

u†(0)u(0)
. (5.136)

In §4.2, we showed that the rest-frame solution for spinors are eigenstates of
γ0, so we can replace u† by u in the equation above. Then, imposing the
normalization condition in the form given in Eq. (F.128, p 753), we can write

µ =
e

m

(
Q− 2mF2(0)

)
〈S〉 , (5.137)

where we have also reinserted the definition of Fm from Eq. (5.129) and used
the interpretation of F1(0) from Eq. (5.127). Thus we see that the magnetic
moment of a fermion can have a contribution that is proportional to the charge
eQ of the particle. This is called the Dirac contribution to the magnetic
moment. But in addition, there can be other contributions involving F2(0),
which have nothing to do with the charge of the particle and therefore can
exist even for uncharged particles. This part is called the anomalous magnetic
moment .
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Customarily, the value of the magnetic moment for a charged particle is
expressed in terms of the Landé g-factor, defined for a particle of charge eQ
by the relation

µ =
eQ

2m
g 〈S〉 . (5.138)

Comparing Eqs. (5.137) and (5.138), we see that Landé g-factor for the Dirac
part of the magnetic moment is given by

gD = 2 , (5.139)

whereas the anomalous magnetic moment gives a contribution

gA = −4m

Q
F2(0) . (5.140)

For any uncharged fermion, of course, the Landé g-factor is undefined, and
one only has the anomalous contribution to the magnetic moment, the second
term in the parenthesis of Eq. (5.137).

c) Form factor F̃2

The interpretation of this form factor is trivial, once we note that

σµνγ5 = − i
2
εµναβσ

αβ , (5.141)

an identity which has been discussed in §F.1. We can now follow exactly the
steps that we went through for the magnetic moment, and obtain, in place of
Eq. (5.132), the expression

−1

2

eF̃2(0)e−iq·x

4mV
εµναβu(0)σαβu(0)Fµν(x) . (5.142)

This looks very much like Eq. (5.132), except that it involves a different form
factor, and instead of the electromagnetic field strength tensor Fµν we now
have its dual,

1

2
εµναβF

µν ≡ F̃αβ . (5.143)

The components of the dual field-strength tensor can be obtained from the
components of the field-strength tensor by making the following replacements:

E → B , B → −E . (5.144)

This shows that the effective interaction Hamiltonian arising out of F̃2(0) has
the form

−d ·E (5.145)
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in the non-relativistic limit, where

d = 2eF̃2(0)S . (5.146)

In classical electromagnetic theory, the interaction energy proportional to the
electric field comes from the electric dipole moment. We thus see that a
non-zero F̃2(0) signifies an electric dipole moment of a fermion.

d) Form factor F̃3

In this case, similar analysis shows that the interaction energy contains the
term

2eF̃3(0)S · j . (5.147)

This has no analogy in classical electrodynamics. The quantity F̃3(0) is called
the anapole moment of the fermion.

2 Exercise 5.22 Show that the contribution proportional to eF3(0) is in-
deed of the form shown in Eq. (5.147). [Hint : You will need the non-
relativistic reduction of uγ5u, which has been done in §F.3.]

It should not be understood, from the statements made above, that only
F̃3 is a purely quantum effect. In fact, all the effects discussed here, other
than the electric charge, cannot exist in classical physics. Magnetic or electric
dipole moments can exist for extended charge distributions in classical theory.
But here we are talking about point particles, and in quantum theory, they
can also have interactions that mimic classical interactions of magnetic and
electric dipoles. In addition, the momentum dependence of all these form
factors is also a hallmark of quantum physics.

5.7.3 Vertex function at one-loop

Let us calculate the contribution to the QED vertex function coming from one-
loop diagrams. The diagram is shown in Fig. 5.9. For the sake of concreteness,
we take the fermion in the diagram to be electron, so that Q = −1. We denote
the one-loop contribution by Γ

(1)
µ . Looking at the diagram, we can write

−ieΓ(1)
µ =

∫
d4k

(2π)4
ieγαiSF (p′ + k)ieγµiSF (p+ k)ieγβ

−igαβ

k2
, (5.148)

where iSF (p) denotes the Feynman rule for the electron propagator at mo-
mentum p. Using the form of the propagator from Eq. (4.145, p 92), we obtain

Γ(1)
µ = ie2

∫
d4k

(2π)4
γα(p/′ + k/+m)γµ(p/ + k/+m)γα

[(p′ + k)2 −m2][(p+ k)2 −m2]k2
. (5.149)
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e−(p)
p+

k

k

p
′ + k

e−(p′)

Aµ(q)

Figure 5.9: One-loop correction to the vertex function in QED.

The method for evaluating such loop integrals has been described in Ap-
pendix G. Using Eq. (G.2, p 756), we can rewrite this integral as

Γ(1)
µ = 2ie2

∫ 1

0

dζ1

∫ 1−ζ1

0

dζ2

∫
d4k

(2π)4
Nµ(k)

[
k2 + 2k · (ζ1p′ + ζ2p)

]3 ,(5.150)

where ζ1 and ζ2 are Feynman parameters, and Nµ(k) is the same numerator
that appears in Eq. (5.149). In writing this form, we have used Eq. (5.122)
for the electron lines in the outer legs. Making now a shift in the integration
momentum k, we obtain

Γ(1)
µ = 2ie2

∫ 1

0

dζ1

∫ 1−ζ1

0

dζ2

∫
d4k

(2π)4
Nµ(k − ζ1p′ − ζ2p)[
k2 − (ζ1p′ + ζ2p)2

]3 . (5.151)

Note that, using Eq. (5.122) as well as the momentum-conservation equation,
Eq. (5.117), we can write

(ζ1p
′ + ζ2p)

2 = (ζ1 + ζ2)2m2 − ζ1ζ2q2 (5.152)

in the denominator.
Let us now turn our attention to the numerator. Notice that the indices

on the first and the last Dirac matrices are contracted, so we can use the
contraction formulas of §F.1.3 and write

Nµ(k) = −2(p/+ k/)γµ(p/′ + k/) + 4m
[
2kµ + pµ + p′µ

]
− 2m2γµ . (5.153)

In the quantity appearing in the numerator of Eq. (5.151), we can separate
out terms depending on the power of k they contain. The term linear in k
would vanish on integration, so we need not consider it. There is only one
term containing two powers of k, which is

−2k/γµk/ = −2(2kµ − γµk/)k/ = −4kµkνγ
ν + 2γµk

2 . (5.154)
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It has been argued in Appendix G that if the integrand of a momentum
integration is of the form kµkνf(k2), it can be transformed into the form
1
4gµνk

2f(k2). Using this, we see that the quadratic term in k appearing in
the numerator can be written as

γµk
2 . (5.155)

The terms in the numerator which are independent in k can be written, by
using Eq. (5.117), as

− 2
(

(1− ζ1)q/+ (1 − ζ1 − ζ2)p/′
)
γµ

(
(1− ζ1 − ζ2)p/− (1 − ζ2)q/

)

+ 4m(1− ζ1 − ζ2)(pµ + p′µ)− 4m(ζ1 − ζ2)qµ . (5.156)

Since the vertex function makes sense only within the spinors, as shown in
Eq. (5.118), we might as well use some properties of the spinors in order to
simplify the expression. We can use the basic equations for the spinors, Eq.
(4.52, p 71), to turn the occurrences of p/ and p/′ into masses. We can also use
the Gordon identity, proved in §F.3.1, for the term containing pµ + p′µ. In
addition, we can use Dirac matrix identities like Eq. (F.45, p 741) to write

γµq/ = qµ − iσµνq
ν , q/γµ = qµ + iσµνq

ν , (5.157)

so that finally the k-independent part of the numerator will have three kinds
of terms. There will be terms proportional to qµ, which will vanish once the
integrations of the Feynman parameters are performed. The terms containing
γµ will join hands with the quadratic term obtained in Eq. (5.155) to define
the form factor F1:

F1(q2) = 2ie2
∫ 1

0

dζ1

∫ 1−ζ1

0

dζ2

∫
d4k

(2π)4

k2 − 2m2[(ζ1 + ζ2)2 − 2(1− ζ1 − ζ2)]− 2q2(1− ζ1)(1 − ζ2)
[
k2 − (ζ1 + ζ2)2m2 + ζ1ζ2q2

]3 .

(5.158)

And the co-efficient of iσµνq
ν will define the form factor F2:

F2(q2) = 4ime2
1∫

0

dζ1

1−ζ1∫

0

dζ2

∫
d4k

(2π)4
(ζ1 + ζ2)(1− ζ1 − ζ2)

[
k2 − (ζ1 + ζ2)2m2 + ζ1ζ2q2

]3 .

(5.159)

These equations give the form factors at the one-loop level. Notice that the
electric dipole moment and the anapole moment form factors are zero in this
case. The reason for this will be explained in Ch. 6.

2 Exercise 5.23 Show explicitly that the co-efficient of qµ vanishes in
the one-loop vertex function.
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Aµ(q) Aµ(q)

Figure 5.10: More one-loop corrections to the vertex function in QED.

It should be pointed out that the diagram of Fig. 5.9 is not the only di-
agram at the one-loop level that contributes to the effective vertex. There
are other contributions, as shown in Fig. 5.10. It is easy to see that these
diagrams contribute only to F1(q2). Thus, the expression for F1(q2) given in
Eq. (5.158) is not complete even so far as only the one-loop contributions are
concerned. What is worse, the integration diverges, so that we will obtain
an infinite result for F1(q2) if we take Eq. (5.158) literally. Infinities like this
occur in many loop diagrams, and we will discuss in §12.2 how to deal with
them. Right now, we focus on the other form factor. The expression given in
Eq. (5.159) is indeed the correct expression for F2(q2) at the one-loop level,
and let us try to understand its implication.

5.7.4 Anomalous magnetic moment

Let us discuss the form factor F2. Its value at q2 = 0 is related to the
anomalous magnetic moment of the electron, as discussed earlier. From Eq.
(5.159), we obtain

F2(0) = 4ime2
∫ 1

0

dζ1

∫ 1−ζ1

0

dζ2

∫
d4k

(2π)4
(ζ1 + ζ2)(1 − ζ1 − ζ2)
[
k2 − (ζ1 + ζ2)2m2

]3 .

(5.160)

In order to evaluate this, we first perform the integration over the loop mo-
mentum k. This can be done by performing Wick rotation, as described in
Appendix G. In particular, applying Eq. (G.35, p 762), we obtain

∫
d4k

(2π)4
1

[k2 −A2]3
= − i

32π2A2
. (5.161)

Putting this result of integration, we obtain

F2(0) =
α

2πm

∫ 1

0

dζ1

∫ 1−ζ1

0

dζ2
1− ζ1 − ζ2
ζ1 + ζ2

. (5.162)
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The remaining integration is straightforward, and the final result is

F2(0) =
α

4πm
, (5.163)

which means that the anomalous contribution to the Landé g-factor of the
electron is given by

gA =
α

π
, (5.164)

as suggested by Eq. (5.140).



Chapter 6

Parity and charge conjugation

6.1 Discrete symmetries in classical electrody-

namics

Consider a charge q′ held fixed at a point r′ and another charge q which moves
in its electric field. In Newtonian mechanics, the equation of motion will be
given by

m
d2r

dt2
=
qq′

4π

r − r′

|r − r′|3 , (6.1)

where m is the mass of the charge q and r denotes its instantaneous position.
Looking at this equation, we immediately notice that there are certain discrete
symmetries that it possesses. These are listed below.

1. If we change all co-ordinate vectors by a sign, each side of Eq. (6.1)
changes by a sign so that the equality of the two sides remains unaffected.

2. If we change the sign of time, the equation is unchanged because it
involves only the second derivative with respect to time.

3. If all charges are changed by a sign, the equation is unaffected.

We have no doubt considered a very simple situation where there are only
two charges, and one of them is static so that we can use the Coulomb law.
If we have more charges, and some of them are even moving, the equations
of motion will be more complicated. However, the discrete symmetries men-
tioned above still remain.

The first discrete symmetry mention above is called space inversion or
parity. The second one is called time reversal . Both of these were mentioned
in §3.6, where it was also said that these two operations are part of the
extended Lorentz group. The third operation is called charge conjugation,
and its nature will be discussed in detail in §6.3.

In this chapter, we will discuss how parity and charge conjugation symme-
tries manifest themselves in quantum theories. Since our motivation comes

150



§6.2. Parity transformation of fields 151

from classical electrodynamics, we will of course show that these symmetries
are respected by quantum electrodynamics. But our discussion will not be
restricted to QED only. Rather, we will lay down a general framework which
will enable us to discuss different kinds of theories, including the ones where
these symmetries are not respected. Time reversal will not be treated in this
chapter. Because of some intricacies relating to this symmetry, it will be
treated separately in Ch. 7.

2 Exercise 6.1 The equation of motion remains unchanged even if we
change some, but not all, components of co-ordinate vectors by a
sign. Convince yourself, by following the outline given below, that
this does not amount to an independent discrete symmetry.

a) Suppose we change the signs of two spatial co-ordinates only,
leaving the third unchanged. Show that this is not a discrete
operation at all. In fact, this is the result of a rotation.

b) Suppose we now consider changing the sign of one spatial co-
ordinate only, leaving the other two unchanged. Show that this
can be seen as the parity operation compounded with a rotation.

6.2 Parity transformation of fields

6.2.1 Parity invariance of a Lagrangian

Our definition of the parity operation, given in §6.1, shows that a theory will
be parity invariant if any of its consequences do not change when we change
the spatial co-ordinates by a sign, i.e., change the spacetime co-ordinates from
xµ to

x̃µ ≡ (t,−x) . (6.2)

We are discussing quantum field theory through its Lagrangian. The La-
grangian is a function of fields and their first derivatives. The fields, in turn,
are functions of spacetime. The derivatives of the fields are also, in general,
functions of spacetime. Thus, the Lagrangian itself is a function of space-
time, and we can denote this functional dependence by writing L (x) for the
Lagrangian.

The fields will transform under the parity operation in general. Since,
as explained in §3.6.3, parity is part of the extended Lorentz group, these
transformations will be linear, like any other Lorentz transformation. These
transformations will affect the Lagrangian. The changed Lagrangian will have
the same physical consequences if its form in the new co-ordinates is the same
as that of the original Lagrangian in the original co-ordinates, i.e., if

PL (x)P−1 = L (x̃) . (6.3)

If this happens, the action remains unchanged by the parity transformation,
and the physical consequences remain unaffected.
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We now show that the free Lagrangians of scalar, Dirac field and vector
fields are automatically invariant under parity. When interactions are intro-
duced, the Lagrangian may or may not obey parity invariance, depending on
the nature of the interaction.

6.2.2 Free scalar fields

Let us first consider a real scalar field. The parity operation should turn
the field φ(x) into φ(x̃). The most general linear relation of this sort can be
written as

φP (x) ≡Pφ(x)P−1 = ηPφ(x̃) , (6.4)

where ηP is a numerical constant. The Lagrangian of a free scalar field was
given earlier in Eq. (4.99, p 81). We reproduce it here, separating the time and
space derivatives:

L (x) =
1

2

[(
∂tφ(x)

)2

−
(
∇xφ(x)

)2

−m2
(
φ(x)

)2
]
. (6.5)

We have put a subscript on the gradient operator to remind us that it involves
derivatives with respect to the spatial co-ordinates x.

Under parity operation, φ(x) changes to φP (x), as defined in Eq. (6.4). So
the Lagrangian changes to

PL (x)P−1 =
1

2

[(
∂tφP (x)

)2

−
(
∇xφP (x)

)2

−m2
(
φP (x)

)2
]

=
1

2
η2

P

[(
∂tφ(x̃)

)2

−
(
∇xφ(x̃)

)2

−m2
(
φ(x̃)

)2
]
, (6.6)

making use of Eq. (6.4). On the other hand,

L (x̃) =
1

2

[(
∂tφ(x̃)

)2

−
(
∇−xφ(x̃)

)2

−m2
(
φ(x̃)

)2
]
. (6.7)

Here, we have the gradient operator with respect to the spatial co-ordinates of
x̃µ, but it really does not matter, because the gradient is squared. Comparing
Eqs. (6.6) and (6.7), we see that the requirement of parity invariance, Eq.
(6.3), is satisfied provided

ηP = ±1 . (6.8)

Parity invariance thus constrains possible values of ηP . The factor is called
the intrinsic parity for the field φ.

If, instead of a real scalar field, we consider a complex scalar field, the
situation does not change very much. We can still start with the definition of
Eq. (6.4). Note that, if we take the hermitian conjugate of this equation, we
obtain

Pφ†(x)P−1 = η∗Pφ
†(x̃) ≡ φ†P (x) . (6.9)
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Putting this into the free Lagrangian of the complex scalar field and going
through similar steps, it is straightforward to show that the free Lagrangian
is invariant under parity provided |ηP | = 1, i.e., ηP is a phase factor.

Further restriction on the value of ηP comes from the fact that parity,
applied twice, is just the identity operation:

P2 = 1 . (6.10)

To see the consequence of this fact, consider a further parity operation on Eq.
(6.4). This gives

P2φ(x)P−2 = ηP Pφ(x̃)P−1 = η2
Pφ(x) . (6.11)

Using Eq. (6.10) now, we conclude that η2
P = 1, which means that even for

complex scalar fields, the possible values of intrinsic parity are given by Eq.
(6.8).

Spin-0 fields with negative intrinsic parity are sometimes called pseu-
doscalar fields . In contrast, the name scalar fields is reserved for spin-0 fields
with positive intrinsic parity. The latter use sometimes creates confusion, be-
cause spin-0 fields, irrespective of their parity property, are collectively called
scalar fields as well. We will use the term mostly in the latter sense, and will
sometimes use the phrase intrinsic scalar when a spin-0 field with positive
intrinsic parity will be implied.

6.2.3 Free photon field

We write the Lagrangian for a free photon field as

L (x) = −1

4

(
∂µAν(x) − ∂νAµ(x)

)(
∂µAν(x)− ∂νAµ(x)

)

= −1

2
∂µAν(x)

(
∂µAν(x) − ∂νAµ(x)

)
. (6.12)

As for the scalar case, it is better to rewrite this where the time and space
derivatives are shown separately. In addition, since the field Aµ has temporal
as well as spatial components, we separate them as well and write

L (x) = −1

2

[
∂0Ai

(
∂0Ai − ∂iA0

)
+ ∂iA0

(
∂iA0 − ∂0Ai

)

+ ∂iAj

(
∂iAj − ∂jAi

)]
, (6.13)

not mentioning the dependence on the spacetime point x for each field. We
can now retrace the steps followed for scalar fields to find that this Lagrangian
is parity invariant if we define

PA0(x)P−1 = −ηPA0(x̃) ,

PA(x)P−1 = +ηP A(x̃) , (6.14)
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and ηP = ±1, as obtained for scalars in Eq. (6.8). This ηP is called the
intrinsic parity of the field Aµ. If ηP = +1, the field is often called an axial
vector field . On the other hand, if ηP = −1, the unadorned vector field is
often used. As for the scalar field, this is confusing, because the phrase vector
field is used for all spin-1 fields, irrespective of their intrinsic parity. To avoid
this confusion, we will use the name polar vector field for spin-1 fields with
negative intrinsic parity when it will be necessary to distinguish them from
axial vector fields.

From the free Lagrangian only, we cannot tell whether the intrinsic parity
of the photon field — or any other field which has the same kind of kinetic
terms — is positive or negative. We will see later in §6.2.5 that interactions
help to fix the intrinsic parity for the photon.

Some authors write Eq. (6.14) in a supposedly compact form:

PAµ(x)P−1 = −ηPA
µ(ex) . (6.15)

In my opinion, this is an abuse of notation. True, that numerically it contains the same rules
as those given in Eq. (6.14) with our choice of metric that was announced in Eq. (2.18, p 20).
But parity transformation rules should not depend on the metric. Someone might choose to
work with a metric with the opposite sign. With this choice, Eq. (6.14) would still remain the
correct parity transformation rules, although Eq. (6.15) will not be satisfied.

6.2.4 Free fermion fields

For a free Dirac field, the Lagrangian is

L (x) = ψ(x) [iγ0∂t + iγ ·∇x −m]ψ(x) , (6.16)

so that

L (x̃) = ψ(x̃) [iγ0∂t + iγ ·∇−x −m]ψ(x̃)

= ψ(x̃) [iγ0∂t − iγ ·∇x −m]ψ(x̃) . (6.17)

To obtain the left hand side of Eq. (6.3), we need the transformation property
of the field ψ(x) under parity. Again, the relationship should be linear. Since
ψ(x) is a 4-component object, the most general relation in this case would be
of the form

ψP (x) ≡Pψ(x)P−1 = Pψ(x̃) , (6.18)

where P is some 4× 4 matrix. This also means

ψP (x) = ψ†
P (x)γ0 = ψ†(x̃)P†γ0 = ψ(x̃)γ0P†γ0 . (6.19)

So

PL (x)P−1 = ψ(x̃)γ0P†γ0 [iγ0∂t + iγ ·∇x −m] Pψ(x̃) . (6.20)
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This will equal the expression of Eq. (6.17) provided the following relations
are satisfied:

γ0P†γ0γ0P = γ0 ,

γ0P†γ0γP = −γ ,

γ0P†γ0P = 1 . (6.21)

It is possible to find a P that satisfies these equations, which means that the
free Dirac Lagrangian is parity invariant. The solution, in fact, is of the form

P = ηP γ0 , (6.22)

where ηP can be any phase as far as the relations in Eq. (6.21) are concerned.
So the parity transformation property of the Dirac field is given by

Pψ(x)P−1 = ηP γ0ψ(x̃) . (6.23)

The quantity ηP is the intrinsic parity of the Dirac field. If we further utilize
Eq. (6.10), we find that the possible values of ηP are ±1. Thankfully, no one
has come up with separate names for spin- 1

2 fields with positive and negative
parities and created the same kind of confusion in the terminology that exists
for spin-0 and spin-1 fields.

6.2.5 Interacting fields

So far, we have discussed free Lagrangians only, and found that they cannot
determine the intrinsic parities of the fields. Physical processes involve in-
teractions. Interaction terms in a Lagrangian can impose further restrictions
on the parity properties. As long as one can find a consistent assignment of
intrinsic parities of all fields appearing in a Lagrangian, we can say that par-
ity is a good symmetry. If we cannot find any such solution, we will have to
conclude that the Lagrangian does not respect parity symmetry. We illustrate
these statements with some examples.

Suppose we have a theory with just one real scalar field, and the interaction
terms in the Lagrangian are

Lint = −µφ3 − λφ4 . (6.24)

If we take Eq. (6.4) and follow the procedure by which we found the intrin-
sic parity of the free field, we would find that parity invariance with these
interaction terms would require η3

P = 1 and η4
P = 1. These conditions are

satisfied by ηP = +1 but not by ηP = −1. This means that, with these inter-
actions, parity is a conserved symmetry, and the intrinsic parity of the field φ
is positive. This is one example of how interactions fix the parity of a field.

In order to discuss interactions involving fermion fields, let us first deter-
mine how fermion bilinears transform under parity. Let us denote a general
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bilinear by ψFψ, where F is a constant 4× 4 matrix. Then,

Pψ(x)Fψ(x)P−1 = Pψ(x)P−1FPψ(x)P−1

= ψ(x̃)γ0Fγ0ψ(x̃) , (6.25)

using Eqs. (6.18) and (6.19), with the solution of P taken from Eq. (6.22). For
different choices of F , the corresponding matrix that appears in the parity
transformed bilinear, to be called FP , are tabulated below:

F 1 γ0 γi σ0i σij γ0γ5 γiγ5 γ5

FP 1 γ0 −γi −σ0i σij −γ0γ5 γiγ5 −γ5
(6.26)

So now let us look at the interaction involving scalars and fermions. Sup-
pose we have an interaction term

Lint = −hψψφ . (6.27)

Using Eqs. (6.4) and (6.26), we obtain

PLint(x)P−1 = −hη(φ)
P ψ(x̃)ψ(x̃)φ(x̃) , (6.28)

where we have used the symbol η
(φ)
P to denote the intrinsic parity of the scalar

field, in order to distinguish it from the same property of the Dirac field which
does not appear in the parity-transformed Lagrangian. Comparing the expres-
sion with Lint(x̃), we conclude that the interaction is parity invariant provided
the intrinsic parity of the scalar field is positive. By a similar argument, we
can conclude that if the only interaction is of the form

Lint = −h′ ψγ5ψφ , (6.29)

parity would still be a symmetry of the Lagrangian, and the intrinsic parity
of the field φ is negative, i.e., it is a pseudoscalar field.

Now consider that we have an interaction of the form

Lint = −ψ(h+ h′γ5)ψφ . (6.30)

In this case, one term will require η
(φ)
P = +1 in order to conserve parity, while

the other would require η
(φ)
P = −1. Both terms taken together, we cannot

find any solution for η
(φ)
P that will conserve parity. Thus, such an interaction

will be parity violating.
We can think of other ways in which such an impasse can be reached. For

example, suppose the interaction Lagrangian is of the form

Lint = −µφ3 − λφ4 − h′ ψγ5ψφ . (6.31)

We argued earlier that if we had only the first two terms, we would have
obtained parity invariance, with η

(φ)
P = +1. If we had only the last two terms,

we would have also obtained parity invariance, with η
(φ)
P = −1. But with all

three terms present, the interactions are parity violating.



§6.2. Parity transformation of fields 157

Table 6.1: Behavior of common electromagnetic quantities under parity. Behavior
under time reversal has also been included for later use.

Quantity
Usual Behavior under

Symbol Parity Time reversal

Scalar potential A0 or φ + +
Vector potential A − −
Electric field E − +
Magnetic field B + −
Polarization vector ǫ (same as A)

2 Exercise 6.2 Consider a massless fermion field ψ(x).

a) Show that one can define the parity transformation in the fol-
lowing way:

Pψ(x)P−1 = ηP γ0γ5ψ(ex) , (6.32)

where exµ = (t,−x).

b) Show that, in this case, if a field φ(x) has an interaction of the
form ψψφ with the fermion, it is a pseudoscalar field. On the
other hand, if the interaction is ψγ5ψφ, the field is an intrinsic
scalar.

c) Show that the simultaneous presence of ψψφ and ψγ5ψφ inter-
actions cannot be parity invariant.

2 Exercise 6.3 Prepare a more general table than that in Eq. (6.26),
for the case when the two fermion fields are different. In other words,
if

Pψ2(x)Fψ1(x)P
−1 = ψ2(ex)FPψ1(ex) , (6.33)

find FP for the choices of F shown in Eq. (6.26).

2 Exercise 6.4 Argue that all parity violating amplitudes arising out of
the Lagrangian of Eq. (6.31) must contain factors of both µ and h′.

As a last example, we show that the QED Lagrangian, discussed at length
in Ch. 5, is parity invariant. Of course the free parts are invariant for positive
or negative intrinsic parity for the fermion and the photon, as we have already
demonstrated. The interaction part is given by

Lint(x) = −eQψ(x)γµψ(x)Aµ(x)

= −eQ
(
ψ(x)γ0ψ(x)A0(x)− ψ(x)γiψ(x)Ai(x)

)
. (6.34)

Taking help of parity transformation properties of fermion bilinears and the
photon field, we can write

PLint(x)P−1 = eQη
(A)
P

(
ψ(x̃)γ0ψ(x̃)A0(x̃)− ψ(x̃)γiψ(x̃)Ai(x̃)

)
,(6.35)
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where η
(A)
P is the intrinsic parity of the photon, the quantity denoted simply

by ηP in Eq. (6.14). Comparing this with the expression for Lint(x̃) through
Eq. (6.3), we find that the interaction is indeed parity invariant, and it forces
the intrinsic parity of the photon to be negative:

η
(A)
P = −1 . (6.36)

This fixes the parity transformation properties of the electric and magnetic
fields, which we summarize in Table 6.1. But note that the procedure says
nothing about the intrinsic parity of the fermion since this quantity cancels
in the expression for the parity transformed Lagrangian.

2 Exercise 6.5 Show that the Lagrangian of scalar QED is also invari-
ant under parity, and that it also implies Eq. (6.36).

2 Exercise 6.6 Show that, if for some spin-1 field Bµ, the interaction
with fermions is given by

Lint = a ψγµγ5ψBµ (6.37)

where a is a constant, the Lagrangian is parity invariant provided Bµ

is an axial vector field.

2 Exercise 6.7 Show that, if for some spin-1 field Zµ, the interaction
with fermions contains a mixture of polar vector and axial vector
currents, i.e., is of the form

Lint = ψγµ(a+ bγ5)ψZµ (6.38)

where a and b are constants, the Lagrangian cannot be parity invari-
ant. More generally, show that if a spin-1 field W µ has the interaction

Lint = ψ1γ
µ(a+ bγ5)ψ2Wµ + h.c. (6.39)

with two fermion fields ψ1 and ψ2, (“h.c.” stands for hermitian con-
jugate) the Lagrangian cannot be parity invariant.

6.3 Charge conjugation

6.3.1 Nature of the transformation

When we talked about charge conjugation in §6.1, we identified it as a symme-
try of the Coulomb force formula under the change of signs of electric charges
of all particles. As discussed in §4.7, a particle and its antiparticle have op-
posite charges. Thus, changing the sign of the charge of all particles can also
be seen as exchanging each particle with its antiparticle.

In field theory, the basic objects that constitute the action are fields, not
particles. If a field operator contains the annihilitor of a certain particle, the
hermitian conjugate of the field operator would contain the annihilator of its
antiparticle. Thus, in the language of fields, changing particles into antipar-
ticles can be interpreted as changing any field with its hermitian conjugate.
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This is a discrete operation, and is usually called charge conjugation. Here,
we consider the possibility of this operation being a symmetry of the action,
and the consequences of such a symmetry if it exists.

A few comments should be made here. First, if we take the hermitian
conjugate of a field, that not only changes the electric charge, but all other
charges that might be associated with it. Indeed, a particle and its antiparticle
not only differ in the signs of their electric charges, but of all charges. For
example, baryons carry a baryon number , particles like the electron and the
muon carry a lepton number . There are other examples of such quantities
which we will encounter later in the book. All of these will be reversed in the
operation of charge conjugation.

The second comment is that this discrete symmetry has a different char-
acter than parity transformation or time reversal. The latter are operations
on the spacetime variables. Charge conjugation, on the other hand, is an
operation on the fields: it does not affect the spacetime co-ordinates directly.

6.3.2 Free bosonic fields

Let us start with a free scalar field φ. From the discussion above, we under-
stand that the charge conjugation operation will change it to φ†. But like
in the case of parity, there might be a numerical constant appearing in the
transformation equation, so that the most general definition of the operation
of charge conjugation on a scalar field would be

Cφ(x)C −1 = ηCφ
†(x) . (6.40)

The numerical co-efficient ηC , called the intrinsic charge conjugation, is an
intrinsic property of the field. To see the constraints on this co-efficient, let us
take the hermitian conjugate of Eq. (6.40). Remembering that C is a unitary
operator so that

C−1 = C † , (6.41)

we obtain

Cφ†(x)C −1 = η∗Cφ(x) . (6.42)

We now apply the charge conjugation operator one more time on both
sides of Eq. (6.40). This gives

C 2φ(x)C −2 = ηCCφ†(x)C −1 = |ηC |2φ(x) . (6.43)

Since, like parity, C is a toggle operator, i.e.,

C 2 = 1 , (6.44)

we conclude that ηC can be an arbitrary phase, i.e., a complex number with
unit modulus. However, for real scalar fields, Eqs. (6.40) and (6.42) are iden-
tical, which tells us that ηC must be real, i.e., ηC = ±1.
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For a general vector field Vµ, the analog of Eq. (6.40) would be

CVµ(x)C −1 = ηCV
†
µ (x) . (6.45)

The constraints on the intrinsic factor ηC are similar: in general, ηC can be
a phase. For real vector fields like the photon, the only allowed values are
ηC = ±1.

2 Exercise 6.8 Show that Eq. (6.40) implies

C a(p)C−1 = ηCba(p) , (6.46)

which clearly shows the interchange of the particle and the antiparti-
cle under charge conjugation.

6.3.3 Free fermion fields

One might be tempted to think that the analog of Eqs. (6.40) and (6.45) for
a Dirac field should be written as

Cψ(x)C −1 = ηCψ
†(x) . (6.47)

But this would be wrong. The reason is contained in Eqs. (4.73) and (4.77),
which show that ψ(x) and ψ†(x) do not transform the same way under Lorentz
transformations. So, even if this relation is imposed in one frame, it would
not hold in another frame which is rotated or boosted with respect to the
former one. Thus, the correct relation must be of the form

Cψ(x)C −1 = ηC ψ̂(x) , (6.48)

where ψ̂(x) involves the elements of ψ†(x) but nevertheless transforms like
ψ(x) under Lorentz transformations.

Let us then assume that ψ̂(x) is defined by the relation

ψ̂(x) = γ0Cψ∗(x) (6.49)

for some matrix C whose components are numbers. Here, the object ψ∗ has
the same components as ψ†, except that it is thought as a column matrix,
just like ψ. The matrix C in Eq. (6.49) must have appropriate properties such
that the Lorentz transformation properties of ψ̂(x) and ψ(x) are identical.
The question now is: can we find such a matrix C?

Obviously, since charge conjugation is a unitary operation, γ0C has to be
a unitary matrix. Since γ0 itself is unitary, it implies that C should also be
unitary, i.e.,

C† = C−1 . (6.50)

The transformation property of ψ(x), given in Eq. (4.73, p 76), implies the
following transformation property of ψ∗(x):

ψ∗(x) −→ ψ′∗(x′) = exp

(
+
i

4
ωµνσ∗

µν

)
ψ∗(x) , (6.51)
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so that

ψ̂(x) −→ ψ̂′(x′) = γ0Cψ∗(x) = γ0C exp

(
+
i

4
ωµνσ∗

µν

)
ψ∗(x) . (6.52)

On the other hand, we want this transformation to look exactly like that of
ψ(x), i.e., we want

ψ̂(x) −→ ψ̂′(x′) = exp

(
− i

4
ωµνσµν

)
ψ̂(x)

= exp

(
− i

4
ωµνσµν

)
γ0Cψ∗(x) . (6.53)

Comparing these two equations, we see that we want the matrix C to satisfy
the relation

γ0Cσ∗
µν = −σµνγ0C , (6.54)

or

σ∗
µν = −C−1γ0σµνγ0C = −C−1σ†

µνC , (6.55)

where in the last step we have used Eq. (4.79, p 77). Then, taking the hermitian
conjugate, we obtain

σ⊤
µν = −C−1σµνC , (6.56)

where we have used the unitary nature of the matrix C. Clearly, it will be
sufficient to search for a matrix C that satisfies the relation

C−1γµC = −γ⊤µ , (6.57)

because this relation guarantees Eq. (6.56) through the definition of the sigma
matrices. No matter what choice we make about the Dirac matrices, it is
always possible to find a matrix C that satisfies this equation, as we discuss
in Appendix F. We will not need the explicit form for the matrix. We will
only need its properties given in Eqs. (6.50) and (6.57), and the important
property given in Eq. (6.60) below.

One might wonder why we have put a factor of γ0 in the definition of the Lorentz covariant
conjugate in Eq. (6.49). It must be emphasized that this is purely a matter of convention,
and no physics depends on it. What is important is that ψ∗(x), component by component,
does not transform like ψ(x) under Lorentz transformation. So we must put in a matrix to mix
the components. We could just well have put a matrix C′ in place of γ0C in Eq. (6.49), and
proceeded to find relations equivalent to Eq. (6.57) or Eq. (6.60) in terms of this C′.

There are of course different conventions in this regard. Many people define

bψ(x) = Cγ⊤0 ψ
∗(x) . (6.58)

It is easy to see, using Eq. (6.57), that this definition differs from that in Eq. (6.49) by an overall
sign. This sign will not affect any physical implication because fermion fields have to occur in
even numbers in any Lagrangian term in order to conserve angular momentum.
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Some other texts use the definition

bψ(x) = Cγ0ψ
∗(x) . (6.59)

This is wrong in general. It can be easily shown that this equation cannot hold in arbitrary
representations of the Dirac matrices. It holds only in the representations in which γ0 is either
a symmetric or an antisymmetric matrix, in which case it coincides with the definition in Eq.
(6.58) or Eq. (6.49).

2 Exercise 6.9 Use the toggle property of charge conjugation, given in
Eq. (6.44), to show that

C
⊤ = − C , (6.60)

i.e., the matrix C must be antisymmetric.

6.3.4 Interacting fields

As in the case of parity, we find that the free Lagrangians are invariant un-
der charge conjugation symmetry, but they leave a lot of arbitrariness in the
definition of the intrinsic charge conjugation property of any field. Once inter-
actions are introduced, this situation is modified. In some cases, interactions
fix the intrinsic charge conjugation properties of different fields. In some other
cases, interactions do not allow any consistent definition of intrinsic charge
conjugation properties of the participating fields, in which case we say that
charge conjugation symmetry is violated by the interactions. We will discuss
some examples of both kinds here.

Consider first the interaction shown in Eq. (6.24). It is easy to see that
it is invariant under charge conjugation, and it dictates that the phase ηC

should be +1 for the field φ. Next, consider fermion bilinears. First, we note
that the hermitian conjugate of Eq. (6.48) gives

Cψ(x)C −1 = η∗Cψ
⊤C† . (6.61)

Using this, we obtain

CψFψC−1 = CψC −1FCψC−1

= ψ⊤C†Fγ0Cψ∗ , (6.62)

where F is any 4 × 4 matrix, including the unit matrix. In writing this
equation, we have suppressed the spacetime dependence because it is the
same for all fields in this equation.

The right hand side of Eq. (6.62) looks very different from the usual ex-
pressions for bilinears that we have used so far, where the field at the left had
a bar on it and the field on the right has nothing. However, the expression
obtained can be put into the usual form. For this, we consider the expression
ψ⊤Mψ∗ for any numerical matrix M , and write it showing the sum involved
in it explicitly, i.e.,

ψ⊤Mψ∗ = ψaMabψ
∗
b = Mabψaψ

∗
b . (6.63)
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We have taken the elements of the matrix M to the front because it is a matrix
whose elements are numbers, which commute with everything. But now, let
us consider what will happen if we want to bring the ψ∗ in front of the ψ.
Fermion field operators anticommute, so there will be a negative sign. Thus,
we can write

Mabψaψ
∗
b = −Mabψ

∗
bψa = −ψ∗

bMabψa . (6.64)

Reverting back to the matrix notation now, we can summarize our result as

ψ⊤Mψ∗ = −ψ†M⊤ψ = −ψγ0M
⊤ψ . (6.65)

Applying this identity on the combination of matrices that appear in Eq.
(6.62), we can write the charge conjugation property of a fermion bilinear in
the form

CψFψC−1 = ψFCψ , (6.66)

where

FC = −γ0(C−1Fγ0C)⊤ = CF⊤C−1 , (6.67)

using Eq. (6.60). Using this and the definition of the matrix C in Eq. (6.57),
we can now summarize the transformation properties of bilinears in a tabular
form:

F 1 γµ σµν γµγ5 γ5

FC 1 −γµ −σµν γµγ5 γ5
. (6.68)

Using this table, we can now analyze interactions involving fermions. For
example, consider the interaction term of QED, ψγµψA

µ. Since the vector
current is odd under charge conjugation, we conclude that the photon must
also be odd:

η
(A)
C = −1 . (6.69)

On the other hand, if some vector boson couples only to the axial vector
current of fermions, charge conjugation symmetry is still obeyed, the boson
being even under charge conjugation. But if the same vector boson couples
to both vector and axial vector currents of fermions, there is no consistent
assignment of ηC , so charge conjugation symmetry must be violated.

2 Exercise 6.10 Show that the interactions of scalar QED are invariant
under charge conjugation.

2 Exercise 6.11 Derive charge conjugation rules for fermion bilinears
involving two different fermion fields.

2 Exercise 6.12 Consider the interaction

Lint = hψ1γ5ψ2φ+ h.c. , (6.70)

where φ is a complex scalar field.
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a) Write the hermitian conjugate term explicitly.

b) Show that this interaction respects charge conjugation symme-
try and find the resulting relation between h and the intrinsic
charge conjugation properties of various fields.

2 Exercise 6.13 Show that interactions of the form shown in Eq. (6.39)
are not invariant under charge conjugation unless either a or b is
zero.

6.4 Parity properties of particle states

So far, we have talked about parity and charge conjugation properties of
quantum fields. In experiments, however, we observe not the fields but rather
the particles and antiparticles, which are quanta of the fields. It is therefore
necessary to know how the parity properties of the particles are related to
those of the fields.

6.4.1 Intrinsic parity for bosons

Let us start with a real scalar field. The parity transformation property of
such a field has been given in Eq. (6.4). We let both sides act on the vacuum
state and obtain

Pφ(x) |0〉 = ηPφ(x̃) |0〉 , (6.71)

where the vacuum is parity symmetric, i.e.,

P |0〉 = P−1 |0〉 = |0〉 . (6.72)

We now take the plane wave expansion of the scalar field from Eq. (4.12, p 64).
Since

p · x̃ = Ept− p · x̃ = Ept+ p · x . (6.73)

we obtain

φ(x̃) =

∫
D3p

(
e−iEpt−ip·xa(p) + eiEpt+ip·xa†(p)

)
. (6.74)

Changing the integration variable from p to −p, we can rewrite it as

φ(x̃) =

∫
D3p

(
e−ip·xa(−p) + e+ip·xa†(−p)

)
. (6.75)

We now put Eqs. (4.12) and (6.75) into Eq. (6.71). Recalling that the
annihilation operator annihilates the vacuum, we obtain

Pa†(p) |0〉 = ηP a
†(−p) |0〉 , (6.76)
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using the independence of different Fourier components. Now, a†(p)
∣∣0
〉

is a
one particle state, which we denote by

∣∣B(p)
〉
. Then the last equation can be

rewritten as

P |B(p)〉 = ηP |B(−p)〉 , (6.77)

implying that the intrinsic parity of a one-particle state is equal to the intrinsic
parity of the field in this case. It also implies that the parity operation changes
the direction of the 3-momentum of the particle, something that should be
obvious from the definition of momentum.

The result remains the same if we have a complex scalar field, and it also
works for antiparticle states. In fact, the result for antiparticle states comes
directly from following the argument given above. For the particle states,
we need to follow the same path, but we need to start from the hermitian
conjugate of Eq. (6.4), which is:

Pφ†(x)P−1 = ηPφ
†(x̃) . (6.78)

For spin-1 particles like the photon as well, the result is the same: viz.,
the intrinsic parity of a particle state is the same as that of the field.

6.4.2 Intrinsic parity for fermions and antifermions

We can apply the parity operator directly on the plane wave expansion of the
field ψ(x). Parity is a linear operator, a property that we discuss in more
detail in §7.1 (see, in particular, Eq. (7.13, p 190)). It means that when such
an operator acts on something times a number, the number is unaffected by
the operation. In the expression for ψ(x) in Eq. (4.65, p 72), the exponentials
as well as the spinors are numerical factors, which should remain unaffected.
Thus, the action of parity gives

Pψ(x)P−1 =
∑

s

∫
D3p

(
Pdp,sP

−1up,se
−ip·x

+P d̂†p,sP
−1vp,se

+ip·x
)
. (6.79)

The expression on the left hand side is related to ψ(x̃) through Eq. (6.23).
In order to simplify the right hand side of Eq. (6.23), we need to use the
following properties of the spinors:

γ0up,s = u−p,s , (6.80a)

γ0vp,s = − v−p,s , (6.80b)

which have been proved in the Appendix, in §F.2.4.

2 Exercise 6.14 Derive the identities given in Eq. (6.80) by first show-
ing that they hold with a particular choice of the Dirac matrices.
Then, use the fact that any two representations are unitarily related
to prove that the relation is independent of the representation.
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We now put in the plane wave expansion of the fermion field, appearing
in Eq. (4.65, p 72), to obtain

γ0ψ(x̃) =
∑

s

∫
D3p

(
dp,su−p,se

−ip·ex − d̂†p,sv−p,se
+ip·ex

)
. (6.81)

Using Eq. (6.73) and changing the integration variable from p to its negative,
we obtain

γ0ψ(x̃) =
∑

s

∫
D3p

(
d−p,sup,se

−ip·x − d̂†−p,svp,se
+ip·x

)
. (6.82)

Putting the expressions obtained in Eqs. (6.82) and (6.79) into Eq. (6.23)
and using the orthogonality of different Fourier components, we obtain the
relations

Pdp,sP
−1 = ηP d−p,s , (6.83a)

P d̂†p,sP
−1 = −ηP d̂

†
−p,s . (6.83b)

Suppose we now apply both sides of Eq. (6.83b) on the vacuum, recalling
Eq. (6.72). The creation operator, acting on the vacuum, creates a state with
one antiparticle, which we will denote by

∣∣F̂s(p)
〉
. So we obtain

P
∣∣∣F̂s(p)

〉
= −ηP

∣∣∣F̂s(−p)
〉
, (6.84)

which tells us that the intrinsic parity of the antiparticle is −ηP . To compare
it with the same property of the particle, we take the hermitian conjugate of
Eq. (6.83a). Remembering that parity is a unitary operator, i.e., P† = P−1,
we obtain

Pd†p,sP
−1 = ηPd

†
−p,s . (6.85)

Applying both sides on the vacuum, we get

P |Fs(p)〉 = ηP |Fs(−p)〉 , (6.86)

where
∣∣Fs(p)

〉
is a state containing one particle. So we obtain that the intrinsic

parity of a particle state is ηP , i.e., same as that for the field. Thus, a fermion
and its antifermion have opposite intrinsic parity.

We can prove the same result in an alternative and instructive way. The intrinsic parity of the
fermion state can be defined by the quantity ηP appearing in Eq. (6.23). Now, the antiparticle
bears the same relation with bψ that the particle bears with ψ. Thus, the intrinsic parity of the
antifermion, denoted by bηP , can be defined by the relation

P bψ(x)P−1 = bηP γ0 bψ(ex) . (6.87)

Using the definition bψ from Eq. (6.49) to compare Eqs. (6.23) and (6.87), we can find the
relation between bηP and ηP . We outline the steps here. First, we take the hermitian conjugate
of Eq. (6.23). Remembering that ηP must be real, we obtain

Pψ†(x)P−1 = ηP

“

γ0ψ(ex)
”†
. (6.88)
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Since the components of ψ† are the same as those of ψ∗, we can also write this equation as

Pψ∗(x)P−1 = ηP γ
∗
0ψ

∗(ex) . (6.89)

Using the definition of Eq. (6.49) now, we obtain

P bψ(x)P−1 = ηP γ0Cγ∗0ψ
∗(ex) = ηP γ0Cγ∗0

“

γ0C

”−1
bψ(ex) . (6.90)

Recall that γ0 is hermitian, so that γ∗0 = γ⊤0 . Using Eq. (6.57) now, it is easy to see that the
previous equation gives

P bψ(x)P−1 = − ηP γ0 bψ(ex) . (6.91)

Comparing with Eq. (6.87), we obtain

bηP = − ηP , (6.92)

which shows that the intrinsic parity of the antifermion should be opposite to that of the fermion.

2 Exercise 6.15 We have not obtained the analog of Eq. (6.83) for the
scalar case. Follow the arguments for the fermion case to prove that

Pa(p)P−1 = ηPa(−p) (6.93)

for a scalar field. Use it to obtain Eq. (6.77).

2 Exercise 6.16 Complete the parallelism between the derivation of in-
trinsic parity of scalars and fermions by finding Eqs. (6.84) and
(6.86) in the way shown for the scalars. In other words, apply both
sides of Eq. (6.79) on the vacuum state and prove Eq. (6.84). Fol-
low the similar procedure on the plane wave expansion of ψ†(x) and
obtain Eq. (6.86).

2 Exercise 6.17 Strictly speaking, we have left out an important step
in arriving at Eq. (6.83). Orthogonality of Fourier components gives
directly the relations

X

s

Pdp,sP
−1up,s =

X

s

d−p,sup,s , (6.94a)

X

s

P bd†p,sP
−1vp,s = −

X

s

bd†−p,svp,s . (6.94b)

Show that the equalities in Eq. (6.83) follow from these two equations
and the normalization conditions for the spinors, Eq. (4.63, p 72).

6.4.3 Orbital parity

For single-particle systems, intrinsic parity is the only contribution to par-
ity. For multi-particle systems, however, there are other contributions. We
elaborate these contributions in case of a two-particle system.

The dynamics of two-particle system can be broken up into the evolution
of the center of mass and that of the relative co-ordinate r. The interaction
between the two particles should be a function of r only. If the interaction
is isotropic, it depends only on the magnitude r and not on the angular co-
ordinates θ and φ. In this case, the angular part of the wavefunction of a
stationary state is an eigenfunction of orbital angular momentum, i.e., is a
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spherical harmonic Y m
l (θ, φ) for some particular values of l and m. Apart

from an overall normalization factor, the spherical harmonics can be written
as

Y m
l (θ, φ) = Pm

l (cos θ)eimφ , (6.95)

where Pm
l denotes the associated Legendre functions, defined in terms of the

Legendre polynomials Pl through the relation

Pm
l (ξ) = (−1)m(1− ξ2)

m/2
dm

dξm
Pl(ξ) . (6.96)

The Legendre polynomials have the property

Pl(−ξ) = (−1)lPl(ξ) . (6.97)

The exact forms for the Legendre polynomials are not necessary for the present
discussion.

If we make a parity transformation on the state, the position of each
particle changes sign, and so does the relative co-ordinate vector. In the
spherical co-ordinates, the magnitude r remains unaffected so that the radial
part of the wavefunction is not changed under parity. But on the angular
co-ordinates, the parity transformation implies the changes

θ → π − θ , φ→ π + φ . (6.98)

With the changed co-ordinates, the exponential factor present in Eq. (6.95)
becomes

eim(π+φ) = (−1)meimφ . (6.99)

On the other hand, since cos θ changes sign, the associated Legendre functions
become

Pm
l (−ξ) = (−1)m(1− ξ2)m/2 dm

d(−ξ)m
Pl(−ξ)

= (−1)l(1− ξ2)m/2 d
m

dξm
Pl(ξ) = (−1)l+mPm

l (ξ) , (6.100)

using Eq. (6.97) on the way. Multiplying the two contributions, we obtain

Y m
l (π − θ, π + φ) = (−1)lY m

l (θ, φ) . (6.101)

Thus, if two particles have a relative orbital angular momentum l between
them, the wavefunction of the two-particle system changes by a factor of
(−1)l. This may be called the orbital parity factor.
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6.5 Charge conjugation properties of particle
states

We now undertake the same exercise for charge conjugation that we took for
parity in §6.4, viz., identify the relation between charge conjugation properties
of a field and the particles it represents. We start with a scalar field, as always.
Eq. (6.40), acting on a vacuum state that is invariant under charge conjugation
symmetry, gives

Cφ(x) |0〉 = ηCφ
†(x) |0〉 . (6.102)

Recalling the plane wave expansion of the scalar field from Eq. (4.12, p 64)
and using the independence of different Fourier components, we can write

C â†(p) |0〉 = ηCa
†(p) |0〉 , (6.103)

or,

C
∣∣∣B̂(p)

〉
= ηC |B(p)〉 . (6.104)

This equation shows that the operator C , acting on an antiparticle state,
turns it into a particle state of the same momentum, and with an overall
phase that is the same as that which occurs for the transformation of the field
under charge conjugation. Acting on a particle state, however, the phase is
opposite, since

C |B(p)〉 = η∗C

∣∣∣B̂(p)
〉
, (6.105)

which follows by operating both sides of Eq. (6.104) by C and recalling that
C is a toggle operator, i.e., C 2 = 1.

For a Dirac particle, we combine the definitions in Eqs. (6.48) and (6.49)
to write

Cψ(x)C −1 = ηCγ0Cψ∗(x) . (6.106)

Taking the plane wave expansion of the Dirac field from Eq. (4.65, p 72), we
can write

γ0Cψ∗(x) =
∑

s

∫
D3p

(
d†s(p)γ0Cu∗s(p)e+ip·x + d̂s(p)γ0Cv∗s(p)e−ip·x

)
.

(6.107)

In order to make a connection with the left hand side of Eq. (6.106), we
need to use the conjugation properties of Dirac spinors. Each spinor can be
defined with an overall arbitrary phase, and this phase affects its complex
conjugation property. We can also extract an overall phase from the matrix
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C. In Appendix F, we show that these phases can be chosen in a way such
that the following relations hold:

γ0Cu∗s(p) = vs(p) , (6.108a)

γ0Cv∗s(p) = us(p) . (6.108b)

This allows us to write

γ0Cψ∗(x) =
∑

s

∫
D3p

(
d†s(p)vs(p)e+ip·x + d̂s(p)us(p)e−ip·x

)
, (6.109)

so that, comparing with the left hand side of Eq. (6.106), we get

C ds(p)C −1 = ηC d̂s(p) , (6.110a)

C d̂†s(p)C −1 = ηCd
†
s(p) . (6.110b)

The conclusion is the same as that for scalar fields:

C |Fs(p)〉 = η∗C

∣∣∣F̂s(p)
〉
, (6.111a)

C
∣∣∣F̂s(p)

〉
= ηC |Fs(p)〉 . (6.111b)

2 Exercise 6.18 Show that the two relations given in Eq. (6.110) are
equivalent.

2 Exercise 6.19 Perform the same exercise for a vector field (not nec-
essarily self-conjugate like the photon field) and show that the con-
clusions are the same as in Eqs. (6.104) and (6.105).

6.6 Multi-photon states

Multi-photon states were discussed in §5.6. Here we discuss properties of these
states under the operations of parity and charge conjugation.

Charge conjugation properties are easy. Since photons are odd under
charge conjugation, states with an even number of photons are even, and
states with an odd number of photons are odd.

As for parity, we need to remember that 3-momentum is odd under parity.
The polarization vectors are also odd, as noted in Table 6.1 (p 157). If we now
look at the state given in Eq. (5.102, p 137), we clearly see that it is even under
parity transformation, since the magnitude of momentum is invariant under
parity. On the other hand, the state shown in Eq. (5.103, p 137) is parity odd.
Among the three photon states, the one shown in Eq. (5.108, p 138) is parity
odd, whereas the one shown in Eq. (5.109, p 138) is parity even.

6.7 Positronium

Positronium is a bound state of a positron and an electron. It should be
recalled that ‘positron’ is the name for the antiparticle of the electron. Thus
positronium is a bound state of a fermion and its antiparticle.
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In a sense the positronium resembles the hydrogen atom: it is a bound
state of a positively charged particle with the electron. For one who is familiar
with the energy states of the hydrogen atom, it is trivial to find out the same
for positronium. For the hydrogen atom, the reduced mass is almost the same
as the electron mass: more precisely, it is memp/(me +mp). For positronium,
we should replace the proton mass by the positron mass. And since the
mass of the positron is the same as that of the electron, the reduced mass is
1
2me. Once this adjustment has been made, energy states and eigenvalues of
positronium can be derived from those of the hydrogen atom. Like a hydrogen
atom, the positronium ground state will be a 1S0 state. If the total spin of
the electron and the positron happens to be 1, we can obtain the excited state
3S1. If the relative orbital angular momentum is 1, we obtain the P -states.
Depending on the spin and depending on how the spin combines with the
orbital angular momentum, we can obtain the excited states 1P1, 3P0, 3P1

and 3P2. Then there can be other excited states with larger values of the
orbital angular momentum L.

Like hydrogen, excited states can decay to a lower state by emitting a
photon. Since this is electromagnetic interaction, parity is conserved in the
process. The same is true for decays of excited states of the hydrogen atom.
But positronium decays are more exciting for two reasons.

First, note that under the operation of charge conjugation, the electron
changes to positron, and vice versa. Therefore, any positronium state is an
eigenstate of the charge conjugation operator as well, with eigenvalue either
+1 or −1. Since electromagnetic interactions respect charge conjugation sym-
metry, any positronium state must decay only in a way that the final products,
all taken together, have the same charge conjugation properties. This restricts
the possibilities.

Second, a fermion-antifermion pair can undergo pair annihilation and turn
to photons. Such final states are not possible for the hydrogen atom. For
positronium, depending on the charge conjugation properties of the initial
state, the final state can contain two or three photons. In principle it can
contain more photons, but those final states will be suppressed because the
emission of each photon costs a factor of e in the amplitude.

With this in mind, let us now discuss the parity and charge conjugation
properties of a positronium state. If the electron and the positron are in a
state with relative orbital angular momentum L, the state should have orbital
parity (−1)L, as discussed in §6.4.3 earlier. Thus the parity of the positronium
state should be given by

Pe−e+ = ηe−ηe+(−1)L , (6.112)

where ηe− and ηe+ represent the intrinsic parities of the electron and the
positron. However, we found in Eq. (6.92) that the two quantities differ by a
sign, and by general considerations each of these quantities must be ±1. Thus
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the product of the two intrinsic parities is −1, and we obtain

P |Ψ〉 = (−1)L+1 |Ψ〉 , (6.113)

where
∣∣Ψ
〉

represents a positronium state. This means that the states are
eigenstates of parity, and the eigenvalue is determined by the orbital angular
momentum quantum number.

Next we look at the charge conjugation property of a positronium state.
For this purpose, we write a general positronium state in the following form
in its center-of-mass frame:

|Ψ〉 =
∑

k,s1,s2

f(k, s1, s2)d̂†−k,s2
d†k,s1

|0〉 . (6.114)

The action of the two creation operators on the vacuum creates a state con-
sisting of an electron and a positron with opposite momenta k and −k re-
spectively, and with spin components s1 and s2 along any particular direction.
Any positronium state, in its center-of-mass frame, will be a superposition of
such states, and the exact form of the superposition is determined by the func-
tion f(k, s1, s2). This function also determines how the spins of the electron
and the positron are combined in the state

∣∣Ψ
〉
. If the momentum values are

continuous, the sum over momenta should be interpreted as an integration.
Charge conjugation operation will change the electron to a positron, and

vice versa. This means that the action of the operator C on the state
∣∣Ψ
〉

is
given by

C |Ψ〉 =
∑

k,s1,s2

f(k, s1, s2)d†−k,s2
d̂†k,s1

|0〉

=
∑

k,s1,s2

f(−k, s1, s2)d†k,s2
d̂†−k,s1

|0〉 , (6.115)

where use has been made of Eq. (6.110). In the last step, we have redefined
the dummy momentum. Doing the same to the dummy spin components and
using the anticommutation property of fermion creation operators, we can
write

C |Ψ〉 = −
∑

k,s1,s2

f(−k, s2, s1)d̂†−k,s2
d†k,s1

|0〉 . (6.116)

Comparing Eqs. (6.114) and (6.116), we find that the effect of the charge
conjugation operator on the energy eigenstate can be summarized as

f(k, s1, s2)
C−→ − f(−k, s2, s1) . (6.117)

This result can be expressed in a more convenient manner. The total spin
of the electron and the positron must be either 0 or 1. A spin-0 combination
of two spin- 1

2 particles is antisymmetric, whereas a spin-1 combination is sym-
metric. Thus, interchanging the spins would imply multiplying the original
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wavefunction by −1 in case of spin-0, and by +1 in case of spin-1. In short,
we can say that for a system with two spin- 1

2 particles, interchange of spins
multiplies the wavefunction by (−1)S+1, where S is the total spin. On the
other hand, changing the sign of k in the Fourier space means changing the
sign of the position vectors in the co-ordinate space, i.e., an orbital parity
transformation. This gives a factor of (−1)L, as we have already discussed.
Summarizing, we can say that

f(−k, s2, s1) = (−1)L+S+1f(k, s1, s2) (6.118)

for a state with total orbital angular momentum L and spin S. Putting this
back into Eq. (6.116), we obtain

C |Ψ〉 = (−1)L+S |Ψ〉 , (6.119)

i.e., the charge conjugation eigenvalue of the energy eigenstate is (−1)L+S.

2 Exercise 6.20 Consider a state consisting of a spinless boson and its
antiparticle. Show that the state is a charge conjugation eigenstate
with eigenvalue (−1)L.

So let us look at the ground state of positronium, or the 1S0 state. The
notation means that the state has L = 0 and S = 0. From Eqs. (6.113) and
(6.119), we find that the parity and charge conjugation eigenvalues of the 1S0

state are −1 and +1 respectively. The C eigenvalue tells us that this state
can decay into two photons:

1S0 → γ + γ , (6.120)

but not into three photons. On the other hand, the 3S1 has a negative C
eigenvalue, so it can decay into three photons but not into two. Parity con-
servation does not stand in the way because we know from §6.6 there are
parity-even as well as parity-odd states of two photons. Parity conservation
dictates that the 1S0 state should decay to the parity-odd state shown in Eq.
(5.103, p 137).

If we now want to discuss decays of a positronium state into another
positronium state of lower energy by the emission of a photon, we can use
the selection rules developed in the context of atomic physics. These rules
are based upon the fact that the wavefunctions of the states are localized in
a small region whose radius is of the order of the Bohr radius, a0 = (mα)−1,
whereas the energy eigenvalues, and therefore their differences, are of the
order of α/a0 = mα2. Thus, the wavelengths of the radiation emitted in the
transitions will be much larger than the size of the system. In evaluating the
matrix element of transition, it is therefore a good approximation to expand
the factor of eik·r appearing in the expression for the photon field in powers
of k and keeping up to the first order term only. The transition amplitude
will then involve matrix elements of k · r between the initial and the final
states, i.e., k ·dE , where dE is the electric dipole moment operator. Since the
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operator has angular dependence of cos θ with respect to the direction of k,
and cos θ can be written as P1(cos θ) where Pl’s denote Legendre polynomials,
the matrix element vanishes unless the initial and final states differ by 1 in
their orbital angular momentum quantum number L, i.e., unless

|∆L| = 1 . (6.121)

Similar arguments show that the quantum number ml can change by at most
1, something that we won’t need too much. Finally, since total angular mo-
mentum must be conserved and photon has angular momentum equal to 1,
the total angular momenta of the initial and final states, J i and Jf , must be
such that Jf and the photon angular momentum can add up to J i. According
to the rules of angular momentum addition, this can happen if

|∆J | = 0 or 1 , (6.122)

with the rider that both J i and Jf cannot be zero, i.e.,

J = 0→ J = 0 transition not allowed. (6.123)

It should be noted that when we say “allowed” or “forbidden” transitions in this context, we
just make a comment about whether the transitions are possible through the first order term
in k. A transition branded “forbidden” is not really impossible: can still take place through
higher order terms in the expansion of eik·r . However, such transitions will be much suppressed
compared to the transitions that we brand “allowed”.

With this machinery, we can easily conclude that

3S1 6→ 1S0 + γ , (6.124)

where the cross mark implies that the process is forbidden. This process vio-
lates the selection rule of Eq. (6.121). Another example of a decay forbidden
by angular momentum is

3P0 6→ 1S0 + γ , (6.125)

where Eq. (6.123) is violated.
The case of the 3S1 state is interesting. We just saw that it cannot ra-

diatively decay into any lower-lying positronium state. It can only decay into
three photons. The ground state, 1S0, on the other hand, decays into two pho-
tons. The amplitude for the three photon decay must have an extra power of
e, and therefore the rate will be down roughly by a factor of the fine-structure
constant α. Thus, the rate for 3S1 decay will be much smaller than that for
1S0 decay. In other words, the 3S1 will be much more stable than the ground
state. Indeed, experimental searches reveal that

τ(3S1) = (142.05± 0.02)× 10−9 s ,

τ(1S0) = (125.14± 0.02)× 10−12 s . (6.126)
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2 Exercise 6.21 Consider the transitions from each of the following
states of positronium

3P0,
3P1,

3P2,
1P1 (6.127)

to any of the states

1S0 + γ, 3S1 + γ, γ + γ, γ + γ + γ. (6.128)

For each of the 16 transitions, tell whether it is allowed or forbidden
by

a) Angular momentum conservation,

b) P conservation,

c) C conservation.

6.8 Parity assignment of different particles

We now examine the intrinsic parity of some particles. Already, in Eq. (6.36),
we have shown that the electromagnetic interactions dictate that the intrinsic
parity of the photon must be negative. This conclusion is obtained irrespec-
tive of the intrinsic parity of any fermion. The reason is that the interaction
Lagrangian of any fermion with the photon contains a pair of fermion fields,
and their effects cancel out no matter whether we assign positive or negative
intrinsic property for the fermion. The result also extends to fundamental
scalar fields, and we can say in general that electromagnetic interactions can-
not fix the intrinsic parity of any elementary particle except the photon.

Let us then turn to particles which have strong interactions, or hadrons.
As mentioned earlier, hadrons can be fermions or bosons. There is something
special about fermions. If the number of fermions in the initial state of a
process is odd, the total angular momentum is half-integral, and so angular
momentum conservation law tells us that the number of fermions in the final
state must also be odd. If the number is even in the initial state, it is even
in the final state as well. Therefore, if we change the intrinsic parities of all
fermions by a sign, the effect of this change would cancel out between the
initial and the final states. The equality of initial and final parities in a parity
conserving process will not be affected by this exercise.

This observation tells us that there must be two different ways of assign-
ing intrinsic parity to all fermions: if anyone makes a consistent choice, we
can make another consistent choice by changing the intrinsic parities of all
fermions by a sign. We can use this observation to fix the intrinsic parity of
any one fermion arbitrarily, and we choose the proton to have positive parity:

η
(proton)
P = +1 . (6.129)

Protons and neutrons have identical strong interactions, a phenomenon that
will be discussed in detail in Ch. 8. It means that these two particles should
have the same properties in everything that the strong interaction respects.
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Strong interactions respect parity symmetry, so, in particular, parity proper-
ties of the proton and the neutron should be the same:

η
(neutron)
P = +1 . (6.130)

Let us now look at the intrinsic parity of pions. Pions are of three types:
π

−, π
0 and π

+, where the superscripts indicate the electric charges of the
particles. The neutral pion decays to a pair of photons:

π
0 −→ γγ . (6.131)

The two photons must be in a state with total angular momentum zero, since
the pion has no spin. As we have seen in §5.6, there are two such states of
two photons. It was further discussed in §6.6 that one of these two states is
odd under parity whereas the other is parity even. In the parity even state,
the two polarization vectors appear in the combination ǫ1 · ǫ2, so that the
two polarization vectors are most likely to be parallel. In the other state,
ǫ1 × ǫ2 is involved, so that the two polarization vectors are most likely to be
perpendicular to each other. Experiments show that the second alternative
is what really happens in nature, which means that the two photons are in a
parity odd state. We then conclude that

η
(π0)
P = −1 . (6.132)

The intrinsic parity of the negative pion can be determined through the
reaction

π
− + d −→ n+ n . (6.133)

Here d denotes deuteron, a bound state of a proton and a neutron. In the
ground state of deuteron, the proton and the neutron are in a relative L = 0
state, so their orbital parity is +1. Putting in the intrinsic parities of the
proton and the neutron, we find that the deuteron itself has a positive intrinsic
parity. The deuteron absorbs the π

− in a relative L = 0 state, so that the
orbital parity in the initial state is +1. Thus the parity of the initial state has
the sign of the intrinsic parity of the negative pion.

Let us now look at the parity of the final state. In the initial state, the
pion is spinless, and the spin of the deuteron is 1. Since they are combined in
an L = 0 state, the total angular momentum of the initial state is 1. The final
state angular momentum must then be 1 as well. With two spin- 1

2 particles,
the total spin must be 0 or 1, so the possible J = 1 states are 3S1, 1P1 and
3P1. Since the final state contains two identical fermions, the state must
be antisymmetric under the interchange of these fermions. The properties
of these states, under the interchange of position and spin, are summarized
below:
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State L S
Symmetry property under interchange
Position Spin Total

3S1 0 1 symm symm symm
1P1 1 0 antisymm antisymm symm
3P1 1 1 antisymm symm antisymm

From this table, it is clear that only the state 3P1 is admissible for two neu-
trons. The parity of the two neutrons in this state is −1 coming from the
orbital contribution, whereas the intrinsic parities of the two neutrons is +1.
Thus, the final state has a parity eigenvalue −1, which means that in the
initial state, we must have

η
(π−)
P = −1 . (6.134)

The intrinsic parity of the positively charged pion, π
+, is the same, as can be

argued from the reaction

π
+ + d −→ p+ p . (6.135)

Let us consider the question of the intrinsic parity of the electron. As ex-
plained earlier, this cannot be determined from electromagnetic interactions.
Electrons do not have strong interactions. Thus, we have only one option
left: weak interactions. However, we will discuss later in the book that weak
interactions do not conserve parity. Therefore, we cannot assign an intrinsic
parity to the electron through weak interactions either, and we need to make
another arbitrary choice for the intrinsic parity of the electron like we made
for the proton. The same comment applies to any lepton like the muon or the
tau, which do not have any strong interaction.

6.9 Signature of parity violation

6.9.1 Correlations in experiments

Earlier in this chapter, we have given some examples of interactions which
would not conserve parity. This was concluded by examining parity transfor-
mation properties of various parts of the interaction Lagrangian.

In an experiment, we do not see the Lagrangian. So how would we know
that parity is not conserved in certain processes? We see the particles taking
part in the process. We can measure the momenta, the spins and other such
properties of particles. If we have to know about parity violation, we will have
to know it through such measurements.

The most straightforward way of approaching the problem would be to
measure the rate of some process and its parity transformed process. By the
parity transformed process, we mean a process involving the same particles,
but with reversed 3-momenta (and other possible kinematical variables which
are odd under parity). Table 6.2 shows the behavior of common kinematical
variables under parity.



178 Chapter 6. Parity and charge conjugation

Table 6.2: Behavior of common kinematical variables under parity. Behavior under
time reversal has also been included for later chapters.

Quantity
Behavior under

Justification
Parity

Time
reversal

Momentum − − Involves velocity, which is
dr/dt

Energy + + Kinetic energy, e.g., in-
volves square of velocity

Angular momentum + − Orbital angular momen-
tum is r × p

In practice, it is not necessary to perform two sets of measurements, one
on the direct process and the other on the parity transformed process. Per-
forming measurements on a single process, it is possible to tell whether the
corresponding parity transformed process would give a different result by not-
ing some parity odd correlations between kinematical variables. We explain
this statement now.

As an example, consider a scattering process in which the final state has
two particles. We perform the experiment in the CM frame, in which the
3-momentum of one the initial particles is p, and that of one of the final
particles is p′. Of course, for a fixed p, infinitely many directions are possible
for p′, and we measure the differential cross-section. Suppose we find that the
differential cross-section depends on the angle between p and p′. Because of
rotational symmetry, the dependence must come through a combination like
p · p′. Symbolically, we denote this situation by writing

dσ

dΩ
= A0 +A1p · p′ , (6.136)

where A0 is an angle-independent part. We can now ask: will such a depen-
dence signal parity violation? The answer is ‘no’, because the combination
p · p′ is even under parity.

The situation changes if one of the initial particles is spin-polarized, i.e., its
beam has a net non-zero spin. We denote the spin by s. Making observations
at different directions for p′, we will find a differential cross-section which will
in general have the form

dσ

dΩ
= A0 +A1p · p′ +A2s · p′ +A3s · (p× p′) . (6.137)

The A2 term is different from the others because the combination s · p′ is
odd under parity, as can be confirmed by looking at Table 6.2. Thus, if we
observe such a correlation in the differential cross-section, it would signal
parity violation.
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This kind of correlation constituted the first ever detection of parity vi-
olation in 1957 by Wu and her collaborators. The experiment involved beta
decay of radioactive 60Co. The 60Co nucleus has spin s = 5. In the ex-
periment, these spins were aligned by applying a magnetic field. Of course
thermal agitations would destroy such alignment unless the entire system is
kept at a very low temperature. In Wu’s experiment, temperatures of the
order of 0.01 K were required.

The beta decay reaction for 60Co is

60Co→ 60Ni + e + ν̂e . (6.138)

The final electron was detected at various angles, and the differential decay
rate I was obtained with respect to the direction of its momentum. The
results showed a variation of the form

I(θ) = a(1 + b cos θ) , (6.139)

where θ is the angle between the spin of the 60Co nucleus and the final electron.
If b were zero, it would have meant that parity was conserved. But the
experiment found

b ≈ −0.4 , (6.140)

signalling parity violation. Since then, signatures of parity violation have been
observed in many experiments involving polarized source.

A variant of the idea would be to look for correlation between spin of a
particle and its own momentum. In the same issue of the same journal, right
after Wu’s paper, appeared a paper by Garwin, Lederman and Weinrich, who
used this idea. They considered the correlation of spin and momentum of
antimuons (µ+) coming from the decay of positively charged pion:

π
+ → µ

+ + νµ . (6.141)

Suppose an antimuon is produced with 3-momentum along the z-direction
with spin-component + 1

2 along the z-direction. Since momentum is odd under
parity and angular momentum even, as shown in Table 6.2, the parity trans-
formed situation will have the antimuon with Sz still along the z-direction
but the 3-momentum in the opposite direction. The quantity called helicity,
which is the projection of spin along the direction of momentum, would be
positive in the first situation and negative in the parity reversed situation. If
parity is conserved, the two situations should occur with equal probabilities
and therefore the net helicity of the antimuon should be zero, i.e., there should
not be any correlation between spin and momentum. The experiment found a
correlation, proving that parity is violated. Moreover, the helicity was found
to be consistent with +1, i.e., the spin projection seemed to be always in the
direction of the momentum, suggesting that parity is violated maximally.
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There could be other ways of detecting parity violation, but one needs more
than two particles in the final state for such methods. For example, consider
a decay in which the final state contains four particles. Because of momentum
conservation, three of the final state momenta would be independent. Let us
denote them by p1, p2 and p3. And now suppose the differential decay rate
shows a variation like

I = a(1 + bp1 · p2 × p3) . (6.142)

This would also signal parity violation, since the momenta are odd with re-
spect to parity.

6.9.2 Parity violating transitions

Generally speaking, parity violation can be inferred when we see a state with
given parity properties evolves into another state with different parity prop-
erties. We can look for such phenomena in decays of particles. For example,
suppose we have a spin-0 particle φ, and through some means, we know that
its intrinsic parity is negative, i.e., the particle is a pseudoscalar. Now suppose
we find that it decays into two identical spin-0 particles, i.e., a decay of the
form

φ→ φ′φ′ . (6.143)

No matter what the intrinsic parity of φ′ is, the intrinsic parity of the two
particles on the right hand side is +1. Angular momentum conservation tells
us that the two particles in the final state must be in an L = 0 combination,
so that the orbital parity is +1 as well. Thus the parity of the final state is
+1. Since we started from a pseudoscalar particle in the initial state, such a
decay would imply parity violation.

Needless to say, the conclusion would be unchanged even if the final state
contains two different spin-0 particles, as long as they have the same intrinsic
parity. In fact, it is not even necessary that the final state is an eigenstate
of parity. Even if a parity eigenstate evolves into a state which is not an
eigenstate of parity, we know that there must be a parity violating part in the
Hamiltonian that governs the evolution.

Historically, the existence of parity violation was hinted from a situation
like this. In the early 1950s, scientists discovered many new particles. One of
them was a charged particle, dubbed θ+, which was seen to decay into π

+
π

0.
By the argument above, it should have an intrinsic parity of +1. Another
particle, discovered the same way, was called τ+. It was seen to decay into
three pions, and therefore it was concluded that it should have an intrinsic
parity of −1. However, it was found that the θ+ and the τ+ have equal
masses and lifetimes, within the limits of error of the experiments, and this
suggested that there are not really two particles, but only one. This created a
situation that was called the τ -θ puzzle. In 1956, Lee and Yang finally broke
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the impasse by suggesting that parity conservation had not been tested in
weak interactions before, and that the two kinds of decays can occur for the
same particle if parity is violated. Within a year, the test of parity violation
came through the experiments that we have already discussed. The names
θ and τ were abandoned: the particle is now called the (charged) kaon and
denoted by K+. The symbol τ , thus freed from the puzzle, is used now to
denote a lepton like the electron or the muon.

The initial state need not be a decaying particle. For example, one can
take the energy eigenstates of an electron in an atom. In absence of parity
violation, these states have definite parity. The selection rules discussed in
§6.7 then apply. However, if there is parity violating interaction between the
nucleus and the electron, the selection rules will be violated. Such violations
have been observed, establishing the existence of parity violation.

While checking for parity invariance, we seem to be multiplying the different contributions
coming from intrinsic as well as orbital parity in determining the parity property of a state
containing more than one particles. One may ask why we are doing this. After all, while
checking momentum or angular momentum conservation, we add, rather than multiply, different
contributions. So, is something different being done here?

The answer is ‘no’. We are doing the same thing, really. Group elements should always
be multiplied. For discrete symmetries, this is what we are doing directly. For continuous
symmetries like translation or rotation, remember that momentum and angular momentum are
the generators, which appear in the exponent in the expression for the group element. So,
multiplying group elements means adding exponents. This is what we do for momentum. For
angular momentum, since the different components do not commute, the exponents cannot be
simply added: they should be subjected to the Baker–Campbell–Hausdorff formula, Eq. (3.18,
p 44).

6.9.3 Parity violating coupling with external fields

In §5.7, we showed that interactions of fermions with the electromagnetic field
can be expressed in terms of four form factors. This result was obtained by
assuming Lorentz invariance and gauge invariance only, without paying any
attention to discrete symmetry. Let us now see what is to be expected of
these form factors in a theory where parity is a conserved symmetry.

The effective electromagnetic vertex of a fermion has been given in Eq.
(5.121, p 140). In the co-ordinate space, this vertex can be interpreted as an
effective interaction term

Leff(x) = ψ(x)Oµψ(x)Aµ(x) , (6.144)

where Oµ contains derivatives and matrices, but no field operator. The parity
transformation of this effective interaction would be

PLeff(x)P−1 = ψ(x̃)γ0Oµγ0ψ(x̃) PAµ(x)P−1 , (6.145)

using Eq. (6.23, p 155). Note that the intrinsic parity of the fermion field can-
cels out. Parity invariance would require that this expression equals Leff(x̃).
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Using the transformation of the photon field under parity that was given in
Eqs. (6.14) and (6.36), this would imply that parity invariance requires

γ0O0γ0 = O0 , γ0Oiγ0 = −Oi . (6.146)

Coming back to the vertex function, it is easily seen that the conditions of
parity invariance reduce down to

γ0Γ0γ0 = Γ0 , γ0Γiγ0 = −Γi . (6.147)

This is obviously satisfied by the combination that goes with the form factor
F1 because of the basic definitions of the Dirac matrices given in Eq. (4.49,
p 70). It can be easily seen that the same is true if the 4×4 matrix sandwiched
between the spinors is σµν . But the combinations involving γ5 do not satisfy
Eq. (6.147). Hence, presence of the electric dipole or anapole moment form
factor of a fermion would signal parity violation.

2 Exercise 6.22 Verify that the combinations involving the matrix γ5

in the fermion vertex function do not satisfy Eq. (6.147).

6.9.4 Connection with field theory

Earlier, we talked how parity violation shows in a Lagrangian. Now we dis-
cussed how parity violation shows up in an experiment. The question that
arises is this: what is the connection between the two kinds of specification
of parity violation?

The answer can be guessed easily. The parity violating correlations can
occur in differential decay rates only if the underlying Lagrangian is parity
violating, as Ex. 6.23 will demonstrate.

2 Exercise 6.23 Consider an interaction connecting five scalar fields:

Lint = hφφ1φ2φ3φ4 + h′φεµνλρ(∂
µφ1)(∂

νφ2)(∂
λφ3)(∂

ρφ4) . (6.148)

a) Find the dimensions of the coupling constants h and h′. [Note :

You will find that the theory is not renormalizable. But never mind. We
do not need to calculate any loop diagram, so we can obtain well-defined
answers.]

b) Show that the interactions shown above must violate parity.

c) The interactions can induce, at the tree-level, the decay

B(p) → B1(p1) +B2(p2) +B3(p3) +B4(p4) , (6.149)

where B etc. denote the particles corresponding to the fields,
and the notations in parentheses are the 4-momenta. Write
down the amplitude for the decay.

d) Evaluate |M |2 in the rest frame of the decaying particle. Show
that it contains a triple product of the momenta of final parti-
cles, like the one shown in Eq. (6.142).
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If we want to see an example that produces spin-momentum correlations
which violate parity, we first need to learn how to perform calculations involv-
ing spin-polarized particles. Note that in all calculations in Ch. 5, we have
used unpolarized fermions and summed over the spins. While calculating the
absolute square of the Feynman amplitude, this allowed us to express the
result in terms of traces, which are easy to calculate.

Indeed, the machinery is so comfortable that we don’t want to do away
with it. So, when we have polarized states, we keep summing over all spin
states, but insert a projection matrix in the Feynman amplitude so that only
one spin state contributes to the sum.

In order to see explicitly how the idea works, let us consider an illustrative
example. Suppose there are two fermion fields and a scalar field, with an
interaction

Lint = ψ2(a+ bγ5)ψ1φ+ h.c. , (6.150)

where we assume the constants a and b to be real. Suppose the masses of the
particles are such that it is possible for the first fermion (denoted by ψ1) to
decay into the other fermion and the scalar. For unpolarized states, we would
write the Feynman amplitude as

M = u2(p2)
(
a+ bγ5

)
u1(p1) , (6.151)

where u1 and u2 denote spinor solutions for the fields ψ1 and ψ2 respectively,
and the momenta of the particles are given in parentheses. If we calculate the
differential cross-section from this Feynman amplitude by summing over all
spin states, we will get nothing that will signal parity violation.

However, suppose now that the initial fermion is spin-polarized along a
direction denoted by the unit 3-vector ŝ. Instead of using only the spinor
solution for that direction, we will write the matrix element as

M = u2(p2)
(
a+ bγ5

)
P

bsu1(p1) , (6.152)

where P
bs is a projection matrix defined in such a way that if it acts on the

spinor solution whose spin eigenvalue is + 1
2 along the direction ŝ, the spinor

will be unaffected; but if it acts on the spinor solution with the spin eigenvalue
− 1

2 along the same direction, the result would vanish. In Appendix F, we
present arguments leading to Eq. (F.118, p 751) to show that this operator is
given by

P
bs =

1

2
(1 + γ5s/) , (6.153)

where s µ is a 4-vector whose components are given by

s
µ = (0, ŝ) (6.154)

in the rest frame of the particle. While squaring the Feynman amplitude,
this ŝ will appear in the expression, dotted with some momentum. That will
constitute the signal for parity violation.
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2 Exercise 6.24 Show that P
bs, defined in Eq. (6.153), is indeed a pro-

jection matrix, i.e., (P
bs)

2 = P
bs.

2 Exercise 6.25 Consider the amplitude given in Eq. (6.152), for de-
caying fermions polarized in the direction of bs.

a) Show that

1

2

X

spin

˛

˛

˛

˛

M

˛

˛

˛

˛

2

= (a2 + b2)p1 · p2 + (a2 − b2)m1m2 + 2abm1s · p2 .

(6.155)

b) Note that the parity violating term is non-zero only if both a
and b are non-zero. Using the discussion of §6.2, argue why it
must be so.

c) Show that the total decay rate is the same as that obtained for
unpolarized initial particles.

6.10 Consequences of charge conjugation sym-

metry

The operation of charge conjugation takes particles to antiparticles, and vice
versa. Therefore, charge conjugation symmetry would relate properties of a
particle to those of its antiparticle. Most naively, one might expect that this
symmetry would imply that the masses of the particle and the antiparticle
would be equal, and so will be the decay rates if the particle happens to
be unstable. As it turns out, these properties follow from a much weaker
assumption. Even if the charge conjugation symmetry is violated, mass and
decay rate of a particle are equal to the same properties of its antiparticle as
long as the product CPT is a good symmetry. We discuss these issues in §7.5.

What would constitute a violation of charge conjugation symmetry alone,
without an accompanying violation of either parity or time reversal? A few
examples appear in §6.7, involving decays of various states of positronium.
For example, the 1S0 state cannot decay into three photons, although the de-
cay would have been allowed by parity and angular momentum conservation.
Decay of the neutral pion provides another such example. The neutral pion
is seen to decay into two photons:

π
0 → γγ . (6.156)

However, the decay to three photons has never been observed:

B(π0 → 3γ) < 3.1× 10−8 . (6.157)

This has a very simple explanation in terms of charge conjugation symmetry.
Photons are odd under charge conjugation, as mentioned in Eq. (6.69). A



§6.11. CP symmetry 185

Figure 6.1: The blob denotes an effective vertex, i.e., any number of lines of any
kind might be present in the blob. The external lines are three photon lines. Furry’s
theorem says that such a vertex is impossible.

state of two photons is therefore even under charge conjugation. Since the
neutral pion decays to two photons, we conclude that

η
(π0)
C = +1 , (6.158)

if charge conjugation symmetry is not violated in the decay. And in fact
charge conjugation symmetry should not be violated, because the only rele-
vant interactions here are the strong and the electromagnetic ones, the first
for the binding of the pion and the second for producing the photons. We
have shown that the basic QED interactions conserve the charge conjugation
symmetry. The strong interactions also respect this symmetry. A state of
three photons is odd under charge conjugation. Therefore, π

0 cannot decay
into three photons. In fact, considerations like this one led to the realization
of the existence of the charge conjugation symmetry.

The C -odd property of the photon has other important consequences. For
example, consider an interaction term involving three photons. Of course such
a term does not occur in the Lagrangians of QED, or even scalar QED. The
question is, can such an effective interaction arise out of other interactions,
in a manner symbolized in Fig. 6.1? The answer is ‘no’, unless charge con-
jugation symmetry is violated. In fact, charge conjugation symmetry implies
the absence of any effective interaction that contains only an odd number of
photons. This statement is called Furry’s theorem.

6.11 CP symmetry

The CP operation is nothing but a combination of charge conjugation and
parity. If the parity operator operates on a particle state with momentum p,
we obtain a particle state with momentum −p, as shown in Eqs. (6.77) and
(6.86), for example. On the other hand, if we apply the charge conjugation
operator on the same state, we would obtain an antiparticle state with mo-
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mentum p. The operation CP, acting on a particle state of momentum p will
then give an antiparticle state with momentum −p.

The effect of the CP operator on different fields can be written down by
combining the effects of C and P separately on these operators. For example,
from Eqs. (6.4) and (6.40), we obtain that for a scalar field,

(C P)φ(x)(C P)−1 = C (Pφ(x)P−1)C−1

= ηP Cφ(x̃)C −1 = ηCPφ
†(x̃) , (6.159)

where

ηCP = ηP ηC (6.160)

for the field, which can be called the intrinsic CP-phase for the field. Similarly,
for a vector field Vµ(x), Eqs. (6.14) and (6.45) imply that

(CP)V0(x)(C P)−1 = −ηCPV
†
0 (x̃) ,

(CP)V (x)(C P)−1 = +ηCP V †(x̃) , (6.161)

where again the intrinsic CP-phase of the field is given in terms of its intrinsic
phases under parity and charge conjugation through Eq. (6.160). Finally, for
a Dirac field, the corresponding equation is

(C P)ψ(x)(C P)−1 = ηCP Cψ∗(x̃) , (6.162)

which can be read from Eqs. (6.23), (6.48) and (6.49).
As indicated in earlier sections of this chapter, it is helpful to know

the transformation properties of fermion bilinears under a certain symme-
try. With that in mind, let us define, for a constant matrix F , the matrix
FCP by the relation

(C P)ψ1(x)Fψ2(x)(C P)−1 = η12ψ2(x̃)FCPψ1(x̃) , (6.163)

where

η12 = η
(1)∗
CP η

(2)
CP . (6.164)

Then, consulting Eqs. (6.26) and (6.68), we can easily write

F 1 γ0 γi σ0i σij γ0γ5 γiγ5 γ5

FCP 1 −γ0 γi σ0i −σij −γ0γ5 γiγ5 −γ5
. (6.165)

2 Exercise 6.26 Show that

FCP = γ0CF⊤
C

−1γ0 . (6.166)
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Let us find out how CP might be conserved or violated in an interaction
between fermions and vector bosons. We take the interaction in the general
form, involving a polar and an axial vector bilinear:

Lint = ψ1γ
µ(a+ bγ5)ψ2Wµ + ψ2γ

µ(a∗ + b∗γ5)ψ1W
†
µ , (6.167)

where the second term in the hermitian conjugate of the first. Let us assume,
for the sake of convenience, that the two fermions have the same intrinsic
CP-phase. Then, the CP transform of the first term is

(CP)ψ1γ
µ(a+ bγ5)ψ2Wµ(CP)−1 = ψ2γ

µ(a+ bγ5)ψ1η
(W )
CP W †

µ ,

(6.168)

obtained by using Eqs. (6.161) and (6.163), and using the bilinear transfor-
mation rules from Eq. (6.165). Note that CP is a unitary operator, so it does
not affect the numerical constants a and b.

Looking at Eq. (6.168), we find that the CP conjugate of the first term
of Eq. (6.167) is equal to the second term provided the intrinsic CP-phase
of the vector boson W is +1, and the constants a and b are real. Thus, if
these conditions are satisfied, the two interaction terms of Eq. (6.168) would
transform into each other under the action of CP, and consequently the two
terms taken together would be CP invariant.

This is an interesting conclusion. Earlier, we noted that a combination of
polar and axial vector couplings cannot be invariant under C or P. However,
we now see that if such combination of couplings occur, the violations of C
and P may just compensate each other so that CP can remain invariant. In
Ch. 21, we will see that this has a profound impact on models of particle
interactions.

2 Exercise 6.27 � Consider an interaction of fermions with a complex
scalar field φ of the form

Lint = ψ1(a+ bγ5)ψ2φ+ h.c. (6.169)

Assume the two fermions to have the same intrinsic CP-phase. Find
the conditions that must be satisfied in order that the interaction is
CP conserving.
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Time-reversal and CPT symmetries

7.1 Anti-unitary operators

7.1.1 Definition

We mentioned some “intricacies” regarding the time reversal symmetry in
§6.1. Let us now explain the statement.

What do we mean by a symmetry? Suppose we perform an experiment
that measures, in some way, the matrix element between a certain initial
state

∣∣φ1

〉
and a certain final state

∣∣φ2

〉
. It is customary to denote this matrix

element by the notation
〈
φ2

∣∣φ1

〉
. Any operator U would change the initial

and the final states, and we fix the notation for the changed states as follows:

U |φ1〉 = |U φ1〉 , U |φ2〉 = |U φ2〉 . (7.1)

For arbitrary operators U , the matrix element of these changed states will
not be equal to the matrix element between the original states. However, if
we find some operator U such that it satisfies the relation

〈U φ2 | U φ1〉 = 〈φ2 | φ1〉 , (7.2)

for arbitrary
∣∣φ1

〉
and

∣∣φ2

〉
, then we say that U is a symmetry operator. In

fact, since Eq. (7.1) implies

〈U φ2| ≡
(
|U φ2〉

)†
≡
(
U |φ2〉

)†
= 〈φ2|U † , (7.3)

it is easily seen that Eq. (7.2) can be written as

〈
φ2

∣∣U †U
∣∣φ1

〉
= 〈φ2 | φ1〉 . (7.4)

And if this relation has to be obeyed for arbitrary states
∣∣φ1

〉
and

∣∣φ2

〉
, the

conclusion is that

U †U = 1 , (7.5)

188
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which defines a unitary operator .
This definition of a symmetry operator would do for most symmetries,

such as the ones discussed in Ch. 6. For time reversal, however, this definition
is inadequate. The problem appears from a tacit assumption that goes into
writing Eq. (7.2). In the original situation,

∣∣φ1

〉
was the initial state and∣∣φ2

〉
was the final state. In the transformed situation, we are assuming that∣∣U φ1

〉
still remains the initial state, and

∣∣U φ2

〉
the final state. Certainly this

cannot be true when we are talking of time reversal! If the direction of time
is reversed, the erstwhile initial state would become the final state and vice
versa.

In order to accommodate such symmetries, we can broaden our definition
of symmetry operations. The requirement for a symmetry operation should
be this: the matrix element between arbitrary states should remain the same
whether or not we perform a symmetry operation on the states. If the sym-
metry operation does not change initial states into final states and vice versa,
the definition of Eq. (7.2) is quite adequate. However, if a symmetry opera-

tion Ũ interchanges initial and final states, the statement about the equality
of the matrix element should have to be written as

〈
Ũ φ1

∣∣∣ Ũ φ2

〉
= 〈φ2 | φ1〉 . (7.6)

An operator satisfying this equation is called an anti-unitary operator . Time
reversal is obviously an operator of this kind. The same comment applies
to any symmetry operation involving time reversal, such as its product with
either charge conjugation or parity, or both. It should be noted that for
unitary operators, the basic definition of Eq. (7.2) could be shorn of the states,
and Eq. (7.5) could be written, because the ordering of the states was the same
on both sides of the equation. It is impossible to write down an analog of Eq.
(7.5) for anti-unitary operators since the ordering of states is different on the
right and left sides of Eq. (7.6).

7.1.2 Rules for working with operators

We are so accustomed to working with unitary operators that we often forget
which relations involving operators require the unitarity property explicitly,
and cannot be used for operators in general. A perfect example of this sort
of relations is the condition

OH O† = H , (7.7)

which is often used as the definition of a symmetry operator O for a system
with a Hamiltonian H . It is easy to see that this condition is not quite
general. Symmetry operators commute with the Hamiltonian of a system,
which means a symmetry operation would always satisfy the relation

OH = H O . (7.8)
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It should be noted that O−1 must exist. In fact, symmetry operations always
have inverses, and the inverse of a symmetry operator is also a symmetry
operator by itself. Thus, multiplying both sides by O−1 from the right, we
obtain the relation

OH O−1 = H . (7.9)

Obviously the statements in Eqs. (7.7) and (7.9) are equivalent for a unitary
operator by dint of Eq. (7.5). But in general, only Eq. (7.9) applies, and
this is the form that must be used while working with anti-unitary symmetry
operators.

Notations about states should be independent of the nature of operators
acting on them, and they indeed are. We can certainly use the relation

(
|φ〉
)†

= 〈φ| . (7.10)

In fact, this is the definition of the bra vector. Relations like

〈φ1 | φ2〉 = 〈φ2 | φ1〉 ∗ (7.11)

follow from Eq. (7.10), and are applicable in general. Thus, the definition of
anti-unitary operators in Eq. (7.6) could equivalently be written as

〈
Ũ φ1

∣∣∣ Ũ φ2

〉
= 〈φ1 | φ2〉 ∗ . (7.12)

Let us now consider some relations between states where operators are
also involved. The relations in Eq. (7.3) are universal. In fact, together with
the definition with the bra vectors in Eq. (7.10), this equation constitutes the
definition of the hermitian conjugate of an operator. Similarly, Eq. (7.1) is
just a notation and can be used irrespective of the nature of the operator and
the states.

When a unitary operator acts on a superposition of states, we use the
relation

U
(
α1 |Ψ1〉+ α2 |Ψ2〉

)
= α1U |Ψ1〉+ α2U |Ψ2〉 , (7.13)

where α1 and α2 are arbitrary complex numbers and Ψ1 and Ψ2 are arbitrary
states. This relation defines a linear operator , and is not applicable to anti-
unitary operators. There is a very important theorem by Wigner which states
that if a transformation on the states in a Hilbert space leaves all probabilities
unchanged, the transformation can be one of the following two types:

a) Unitary and linear

b) Anti-unitary and anti-linear

Anti-unitary operators like time reversal should therefore be anti-linear, which
means that they should satisfy the following relation while acting on super-
positions of states:

Ũ
(
α1 |Ψ1〉+ α2 |Ψ2〉

)
= α∗

1Ũ |Ψ1〉+ α∗
2Ũ |Ψ2〉 . (7.14)
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It is important to keep this distinction in mind while working with anti-
unitary operators. Of course, the generalization of Eqs. (7.13) and (7.14) to
superpositions of three or more states is obvious. It is also useful to remember
that these equations also tell us about the result obtained when an operator
acts on a single state multiplied by a numerical co-efficient. These results are
obtained by taking one of the co-efficients to be zero in Eqs. (7.13) and (7.14).
As we see, for unitary operators, it implies

U
(
α |Ψ〉

)
= αU |Ψ〉 , (7.15)

i.e., unitary operators leave the numerical co-efficients undisturbed. On the
other hand, for an anti-linear operator, the result is:

Ũ
(
α |Ψ〉

)
= α∗Ũ |Ψ〉 , (7.16)

which means that numerical co-efficients are complex conjugated. Because
time reversal is an anti-unitary operation, it must also be anti-linear, and we
need to be careful about this aspect while dealing with time reversal.

7.2 Time reversal transformation on fields

In the notation introduced in Eq. (6.2, p 151), time reversal operation means
the transformation

xµ → −x̃µ . (7.17)

A Lagrangian will be invariant under time reversal, T , if

T L (x)T −1 = L (−x̃) . (7.18)

Let us see how it acts on fields.

7.2.1 Free fields

Acting on a scalar field, time reversal transformation should yield

φT (x) ≡ T φ(x)T −1 = ηTφ(−x̃) , (7.19)

where ηT is a phase factor, which can be called the intrinsic time reversal
phase for the field. It can be easily seen, by more or less following the steps
of §6.2.2, that the free scalar Lagrangian is invariant under time reversal for
any choice of ηT .

2 Exercise 7.1 Time reversal is a toggle operator. Show that this only
says that |ηT |2 = 1, i.e., ηT can be an arbitrary phase factor. [Note :

While applying time reversal the second time, remember that T is an anti-linear
operator.]
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We next turn to fermions. In analogy with Eq. (6.23, p 155), we write

T ψ(x)T −1 = Tψ(−x̃) , (7.20)

where T is a matrix. Our task is to find out if there is any such matrix that
will keep the free Dirac Lagrangian invariant.

To this end, first note that

L (−x̃) = ψ(−x̃)
[
iγ0∂−t + iγ ·∇−m

]
ψ(−x̃) . (7.21)

Next, we need to evaluate the left hand side of Eq. (7.18). For this, we need to
use Eq. (7.20). But we also need to be careful about the anti-unitary property
of time reversal. The Dirac matrices that appear in the Lagrangian are all
numerical co-efficients, and hence they have to be complex conjugated. For
example,

T ψ(x)T −1 = T
(
ψ†(x)γ0

)
T −1

= T
(
ψ†(x)

)
T −1γ∗0 =

(
Tψ(−x̃)

)†
γ∗0 . (7.22)

Thus,

T L (x)T −1 = ψ†(−x̃)T†γ∗0

[
− iγ∗0∂t − iγ∗ ·∇−m

]
Tψ(−x̃) . (7.23)

Comparing the time derivative terms in Eqs. (7.21) and (7.23), we find that

T†T = 1 , (7.24)

i.e., the matrix T must be unitary. In order to extract information from the
other terms, we use the hermiticity property of Dirac matrices from Eq. (4.49,
p 70) as well as their transposition properties from Eq. (6.57, p 161) to write

γ∗0 = γ⊤0 = −C−1γ0C , (7.25a)

γ∗i = −γ⊤i = C−1γiC . (7.25b)

Using these, we obtain the relations
[
CT, γµ

]
+

= 0 . (7.26)

There is only one matrix, apart from an overall numerical factor, which anti-
commutes with all four Dirac matrices: it is γ5. Thus, we can write

T = ηT C−1γ5 , (7.27)

where ηT is the numerical factor. The only constraint on ηT comes from the
toggle nature of time reversal operation, which says that |ηT | = 1, i.e., ηT has
to be a phase factor.



§7.2. Time reversal transformation on fields 193

On a spin-1 field such as the photon field, time reversal operation works
as follows:

T A0(x)T −1 = −ηTA0(−x̃) ,

T A(x)T −1 = +ηT A(−x̃) . (7.28)

It is easy to see that the Lagrangian for the free photon field is invariant under
this transformation.

7.2.2 Interactions

Let us start with fermion bilinears, which appear in all interaction terms
involving fermions. Using Eq. (7.22), we can write

T
(
ψ1(x)Fψ2(x)

)
T −1 = ψ†

1(−x̃)T†γ∗0F
∗Tψ2(−x̃) , (7.29)

recalling that F , the matrix of numerical co-efficients, has to be complex
conjugated because of anti-linearity. Using Eq. (7.27) now and allowing for
different intrinsic phases for the two fields, we obtain

T
(
ψ1(x)Fψ2(x)

)
T −1 = η

(1)∗
T η

(2)
T ψ1(−x̃)FTψ2(−x̃) , (7.30)

where

FT = γ5CF ∗C−1γ5 . (7.31)

More explicitly, we arrange the transformation rules for various independent
possibilities for F :

F 1 γ0 γi σ0i σij γ0γ5 γiγ5 γ5

FT 1 γ0 −γi σ0i −σij γ0γ5 −γiγ5 γ5
. (7.32)

This list immediately tells us that the QED interaction term is invariant under
time reversal provided we take

η
(A)
T = −1 . (7.33)

Another interesting observation is that the polar and axial vector bilinears
transform the same way under time reversal. Thus, interactions shown in Eq.
(6.168, p 187) would be invariant under time reversal. It implies that the
intrinsic time reversal phase of the vector boson should be +1. Of course, one
also needs the coupling constants to be real so that they are not affected by
anti-unitarity of the time reversal operation.

2 Exercise 7.2 The interactions given in Ex. 6.23 (p 182) produced triple
momentum correlations. As discussed in §6.9, such correlations in-
dicate not only parity violation but also time reversal violation. Show
that Eq. (6.148, p 182) violates time reversal symmetry.
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7.3 CPT transformation on fields

CPT transformation is, as the name implies, a combination of the transfor-
mations C, P and T. Since P changes the spatial co-ordinates by a sign and
T does the same thing to time,

xµ → −xµ (7.34)

under CPT. Because the combination includes time reversal, it is an anti-
unitary operation.

Transformation of various fields under this transformation can be deduced
easily by combining the transformation rules under CP given in §6.11 and
those under time reversal given in §7.2. Writing

Θ ≡ CPT (7.35)

for the sake of brevity, we obtain, using Eqs. (6.159) and (7.19),

Θφ(x)Θ−1 = T
(

(CP)φ(x)(C P)−1
)
T −1

= T
(
ηCPφ

†(x̃)
)
T −1 = ηΘφ

†(−x) , (7.36)

where ηΘ is a combination of intrinsic phases under each of the three discrete
operations. Similarly, from Eqs. (6.162), (7.20) and (7.27), we obtain

Θψ(x)Θ−1 = ηΘγ
⊤
5 ψ

∗(−x) . (7.37)

2 Exercise 7.3 Prove Eq. (7.37). [Note : Remember the anti-unitary nature
of CPT.]

2 Exercise 7.4 Show that a fermion bilinear transforms in the following
way under CPT:

Θψ1(x)Fψ2(x)Θ
−1 = η

(1)∗
Θ η

(2)
Θ ψ2(−x)FΘψ1(−x) , (7.38)

where

FΘ = γ5F
‡γ5 , (7.39)

with F ‡ = γ0F
†γ0, a notation introduced in Eq. (5.64, p 127).

Finally, for any vector boson V µ that behaves like the photon under P, C and
T, we have

ΘVµ(x)Θ−1 = −V †
µ (−x) , (7.40)

which can be obtained by combining the behavior of the photon under each
of the individual symmetries, shown in Eqs. (6.36), (6.69) and (7.33).
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7.4 CPT theorem

These various CPT transformation rules suggest something very interesting.
Suppose we take the intrinsic CPT phases of all scalar and fermion fields to
be equal to 1. A scalar field then just transforms to its hermitian conjugate.
A vector field, as seen in Eq. (7.40), also does the same, but with a negative
sign.

The corresponding statement is not so simple if we consider only a fermion
field, but fermion fields must appear in bilinears. We can ask: what happens
to fermion bilinears? The hermitian conjugate of a fermion bilinear is given
by

(
ψ1Fψ2

)†
= ψ2F

‡ψ1 . (7.41)

Compare this with the CPT transform of the bilinear, given in Eqs. (7.38)
and (7.39). The CPT transform contains γ5F

‡γ5 in the place where the
hermitian conjugate contains just F ‡. What is the difference between these
two combinations? If F , and therefore F ‡, contains odd number of γµ’s, we
get γ5F

‡γ5 = −F ‡. On the other hand, if the number of γµ’s is even in F ,
we get γ5F

‡γ5 = +F ‡.
Odd numbers of Dirac matrices mean odd numbers of Lorentz indices in

the bilinear. Noting this fact, we can now summarize the results obtained
for fermion bilinears with those of scalars and vector bosons, and say that
whenever we take the CPT conjugate of a quantity which contains an odd
number of Lorentz indices, the result contains a negative sign on the hermitian
conjugate. For CPT conjugates of quantities which contain an even number
of Lorentz indices, there is no negative sign. More succinctly, we can say that
the sign is (−1)n if the number of Lorentz indices is n.

Any term in a Lagrangian must be Lorentz invariant. Hence it cannot have
any unmatched Lorentz index. For any factor in a term carrying a Lorentz
index, there must be another factor which should have a matching index to
contract it. The total number of Lorentz indices in any term must therefore
be even. Hence, the CPT transform of any term in a Lagrangian must be
just the hermitian conjugate of the term itself. But the Lagrangian must be
hermitian, so the hermitian conjugate of any term must also be part of the
Lagrangian. Taking any particular term and its hermitian conjugate, we see
that under CPT, they transform into each other. Thus, the Lagrangian must
be CPT invariant. This is called the CPT theorem.

The way we stated it, it might seem that Lorentz invariance implies CPT
invariance. That is not quite true. We have tacitly made other assumptions.
The most important one is that we have assumed that fermion fields, which
have half-integral spin, have anticommuting creation and annihilation opera-
tors, whereas for bosonic fields such operators are commuting.
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7.5 Consequences of CPT symmetry

From a purely empirical point of view, we should not accept CPT theorem
blindly. The assumptions that go into it can certainly be questioned, like any
other assumption in any physical theory. However, the assumptions entering
into the proof of the CPT theorem are so minimal that, like Lorentz invariance,
we will take them to be granted for the discussions in this book and will
therefore assume that CPT is a good symmetry for all interactions.

To see the general form of the consequence of this symmetry, consider an
operator O that is CPT invariant, i.e.,

OΘ = ΘO . (7.42)

The question is, what is the relation of the matrix element of the operator O
between the states

∣∣a
〉

and
∣∣b
〉
, and between the states

∣∣Θa
〉

and
∣∣Θb
〉
? As

before, we are using the shorthand Θ for CPT and
∣∣Θa

〉
means Θ

∣∣a
〉
. Now,

|OΘb〉 ≡ O |Θb〉 = OΘ |b〉 = ΘO |b〉 = |ΘOb〉 , (7.43)

using Eq. (7.42) on the way. The anti-unitary property of the operation Θ
will imply

〈Θa | ΘOb〉 = 〈a | Ob〉 ∗ , (7.44)

which means

〈Θa |O|Θb〉 = 〈a |O| b〉 ∗ =
〈
b
∣∣O†∣∣ a

〉
. (7.45)

This general result can have striking consequences for various choices of O
and the states, as we will see now.

As a first example, consider the mass of a particle and its antiparticle. Let
the particle be called a, and its antiparticle as â. By definition, the mass of a
is its energy when it is free and at rest. We can write this in the form of an
equation:

ma ≡ 〈a(0) |H | a(0)〉 , (7.46)

where H is the Hamiltonian, including all interactions of all kinds. In what
follows, we will omit the momentum label on the states.

Now consider an antiparticle state of the same momentum and denote it
by
∣∣â
〉
. This should be the CPT conjugate of

∣∣a
〉
, except a possible phase

factor:

|Θa〉 = Θ |a〉 = eiθ |â〉 . (7.47)

Eq. (7.45) then gives, with the Hamiltonian as the operator O, the result

〈â |H | â〉 =
〈
a
∣∣H †∣∣ a

〉
. (7.48)
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The left hand side of this expression, in analogy with Eq. (7.46), is the mass
of the antiparticle. The right hand side, because of hermiticity of the Hamil-
tonian, is the mass of the particle. So we have proved that

ma = m
ba . (7.49)

The proof in fact entails some more general results. For example, by
considering the matrix element of the Hamiltonian between states of non-zero
3-momentum and following the same states, it can be easily proved that the
energy of a free particle with a given momentum is equal to the energy of
its antiparticle with the same momentum. More generally, even if the state∣∣a
〉

is not an eigenstate of the Hamiltonian, the same analysis shows that the
expectation values of the Hamiltonian in the states

∣∣a
〉

and Θ
∣∣a
〉

are equal.

2 Exercise 7.5 Argue along the same lines that the decay rates of a
particle and its antiparticle must be equal.

A similar proof can be constructed to show that the electromagnetic prop-
erties like the electric charge and the magnetic moment of a particle and its
antiparticle must be opposite. This is because all electromagnetic properties
are derived from the interaction with the photon, which can be written as

Lint = − jλAλ , (7.50)

by combining the results of Eq. (5.12, p 115) and Eq. (5.17, p 116). The CPT
transformed form of this Lagrangian term is

ΘLintΘ
−1 = −ΘjλΘ−1 ΘAλΘ−1 . (7.51)

The Lagrangian should be invariant under CPT, meaning that

ΘLint(x)Θ−1 = Lint(−x) . (7.52)

We know that the photon field transforms as

ΘAλ(x)Θ−1 = −Aλ(−x) , (7.53)

as shown earlier, in a more general notation, in Eq. (7.40). Combining these
pieces of information, we obtain

Θjλ(x)Θ−1 = −jλ(−x) . (7.54)

Electromagnetic properties of particles occur as matrix elements of the
current operator jλ between suitably defined states. For the properties of a
particle a, we should consider the matrix element

〈
a
∣∣jλ
∣∣a
〉
, whereas for an

antiparticle we should consider
〈
â
∣∣jλ
∣∣â
〉
. We can now follow the same steps

as we did for the Hamiltonian, the only difference coming from the minus sign
in Eq. (7.54), and the final answer would be

〈
â
∣∣jλ
∣∣ â
〉

= −
〈
a
∣∣jλ
∣∣ a
〉
, (7.55)
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which would imply that the electromagnetic properties like the charge and
the magnetic moment should be opposite for a particle and its antiparticle.

It should be noted that the crucial element in the deduction is the minus
sign coming in the transformation property of the photon field in Eq. (7.53).
The photon field is negative under the charge conjugation symmetry itself,
and so the same conclusion about particles and antiparticles can be reached
with charge conjugation symmetry alone. The difference is that the charge
conjugation symmetry is violated by weak interactions, and so it will not be
clear from such a deduction that the results would not be disturbed when weak
corrections are taken into account. CPT, however, is a symmetry respected
by weak interactions as well, so the deduction through CPT is guaranteed to
be maintained even after weak corrections are considered.

2 Exercise 7.6 The differential decay rate for the µ
± can be written in

the form

R± = R±
0

»

1 +A±
Se · p +B±

Sµ · p + C±
Se · Sµ +D±

p · Se × Sµ

–

,

(7.56)

where boldface letters denote 3-vectors, with p the momentum and Se

the spin of the electron or positron emitted in the decay, and Sµ the
spin polarization of decaying particle. Find conditions on or relations
between the quantities R±

0 , A±, B±, C± and D± assuming

a) � CP invariance only

b) T invariance only

c) CPT invariance only

Verify that, if CPT invariance holds, the consequences of CP and T
invariances are identical.

7.6 Time reversal transformation on states

As proposed before, we will take CPT invariance for granted in this book. But
time reversal symmetry might be violated. In order to obtain information
about that from particle interactions, we have to know how time reversal
symmetry transforms different particle states. We give the details for fermion
states here, leaving scalar and vector states as exercises.

Combining Eqs. (7.20) and (7.27), we obtain

T ψ(x)T −1 = ηT C−1γ5ψ(−x̃) (7.57)

for a fermion field. Using the plane wave expansion of fermion fields from Eq.
(4.65, p 72) and remembering the anti-linear nature of time reversal, the left
hand side of Eq. (7.57) can be written as

T ψ(x)T −1 =
∑

s

∫
D3p

(
T ds(p)T −1u∗s(p)e+ip·x

+T d̂†s(p)T −1v∗s(p)e−ip·x
)
. (7.58)
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As for the right side, we first note the spinor identities which have been proved
in Appendix F, using certain conventions about the phases of different spinors
which have been elaborated in the said appendix:

C−1γ5us(p) = −su∗−s(−p) , (7.59a)

C−1γ5vs(p) = −sv∗−s(−p) , (7.59b)

where s = ± in our notation. Thus,

C−1γ5ψ(−x̃) =
∑

s

∫
D3p

(
− sds(p)u∗−s(−p)eiEpt+ip·x

−sd̂†s(p)v∗−s(−p)e−iEpt−ip·x
)

=
∑

s

∫
D3p

(
sd−s(−p)u∗s(p)e+ip·x

+sd̂†−s(−p)v∗s (p)e−ip·x
)
. (7.60)

In writing the last step, we have changed the dummy index s and the dummy
momentum p to their negatives. Comparing this form with Eq. (7.58) and
using Eq. (7.57), we obtain

T ds(p)T −1 = sηTd−s(−p) , (7.61a)

T d̂†s(p)T −1 = sηT d̂
†
−s(−p) . (7.61b)

Clearly then, by the action of time reversal operation on a one-particle state,
the 3-momentum p and spin s of the state change sign. This is exactly what
we expect from classical mechanics as well, and was presented in Table 6.2
(p 178).

2 Exercise 7.7 Starting from Eq. (7.19) and using the plane wave ex-
pansion for a scalar field, show that the creation and annihilation
operators satisfy the relations

T a(p)T −1 = ηT a(−p) , (7.62a)

T a†(p)T −1 = ηT a
†(−p) . (7.62b)

7.7 Signature of time reversal violation

In §6.9, we discussed some correlations which indicate parity violation, It can
be noted that some of these, like correlations of three different momenta, is
not invariant under time reversal symmetry as well. However, such correla-
tions indicate only the violation of what can be called the näıve time reversal
symmetry. A true test of time reversal would constitute the reversal of ini-
tial and final states as well, and therefore cannot be performed using a decay
process.
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It is possible to find tests relating a scattering process to its reverse. How-
ever, the tests are not very clean because final-state interactions can also
mimic time reversal violation.

Earlier, we showed that the most general vertex function between a fermion
and the photon contains four form factors. Two of them respect parity in-
variance. It can be seen that these two respect time reversal invariance as
well. Among the other two which violate parity invariance, it can be shown
easily that the anapole moment term in fact respects time reversal invariance.
However, the electric dipole moment violates time reversal invariance as well.
Measurement of the electric dipole moment (EDM) of a fermion would con-
stitute a clean test for violation of time reversal invariance. So far, there are
only upper limits on such measurements. For the electron, the limit is

|d(e)| < 10.5× 10−28 e cm . (7.63)

There are also limits on the EDM of the muon and the tau, but they are much
weaker. In the hadronic sector, the best limit is on the neutron EDM. It will
be discussed in Ch. 21.

2 Exercise 7.8 Consider the electric dipole moment interaction. If the
form factor is a constant, the effective interaction can be written as

ψσµνγ5ψF
µν (7.64)

times a constant. Show that this interaction violates time reversal
invariance.

2 Exercise 7.9 Use the non-relativistic reduction of the anapole mo-
ment term given in Eq. (5.147, p 145) to verify that this interaction
violates parity, but not time reversal.

Once CPT invariance is taken for granted, there can be other types of
tests. If CPT is conserved, T violation is equivalent to CP violation. Thus,
we can look for tests of CP violation, which will be discussed at length in
Ch. 21. A class of CP violation tests have also inspired some novel ways of
testing T violation directly. Such tests will also be discussed in Ch. 21.



Chapter 8

Isospin

As mentioned earlier, quantum field theories are based on Poincaré symmetry
of the Lagrangian. This includes translational symmetries and the proper
Lorentz group. In earlier chapters, we found that electromagnetic interactions
are invariant under some discrete symmetries as well. All of these fall under
the general class of spacetime symmetries.

In Ch. 5, we also found that QED is governed by a gauge symmetry, or
a local symmetry, which is internal. It turns out that strong interactions
obey a large number of internal symmetries. We begin the discussion of these
symmetries in this chapter with the isospin symmetry.

8.1 Nuclear energy levels

Heisenberg noticed, in the early 1930s, that nuclei with equal mass numbers
show remarkable similarity regarding their energy levels. Check, for example,
some of the energy levels of 7Li and 7Be, shown in Fig. 8.1. The first one has
three protons and four neutrons, whereas the second one has four protons and
three neutrons. Such pairs of nuclei are called mirror nuclei , i.e., the number
of protons in one nucleus is the same as the number of neutrons in the other.

The similarity is striking, to say the least. There is a difference between the
ground state energies of the two nuclei, which has been indicated by drawing
the two ground states at different heights in the diagram. But, apart from
that, the states appear at more or less equal spacings for the two nuclei. Even
the spin and parity of the states are perfectly matched between the two nuclei.

More examples of this sort can be given, but the main point remains
the same. There is overwhelming evidence to suggest that the nuclear energy
levels depend only on the mass number, and not on the number of protons and
neutrons separately. Since the dominant force between protons and neutrons
comes from strong interactions, it implies that the strong interactions cannot
distinguish between a proton and a neutron. In other words, if we replace a
neutron by a proton in a nucleus, or vice versa, it makes no difference insofar
as the strong interaction is concerned. This idea took ground in the mid-
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States of 7Li
0.0 3/2−

0.477 1/2−

4.630 7/2−

6.680 5/2−

7.459 5/2−

States of 7Be

0.0 3/2−

0.429 1/2−

4.570 7/2−

6.730 5/2−

7.210 5/2−

Figure 8.1: Low-lying states of the nuclei 7Li and 7Be. On the left side of the levels,
we have given the energy of the level in MeV, measured from the ground state of the
corresponding nucleus. On the right side, we give the spin and parity of the state.

1930s, and has proved extremely successful. This is the basis of the isospin
symmetry, which we will discuss in §8.2.

We can ask, if the interaction makes no difference between the proton
and the neutron, why aren’t the energy levels of nuclei of equal mass number
exactly the same? The answer to this question is that the strong interaction
is not the only interaction in a collection of protons and neutrons. Between
two protons, there is also Coulomb repulsion. Since there are three protons in
7Li as opposed to four in 7Be, the Coulomb repulsion is higher in the latter.
As a result, energy levels of 7Be are higher than the corresponding energy
levels of 7Li, as seen in Fig. 8.1.

We can extend our discussion to mass number equal to 1. Here, we have
just the two particles, the neutron and the proton. We can compare their
masses. Experimental data show that

mn −mp

1
2 (mn +mp)

= 1.38× 10−3 . (8.1)

The two particles are remarkably degenerate. Of course, it is also true that
they are not exactly degenerate, and this raises the question: what causes the
difference between their masses? This question will be examined in §8.9.

8.2 Isospin symmetry

8.2.1 Group structure of isospin transformations

So far, we have talked about replacing a neutron by a proton, or vice versa,
and commented that the change is imperceptible to strong interactions. But
if the change is really imperceptible, it does not really matter whether we
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replace an entire neutron by an entire proton. For example, if we replace
a neutron by a state which is a superposition of neutron and proton, this
replacement should also go unnoticed by strong interactions. If we write the
proton and the neutron in the form of a doublet,

N =

(
p

n

)
, (8.2)

then the most general such replacement can be represented by a transforma-
tion of the form

N −→ N ′ = UN , (8.3)

where U is a 2 × 2 matrix. Since we do not want the normalization of the
states to be affected, the matrix must be unitary. In Ch. 3, we discussed that
such matrices form a group which can be called U(2). We also showed there
that

U(2) = SU(2)×U(1) , (8.4)

which means that the group U(2) of the general transformations has an SU(2)
part and a U(1) part, which are mutually commuting. The SU(2) part is called
isospin, in the sense described below. Strong interaction has this symmetry
and therefore conserves isospin. The U(1) part will be discussed later in the
chapter, in §8.10.

It may be worthwhile to make a few comments about the notation introduced in Eq. (8.2), since
such notation will be used often in the rest of the book. The object N has been shown as a
doublet. It contains two fields, viz., those of the proton and the neutron. Each of these is a
fermion field, which can be expressed in the form of a 4-component column. Thus, if we want to
write down N in its full glory, it should have eight components, the first four corresponding to
the proton field and the last four to the neutron field. If we make a Lorentz transformation, only
the first four components mix among themselves and the last four among themselves. Here, we
are talking of a different kind of symmetry whose transformations mix the upper block and the
lower block, without any intermixing within the blocks. This is the reason we have suppressed
the component structure of p and n while writing Eq. (8.2).

When both kinds of transformations are involved, we will continue to use the economic
notation of Eq. (8.2), assuming that the reader will understand from the context and from the
notation what kind of transformations we are talking about. For example, we might write a
bilinear of the nucleon field N in the form

Nγµτ
aN (8.5)

where the τa denotes the Pauli matrices. It would mean that the matrix τa should act on the
two blocks of four as a whole, whereas each of the two blocks has to be multiplied by γµ. For
example, with a = 3, the bilinear shown in Eq. (8.5) implies the combination (pγµp− nγµn).

8.2.2 Isospin representations

We find ourselves in a fortuitous situation because the isospin symmetry group
is SU(2). We learn about this group in any course of quantum mechanics
in connection with rotational symmetry. The group of proper rotations in
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3-dimensional space is called SO(3), where the “O” in the middle stands
for “orthogonal”, reminding us that any rotation can be represented by an
orthogonal 3×3 matrix, which tells us how the new co-ordinates of any point,
with respect to the rotated axes, are related to the old ones. But SO(3) is a
group that is not simply connected, so it is much better to use SU(2), which
is identical to SO(3) so long as infinitesimal transformations are concerned,
but has a different global structure. And that is what we do while discussing
representations of the rotation group.

The necessity and advantage of using SU(2) is most easily seen with spin- 1
2

particles. Suppose
we rotate the x and y axes of our co-ordinate system by an angle θ, keeping the z-axis unchanged.
The wavefunction of a spin- 1

2
particle in the new system of axes, ψ′, should be related to the

wavefunction ψ with respect to the original axes by the equation

ψ′ = exp(iθσz/2)ψ =
“

cos
θ

2
+ iσz sin

θ

2

”

ψ . (8.6)

This shows that even when θ = 2π, i.e., even when one has performed a complete rotation, ψ′

does not become equal to ψ. This is exactly a manifestation of the fact that SO(3) is not simply
connected. We are not getting into the explanation further because in the case of isospin, we
need not think about SO(3) at all. The physics of the situation automatically leads us to think
about an SU(2) symmetry.

We can apply all our knowledge of rotation group to obtain information
about the isospin group and its representations. In fact, the mathematics
is exactly the same, although it is now being applied in a different physical
context. The group has three generators. We can take the generators to be
hermitian, in which case they satisfy the following commutation relations:

[
Ii, Ij

]
= iεijkIk , (8.7)

where εijk is totally antisymmetric in the indices, as defined in Eq. (3.22,
p 44).

The irreducible representations of an SU(2) group are given by the eigen-
value of the operator

I2 = I2
1 + I2

2 + I2
3 . (8.8)

As we know from similar exercises with angular momentum multiplets, the
eigenvalues of I2 are in the form of I(I + 1), where the latter I is either an
integer or a half-integer. We denote the irreducible representation by this
number. Thus, just like spin-0, spin-1

2 or spin-1 particles, we can talk of
representations with isospin equal to 0, 1

2 , 1, etc. With isospin I, there are
2I + 1 states in the representation, like the angular momentum projection
states. An isospin-0 representation is thus just one state, and is often called
an isosinglet . Similarly, an isodoublet is a representation with I = 1

2 , which
has two states. I = 1 gives an isotriplet. Alternatively, representations with
I = 0, 1

2 , 1 are called isoscalar, isospinor and isovector respectively, because
their transformation under isospin is similar to the transformations of scalars,
spinors and vectors under spatial rotation.
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Since each of the generators I1, I2 and I3 commutes with I2, we can
diagonalize any one of them, along with I2 itself, to denote the states. Con-
ventionally, one takes I3, without any loss of generality. Within an irreducible
representation, the eigenvalues of I3 range from −I to +I with intervals of
unity, and the eigenstates are non-degenerate. All isospin states can thus be
written in terms of the basis states

∣∣I, I3
〉
, which are eigenstates of both I2

and I3. The statement made in Eq. (8.2) means that the proton and the
neutron are eigenstates of I2 and I3, with eigenvalues given by the following
table:

p n

I 1
2

1
2

I3
1
2 − 1

2

(8.9)

The proton and the neutron can thus be thought of the I3 = + 1
2 and I3 = − 1

2
manifestations of a single particle, which is called the nucleon.

Usually, in quantum mechanics textbooks, the angular momentum operator is denoted by J.
The eigenvalues of the operator J2 are written as j(j + 1), using the lower case letter. The
eigenvalues of the operator Jz are denoted by a different letter, m. For isospin, we are using
the same letter I for writing the operator I2 and the eigenvalues I(I + 1). Also, we are using
I3 to denote both the operator as well as its eigenvalues. This usage is customary, and we hope
that the meaning intended in any given formula will be obvious from the context.

The states
∣∣I, I3

〉
cannot be eigenstates of I1 or I2, because according to

Eq. (8.7) both of these generators have non-zero commutation relations with
I3. The ladder operators

I± = I1 ± iI2 , (8.10)

acting on the
∣∣I, I3

〉
states, can change the I3 value by one unit:

I± |I, I3〉 =
√
I(I + 1)− I3(I3 ± 1) |I, I3 ± 1〉 . (8.11)

Of course the right hand side can have an arbitrary phase factor. We have
chosen it to be unity.

2 Exercise 8.1 Show that
˛

˛

˛

˛

I± |I, I3〉
˛

˛

˛

˛

2

= I(I + 1) − I3(I3 ± 1) , (8.12)

assuming that the ket appearing on the left hand side is normalized
to unity.

8.3 Pions

Pions were conjectured theoretically by Yukawa in order to explain the interac-
tion between nucleons. He took the analogy of electromagnetic interactions,
where a photon is exchanged between charged fermions such as electrons.
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p n

π
+

n p

π
−

p p

π
0

n n

π
0

Figure 8.2: Basic vertices in the Yukawa theory.

Similarly, he thought, strong interaction is mediated by the exchange of some
bosons between the nucleons. To keep things simple, he assumed that these
bosons are spinless. These are the pions. According to the classification of
strongly interacting particles, or hadrons, that was introduced in §1.3, pions
therefore fall into the class called mesons, which are nothing but hadrons with
integer spin. The proton and the neutron are, on the other hand, baryons,
i.e., hadrons of half-integer spin.

Yukawa’s theory did not turn out to be a description of strong interactions
at a fundamental level. However, pions turned out to be real: they were
discovered a few years after Yukawa gave his theory. For this reason, and
also because Yukawa’s theory laid the prototype of fermion interactions with
possible fundamental scalars, we will describe the theory qualitatively here,
and more seriously in §8.8.

The main interaction vertices of Yukawa theory have been shown in
Fig. 8.2. It is easy to see that such vertices can give rise to nucleon-nucleon in-
teraction where the pion propagates as an internal line, much like the electron–
electron interaction diagrams given in Ch. 5 which use the photon as the me-
diator. These vertices also show that there should be three kinds of pions:
one with a positive electric charge, another with negative, and a third one
which is electrically neutral. The pions thus form an isotriplet, i.e., an isospin
multiplet with I = 1. The I3 values for the three pions are given below:

π
+

π
0

π
−

I 1 1 1
I3 1 0 −1

(8.13)

One might ask, what determines the I3 values for the pions? Or one might
go back one step further and ask why we took the proton, rather than the
neutron, to have I3 = + 1

2? Could we not have done otherwise?
Indeed, we could. As far as the nucleons are concerned, assignment of I3

is merely a convention. But once that is fixed, the assignment for the pions is
fixed as well. This can be seen as follows. Consider any process where there
are only nucleons and pions in the initial and the final states. Total electric
charge must be conserved in the process, i.e.,

∆Q ≡ ∆QN + ∆Qπ = 0 , (8.14)

where ∆QN is defined to be the difference of charges of the nucleons in the
initial and the final states, and ∆Qπ the same difference for pions. Isospin
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symmetry of strong interactions implies a similar relation for I3:

∆I3 ≡ ∆I3N + ∆I3π = 0 . (8.15)

With proton being assigned I3 = + 1
2 , in the nucleon sector we find

∆QN = ∆I3N . (8.16)

Therefore, the same relation must hold for pions:

∆Qπ = ∆I3π . (8.17)

This tells us that the I3-value of π
+ should exceed the I3-value of π

0 by one
unit, and the latter in turn should be 1 higher than the I3-value of π

−. Hence
the I3 assignments for pions shown in Eq. (8.13) are forced upon us.

If isospin were conserved in all kinds of interactions, components of any
isospin multiplet would have been degenerate. To be specific, the three pions
would have had the same mass. In reality, the π

+ and π
− have the same

mass, but this fact does not owe its origin to isospin invariance. The two
charged pions are antiparticles of each other, and CPT invariance ensures the
equality of their masses, as shown in §7.5. The neutral pion has a slightly
lower mass.

mπ± −mπ0

1
2 (mπ± +mπ0)

= 3.35× 10−2 . (8.18)

The smallness of this splitting, as well as the splitting for the nucleon given
in Eq. (8.1), is reassuring. It is consistent with the idea that isospin is indeed
conserved in strong interactions. The small splittings among the members of
an isomultiplet will be discussed in §8.9, as promised earlier.

8.4 Isospin relations

8.4.1 Forbidden processes

Most simply, isospin symmetry of strong interactions tells us that some pro-
cesses are allowed in strong interactions while some others are forbidden. Take
for example the reaction

d+ d −→ 4He + π
0 , (8.19)

which is allowed by charge conservation, where d denotes the deuteron nucleus,
2H. But the deuteron is an isospin singlet, so the state on the left hand side is
an overall isosinglet. On the right hand side, we have the 4He nucleus which
is again an isosinglet, whereas the π

0 is part of an isotriplet. A triplet and
a singlet cannot combine into a singlet state, so this process would violate
isospin, and hence will not be mediated by strong interactions. It can be
mediated through electromagnetic interaction though, which does not obey
isospin invariance.
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8.4.2 Relative strengths

Isospin symmetry can also help us find the relative strengths of two or more
processes, each of which conserves isospin. As an example, consider the pro-
cesses

π + d→ N +N , (8.20)

where π now stands generically for pions and N for nucleons. Since deuteron
has I = 0 as already mentioned, the state on the left hand side has I = 1.
On the right hand side, two nucleons, each having I = 1

2 , can combine into
an I = 1 state, so isospin is conserved in such processes. Owing to the
conservation of electric charge, the following possibilities can only arise that
fall under the general notation of Eq. (8.20):

π
+ + d→ p+ p , (8.21a)

π
0 + d→ p+ n , (8.21b)

π
− + d→ n+ n . (8.21c)

The states on the left hand sides of this set have the following values of I and
I3:

∣∣π+d
〉

= |1,+1〉 , (8.22a)∣∣π0d
〉

= |1, 0〉 , (8.22b)∣∣π−d
〉

= |1,−1〉 . (8.22c)

On the right hand side of Eq. (8.20), we have two nucleons which can combine
into an I = 0 or an I = 1 state. A state with two protons, for example, has
I3 = 1 and therefore cannot be an I = 0 state. Thus,

|pp〉 = |1,+1〉 , (8.23a)

|nn〉 = |1,−1〉 . (8.23b)

The transition matrix elements to the pp and the nn channels thus have
essentially the following isospin structure:

〈
pp
∣∣Hst

∣∣π+d
〉

= 〈1,+1 |Hst| 1,+1〉 , (8.24a)〈
nn
∣∣Hst

∣∣π−d
〉

= 〈1,−1 |Hst| 1,−1〉 , (8.24b)

where Hst is the strong interaction Hamiltonian. Conservation of isospin
implies that the amplitudes of the processes do not depend on the I3 values.
The amplitudes for the processes π

+d → pp and π
−d → nn are thus equal,

which implies that, barring corrections coming from electromagnetic effects
as well as from the small mass difference between the neutron and the proton,
the cross-sections are also equal:

σ(π+d→ pp) = σ(π−d→ nn) . (8.25)
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On the other hand, the combination of two nucleons with I3 = 0 can be
of two types:

|1, 0〉 =
1√
2

(|pn〉+ |np〉) ,

|0, 0〉 =
1√
2

(|pn〉 − |np〉) . (8.26)

Thus

|pn〉 =
1√
2

(|1, 0〉+ |0, 0〉) . (8.27)

The I = 0 part does not contribute because of isospin conservation, only the
I = 1 part does. So we obtain

〈
pn
∣∣Hst

∣∣π0d
〉

=
1√
2
〈1, 0 |Hst| 1, 0〉 . (8.28)

It should be noted that when π
0 interacts with deuteron, the final state

need not be
∣∣pn
〉
. By

∣∣pn
〉
, we denote a state in which the first particle is a

proton and the second one a neutron, in some way of numbering them. When
we wrote the π

0d reaction in Eq. (8.21), we did not really care which of the
final state particles is the proton and which one neutron, so

∣∣np
〉

would fit
the bill just as well. Note that

|np〉 =
1√
2

(|1, 0〉 − |0, 0〉) . (8.29)

In this language, the final state of the reaction π
0 + d→ p+ n can be either∣∣pn

〉
or
∣∣np
〉
. The total amplitude of transition into either of these two states

is
〈
pn
∣∣Hst

∣∣π0d
〉

+
〈
np
∣∣Hst

∣∣π0d
〉

=
√

2 〈1, 0 |Hst| 1, 0〉 . (8.30)

Thus

a(π0d→ pn)

a(π+d→ pp)
=
√

2

〈
1, 0
∣∣Hst

∣∣1, 0
〉

〈
1, 1
∣∣Hst

∣∣1, 1
〉 , (8.31)

where a(· · ·) stands for the amplitude of the process inside the parentheses,
without considering the order of the particles in the states. Remembering
that isospin conservation implies that the amplitudes do not depend on the
I3 values, the ratio on the right hand side is simply

√
2. If we neglect electro-

magnetic effects, as well as the mass difference between the neutron and the
proton and between the neutral and the charged pions, we obtain

σ(π0d→ pn)

σ(π+d→ pp)
= 2 . (8.32)

This is a non-trivial example where the ratio is neither zero (if one of the
processes is not allowed) nor unity, and comes basically through the Clebsch–
Gordan co-efficients which occur in Eq. (8.26).
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2 Exercise 8.2 The mirror nuclei 3H and 3He form an isodoublet. Show
that

a(p+ d→ 3H + π
+)

a(p+ d→ 3He + π0)
=

√
2 . (8.33)

2 Exercise 8.3 Consider the following reactions, proceeding through
strong interactions:

π
+ + p −→ π

+ + p , (8.34a)

π
− + p −→ π

− + p , (8.34b)

π
− + p −→ π

0 + n . (8.34c)

A pion and a nucleon can be either in a I = 1
2

state or in a I = 3
2

state. Show that, if the matrix element for the I = 1
2

state dominates
over the other, the cross-sections of these processes should be in the
ratio 0:2:1. In the reverse case, i.e., if the matrix element for the
I = 3

2
state dominates, show that the ratio should be 9:1:2.

8.4.3 Smushkevich’s method

This is a method for calculating relations among branching ratios and cross-
sections. In many cases, it is easier to apply than the Clebsch–Gordan co-
efficients, but it does not contain all the information that the Clebsch–Gordan
co-efficients carry. To introduce the method, we first need some definitions.

Definition 1: A collection of particles will be called uniform if it contains
equal number of each member of any isospin multiplet. For example, a
collection of 75 pions will be uniform if the numbers of π

+, π
0 and π

−

are 25 each.

Definition 2: The charge symmetry transformation (CS) on a particle is
defined by

CS |I, I3〉 = |I,−I3〉 . (8.35)

Thus, for example, CS acting on the proton will give the neutron, and
vice versa.

Isospin conservation is equivalent to finding the unique way of satisfying
the two following rules:

Rule 1: Uniformity of a collection of particles is preserved in isospin con-
serving processes.

Rule 2: Cross-sections and branching ratios are the same for a process and
its charge symmetric process.

To see examples of application of this rule, consider first the decay of an
uncharged isoscalar meson f0 which can decay to two pions. Conservation of
electric charge tells us that there might be two possible decay modes:

f0 →
{

π
+

π
− ,

2π
0 .

(8.36)
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Since f0 is an isosinglet, a collection of any number of these mesons is a
uniform collection. The final population of pions will then have to be uniform
as well, i.e., the number of π

+, π
− and π

0 should be equal. This implies that

Γ(f0 → 2π
0)

Γ(f0 → π+π−)
=

1

2
. (8.37)

Now suppose there is another isoscalar uncharged meson ω which cannot
decay to two pions for some reason, but can decay to three pions. Possible
channels, allowed by conservation of electric charge, are:

ω →
{

π
+

π
−

π
0 ,

3π
0 .

(8.38)

A collection of any number of ω mesons is uniform. The final population of
pions can be uniform only if the decay occurs exclusively to the π

+
π

−
π

0

channel. Thus we obtain the result that ω → 3π
0 is forbidden by isospin

invariance.

2 Exercise 8.4 Using Clebsch–Gordan co-efficients, verify the follow-
ing statements.

a) Eq. (8.37) gives the correct branching ratios;

b) The meson ω does not decay to 3π0.

8.5 G-parity

Since strong interactions are invariant under the operations of charge con-
jugation and isospin rotation, any combination of these symmetries is also
respected by the strong interactions. One such combination is very useful. It
is called the G-parity, and defined as

G = C eiπI2 . (8.39)

Let us see what it means. The symbol C , of course, is the charge conjugation
operation. It is multiplied by an isospin rotation: a rotation by 180 degrees
about the I2 axis. Such a rotation will change the directions of the other two
axes of isospin. In particular, I3 changes to −I3. So, this part is similar to
the operation CS defined earlier.

To see why this definition of G-parity is useful, consider what this oper-
ation does to the pions. The charge conjugation operation C , acting on the
π

+, changes it to π
− which has I3 = −1. But the specified isospin rotation

inverts the value of I3, returning it back to an I3 = +1 state, i.e., a π
+ back

again. Thus π
+, though not an eigenstate of either C or CS , is an eigenstate

of the G operation. So is π
−. The neutral pion is an eigenstate of both C and

CS , and is therefore an eigenstate of G as well. Thus the entire isomultiplet
of pions is an eigenstate of G-parity. Similar conclusions can be reached for
other isomultiplets of mesons. This is very convenient for analyzing processes
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where the initial or the final state contains only mesons, as we are about to
see.

To obtain the eigenvalue of G for the neutral pion state, we first note that
the C eigenvalue of π

0 is +1, because it can decay to two photons, as noted
earlier in Eq. (6.158, p 185). Since π

0 is a state with I = 1 and I3 = 0, its
behavior under an isospin rotation will be exactly similar to that of an orbital
angular momentum state with L = 1 and Lz = 0 under spatial rotations.

We know that the eigenfunctions of orbital angular momentum are given by the spherical har-
monics Y m

l , given in Eq. (6.95, p 168). The rotation operator analogous to exp(iπI2) is
exp(iπLy), which changes the sign of the x and z co-ordinates but keeps the y co-ordinate
unchanged. In the spherical co-ordinate system, it implies the changes

θ → π − θ , φ→ π − φ . (8.40)

Thus, under this rotation,

Pm
l (cos θ)eimφ → Pm

l (− cos θ)eim(π−φ) . (8.41)

This shows that Y m
l is not an eigenfunction of exp(iπLy) for arbitrary values of m. But it also

shows that the functions with m = 0 are eigenfunctions, since the exponential factor is unity
in this case, and the associated Legendre functions reduce to the Legendre polynomials Pl(x),
which have the property that Pl(−x) = (−1)lPl(x). Thus, under the co-ordinate changes given
in Eq. (8.40),

Y 0
l (θ, φ) → (−1)lY 0

l (θ, φ) . (8.42)

Carrying the analogy to isospin rotations, we conclude that

eiπI2 |I, I3 = 0〉 = (−1)I |I, I3 = 0〉 . (8.43)

Since π
0 has I = 1, it follows that its eigenvalue is negative for the operator

exp(iπI2). Combining this with the C eigenvalue of π
0 given in Eq. (6.158,

p 185), we conclude that

G
∣∣π0
〉

= −
∣∣π0
〉
. (8.44)

Let us now look at the charged pions. Since the π
+ is an

∣∣1, 1
〉

state in the∣∣I, I3
〉

notation, the application of the operator exp(iπI2) will turn it into a∣∣1,−1
〉

state, i.e., into a π
−. This doesn’t, however say that exp(iπI2)

∣∣π+
〉

=∣∣π−〉, because there might be a phase in the equation. Let us fix the phases by
the convention of Eq. (8.11). Note that the definition of the ladder operators
in Eq. (8.10) implies that

I2 =
1

2i
(I+ − I−) . (8.45)

Then,

I2
∣∣π±〉 = ∓ 1√

2i

∣∣π0
〉
,

I2
∣∣π0
〉

=
1√
2i

( ∣∣π+
〉
−
∣∣π−〉 ) . (8.46)
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Consequently,

(I2)2
∣∣π±〉 = ±1

2

( ∣∣π+
〉
−
∣∣π−〉 ) ,

(I2)2
∣∣π0
〉

=
∣∣π0
〉
. (8.47)

It can be easily shown that the actions of all higher odd powers yield the
same result as that given by I2 itself, and all higher even powers yield the
same result as that given by (I2)2. We can then write

exp(iπI2)
∣∣π±〉 =

(
1 + iπI2 −

π2

2!
(I2)2 + · · ·

) ∣∣π±〉

=
∣∣π±〉± (cosπ − 1)

∣∣π+
〉
−
∣∣π−〉

2
∓ sinπ

∣∣π0
〉

√
2

=
∣∣π∓〉 . (8.48)

As expected, the action of exp(iπI2) changes a charged pion to a pion of
opposite charge. The phase has been fixed by the convention taken in Eq.
(8.11).

Of course when we operate a charged pion state by the charge conjugation
operator C , that also changes the charge. If we fix the phases here by the
convention

C
∣∣π±〉 = −

∣∣π∓〉 , (8.49)

then we find that

G
∣∣π±〉 = −

∣∣π±〉 . (8.50)

Comparing with Eq. (8.44), we find that all three kinds of pions are eigenstates
of G-parity, and the eigenvalues are −1.

2 Exercise 8.5 An alternative definition of G-parity is

G = C eiπI1 . (8.51)

Show that with this definition also one can reach the G-parity as-
signments of Eq. (8.50) provided one defines the charge conjugation
phases by

C
˛

˛π
±¸

= +
˛

˛π
∓¸

. (8.52)

The G-parity is very helpful in any discussion about final states containing
pions only. For example, we discussed that the ω particle can decay into
three pions. This means that the ω is negative under G-parity. Since ω is
an isosinglet which is unaffected by exp(iπI2), it implies that ω is odd under
charge conjugation. Its negative G-parity tells us that it cannot decay into
two pions, for example.

Of course that is true if G-parity is conserved in the interactions. Strong
interactions are invariant under both isospin and charge conjugation, and
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therefore under G-parity as well. Electromagnetic interactions are invariant
under charge conjugation but not under isospin, as will be discussed in some
detail in §8.9. Thus, electromagnetic interactions do not respect G-parity.
The ω particle can decay into π

+
π

− through electromagnetic interactions.
This is an interesting observation. If the ω (or any other particle, for that

matter) can decay into a two pion state as well as into a three pion state, the
latter is expected to be suppressed from phase space considerations. However,
experimental data shows that

B(ω → π
+

π
−

π
0) = (89.1± 0.7)% ,

B(ω → π
+

π
−) = (1.70± 0.27)% . (8.53)

Clearly, the conclusion is that the amplitude for the two-pion decay mode is
much smaller. We have seen the reason why: the two-pion decay can occur
only through electromagnetic interactions, whereas the three-pion decay can
occur through strong interactions, as can be seen through G-parity consider-
ations.

8.6 Generalized Pauli principle

The Pauli exclusion principle, in its simplest form, says that in a multiparticle
system, it is not possible to put two or more identical fermions in the same
one-particle state. A more sophisticated and more general statement is this: if
one interchanges two identical fermions in the wavefunction of a multiparticle
system, the wavefunction changes by a sign. If we do the same thing on two
bosons, the exercise will not change the wave function at all. This can be
called a more generalized form of the Pauli principle in terms of the exchange
of two particles, and it includes fermions as well as bosons.

Now, what exactly is meant by the interchange of two particles? It cer-
tainly includes the interchange of their co-ordinates, which can be called the
spatial interchange. But that is not all. One needs to interchange other char-
acteristics of the particles as well. For example, if the particles have spin,
the spins need to be interchanged as well. Thus, we can summarize the Pauli
principle by the following statement:

(
Spatial

interchange

)
×
(

Spin
interchange

)
−→

{−1 for fermions,
+1 for bosons.

(8.54)

Under isospin, the proton and the neutron are considered to be two states
of the same “particle” called the nucleon: one with I3 = + 1

2 and the other
with I3 = − 1

2 , as announced right after Eq. (8.9). Therefore, in a system of
nucleons, we can extend the Pauli principle to include isospin interchange as
well. And of course, the exercise need not stop at nucleons. For any system
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States of nn

1.0

States of np

1.0

−2.2

States of pp

1.2

Figure 8.3: States of the dineutron, the deuteron and the diproton. The energy values
given to the left of the lines are in MeV, and their signs indicate that the deuteron has
a bound state, whereas all other states shown in the diagram are not bound.

of particles, this generalized form of the Pauli principle should mean that

(
Spatial

interchange

)
×
(

Spin
interchange

)
×
(

Isospin
interchange

)

−→
{−1 for fermions,

+1 for bosons.
(8.55)

Below, we explore some simple consequences of this principle.

a) Example 1

Consider two-pion states at relative orbital angular momentum zero. Pions are
bosons, so the states must be symmetric under the generalized Pauli principle.
Pions do not have spin, so there is no spin part of the wavefunction of a two-
pion state. The orbital part is symmetric under the interchange of the two
pions since L = 0 as stated above. Thus the isospin part of the wavefunction
must also be symmetric under the interchange of the two pions. A pion is
an isotriplet, so the combination of two pions can be in the isospin states
I = 0, 1, 2. Of these, the I = 1 state is antisymmetric under the interchange,
so it is not allowed. Two pions with L = 0 can only be in I = 0 or I = 2
states.

b) Example 2

Now consider states of two nucleons. One well-known bound state of this sort
is the deuteron, which contains one neutron and one proton. The nucleons
are fermions, so the generalized Pauli principle dictates that the state should
be antisymmetric under their interchange. The bound state has L = 0, so the
spatial part is symmetric under the interchange. The spin of deuteron is 1,
which means that it is the symmetric combination of the spins of two nucleons,
each of which has spin- 1

2 . Thus, the isospin part must be antisymmetric, which
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means that the two nucleons must combine into an I = 0 state. The deuteron,
thus, is an isosinglet: it is a stand-alone state.

If we consider spin-singlet states, the isospin part must be symmetric. In
this case, we will obtain an isotriplet, as shown in Fig. 8.3. For nn and np
systems, this state has the same energy. For the diproton system, however, the
energy is slightly higher because of Coulomb repulsion between the protons.
Of course, none of these three states is bound, as is seen from their positive
energy eigenvalues. However, unlike usual scattering states, the wavefunctions
of these states are normalizable. The existence of these states is inferred
from measurements of scattering phase shifts. The details are of not much
importance for the subjects that we want to discuss, so we are not getting
into it.

c) Example 3

As a final example of the application of the generalized Pauli principle, con-
sider three-nucleon states. Since nucleons have I = 1

2 , the combination of
three nucleons can have either I = 3

2 or I = 1
2 . To be specific, we talk of

the I = 1
2 states. Obviously, such states will contain two protons and one

neutron if the total I3 value is + 1
2 , in which case it will be the nucleus of 3He.

Alternatively, if total I3 is − 1
2 , there will be one proton and two neutrons.

This is the nucleus of 3H, also called the tritium nucleus. Both of them have
spin S = 1

2 . For both, the ground state has no orbital angular momentum.
Let us try to write the spin-isospin part of the ground state wavefunction

of 3He in the state Sz = + 1
2 . We first look at the spin part of the wavefunc-

tion. Here we have the task of starting with three particles of spin- 1
2 , and

constructing the state containing those three particles which has S = 1
2 and

Sz = 1
2 , a state which we will denote by

∣∣ 1
2 ,

1
2

〉
. We start with two particles,

which can be combined into a spin-1 or a spin-0 combination. In either case,
we can add the third particle and obtain the total spin to be equal to 1

2 .
If the first two particles are in a spin-1 combination, the overall combina-

tion after the addition of the third particle is given by

∣∣ 1
2 ,

1
2

〉
123

=

√
1

3
|1, 0〉12

∣∣1
2 ,

1
2

〉
3
−
√

2

3
|1, 1〉12

∣∣ 1
2 ,− 1

2

〉
3
≡ ψS . (8.56)

The subscripts on the states denote the particles contained in them. Thus, the
state on the left hand side of this equation is the combined state of all three
particles, whereas the spin-1 states on the right hand side contains only the
first two particles. We have used the standard Clebsch–Gordan co-efficients
to combine the angular momenta. The state is called ψS , where the subscript
indicates that the state is symmetric under the interchange of the first two
particles. This can be seen by the explicit forms of the combinations of these
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two particles:

|1, 0〉12 =
1√
2

(∣∣ 1
2 ,

1
2

〉
1

∣∣ 1
2 ,− 1

2

〉
2

+
∣∣ 1
2 ,− 1

2

〉
1

∣∣ 1
2 ,

1
2

〉
2

)
,

|1, 1〉12 =
∣∣ 1
2 ,

1
2

〉
1

∣∣ 1
2 ,

1
2

〉
2
. (8.57)

Using the notations of up-arrow and down-arrow for the states
∣∣ 1
2 ,

1
2

〉
and∣∣1

2 ,− 1
2

〉
of a single particle, we can thus write

ψS =
1√
6

(
(NH + HN)N− 2NNH

)
, (8.58)

where we have not put in the subscripts for the number of particles, because
each term has been arranged with particle number 1 first, number 2 second
and number 3 third.

The first two particles might also be in the antisymmetric spin-0 combi-
nation. In this case, the desired combination of the three particles is obtained
as

ψA ≡
∣∣1
2 ,

1
2

〉
123

= |0, 0〉12
∣∣ 1
2 ,

1
2

〉
3

=
1√
2

(NH− HN)N . (8.59)

Remember that ψS and ψA are symmetric and antisymmetric respectively
with respect to the interchange of the first two particles only. Neither shows
any particular symmetry when any of the first two particles is interchanged
with the third. Thus the spin parts of the wavefunctions do not satisfy the
Pauli principle by themselves.

But that is not necessary either. We have the isospin parts as well, and
only the combination needs to satisfy the Pauli principle. The mathematical
steps for the construction of the isospin parts of the wavefunction are exactly
the same, since we are aiming at the wavefunction of 3He, which is a state
with I = 1

2 , I3 = 1
2 . We can thus identify the following two combinations:

χS =
1√
6

(
(pn+ np)p− 2ppn

)
,

χA =
1√
2

(pn− np)p . (8.60)

We can now write the wavefunction of 3He in the spin-up state as
∣∣3HeN

〉
= a1ψSχA + a2ψAχS , (8.61)

where the co-efficients a1 and a2 need to be determined. Note that we have
not included the combinations ψSχS and ψAχA. Those are symmetric in the
interchange of the first two particles and are clearly unacceptable.

The relative magnitude of the co-efficients a1 and a2 can now be deter-
mined by imposing the Pauli principle. For this, we note that

ψSχA =
1

2
√

3

(
NHN + HNN− 2NNH

)
(pnp− npp)
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=
1

2
√

3

(
pNnHpN + pHnNpN− 2pNnNpH

−nNpHpN− nHpNpN + 2nNpNpH
)
. (8.62)

In the last step, we have written the terms in a different notation: by putting
the isospin and the spin characteristics of any one particle together. In a
similar notation,

ψAχS =
1

2
√

3

(
pNnHpN− pHnNpN + nNpHpN

−nHpNpN− 2pNpHnN + 2pHpNnN
)
. (8.63)

Putting these expressions back into Eq. (8.61) we obtain

∣∣3HeN
〉
∝ (a1 + a2)

(
pNnHpN− nHpNpN + nNpNpH

− pNnNpH + pHpNnN− pNpHnN
)

+(a1 − a2)
(
pHnNpN− nNpHpN + nNpNpH

− pNnNpH− pHpNnN + pNpHnN
)
. (8.64)

Clearly, the multiplier of a1 + a2 is not antisymmetric under the 1 ↔ 3 ex-
change, so we need to take

a1 = −a2 . (8.65)

Then, normalizing, we can write down the wavefunction as

∣∣3HeN
〉

=
1√
6

(
pHnNpN− nNpHpN + nNpNpH

− pNnNpH− pHpNnN + pNpHnN
)
. (8.66)

Once this is obtained, it is trivial to find the wavefunction of 3He in the
spin-down state: we merely have to interchange the up-arrows and down-
arrows in the expression in Eq. (8.66). If, on the other hand, we need the
wavefunction for 3H, we only need to interchange neutrons with protons in
the 3He wavefunction.

2 Exercise 8.6 Find the spin-isospin part of the wavefunction of 3He
in the state with Sz = 1

2
, assuming that this part of the wavefunction

is completely symmetric under the interchange of any two nucleons.
[Note : The result is not relevant for 3He or 3H, but will be important in a different
context later.]

2 Exercise 8.7 From the discussion on deuterons given above, write
down the spin-isospin part of the deuteron wave function in the states
Sz = +1 and Sz = 0.
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8.7 Isospin and quarks

Properties of nucleons and pions can be easily understood if it is assumed that
they are composite particles built of just two different kinds of fundamental
fermions which are called quarks. These two quarks, like the proton and the
neutron, transform like a doublet of isospin:

q =

(
u

d

)
. (8.67)

The upper component, or the I3 = + 1
2 component, is called the u-quark or

the up-quark. The I3 = − 1
2 component is called the down-quark, or d-quark

in short. Instead of saying that the up and the down are two different “kinds”
of quark, one often says that they are two different flavors of quark.

8.7.1 Nucleons

It is easy to see how the isospin properties of nucleons can be understood in
terms of these quarks. Since the nucleons are fermions, they must contain an
odd number of quarks. They cannot possibly contain just one quark because
then the nucleons would have to be the quarks themselves, and it would be
useless talking about quarks. So the smallest possible number of quarks in
a nucleon is 3, and we will stick to this simplest choice. The proton has
I3 = + 1

2 . The only combination of three u and d quarks that can give this
value is uud. For the neutron, we must have the combination udd since it
gives I3 = − 1

2 . The charges of these quarks can now be obtained by matching
with the known charges of the nucleons:

2Qu +Qd = 1 ,

Qu + 2Qd = 0 . (8.68)

The solution is

Qu =
2

3
, Qd = −1

3
. (8.69)

The quarks seem to have fractional electric charge in the unit of the proton charge. Historically
speaking, this was a shocking aspect of the quark hypothesis. Whenever anyone has performed
any measurement of the charge of anything, the result has always turned out to be an integral
multiple of the proton charge, positive or negative. This led to the belief that electric charge
has quantized values, and the unit is the proton charge.

The structure of the U(1) group, which is the gauge group for electromagnetism, does not
give any hint about why such quantization should be there. When we wrote down the phase
factor e−ieQθ in Eq. (5.2, p 112), there was no restriction on the number Q. All measured
charges are indeed multiples of the proton charge, and some other theoretical ideas were needed
to explain this phenomenon. The most notable was Dirac’s idea that if magnetic monopoles
exist, consistency of electromagnetic theory demands that the product of magnetic and electric
charges must be quantized. Much later, grand unified theories have justified charge quantization.

But none of these theoretical ideas really contradicts the presence of fractionally charged
particles. Even if charge is really quantized, there is nothing that tells us that it must be
quantized in units of the proton charge. After all, if we take the charge of the d-quark as the
unit, all charges turn out to be integral multiples of it.
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8.7.2 Pions

Let us now talk about pions. These are spinless bosons. So they must contain
an even number of constituent fermions. Consideration of baryon number, to
be discussed in §8.10, tells us that pions cannot contain only quarks. They
must contain quarks as well as antiquarks, and the simplest option is to have
just one of each.

The necessity of including antiquarks can be understood even without invoking the argument
about baryon number. Suppose the neutral pion can be composed of nu up-quarks and nd

down quarks, without any antiquarks. Then the electric charge of the π0 implies the relation

2

3
nu − 1

3
nd = 0 , (8.70)

whereas the I3 value of π0 tells us that

1

2
nu − 1

2
nd = 0 . (8.71)

The solution of these two equations is nu = nd = 0. This is meaningless, and we are back to
the conclusion that pions cannot contain only quarks: they must contain antiquarks as well.

Once this is decided, it is easy to find the content of the charged pions.
In fact, there is only one way to make a unit of positive charge from a quark
and an antiquark, viz., ud̂. This must therefore be the structure of π

+. The
negative pion, π

−, will contain dû.
What about the neutral pion? The combinations uû and dd̂ both are

chargeless, and can both be candidates. The wavefunction of π
0 will in fact

have to be a superposition of these two combinations, constructed in such a
way that the resulting state has I = 1 and I3 = 0. The task is now clear
cut: we have an isospin doublet of quarks given in Eq. (8.67). The antiquarks
must also form a doublet of isospin. Given the two doublets, we can combine
them into a symmetric combination to obtain the states in an isotriplet.

Before proceeding, it will be worthwhile to clarify a comment just made. We said that the
antiquarks bu and bd form a doublet of isospin just because the quarks do. Let us see why this is
so, and what is the exact analog of Eq. (8.67) for antiquarks.

Let us take a more general notation and suppose that the object

φ ≡
“φ1

φ2

”

(8.72)

transforms like a doublet under some SU(2) symmetry. This means that, under an SU(2)
transformation denoted by the parameters θa (a=1,2,3), we can write the transformation rule
for the doublet as

φ→ φ′ = exp
“

− i
τa

2
θa

”

φ , (8.73)

where the τa’s are the Pauli matrices. This tells us that, under the same SU(2) transformation,

φ∗ → φ′∗ = exp
“

i
τ∗a
2
θa

”

φ∗ . (8.74)

We can ask ourselves: is this the transformation law of a doublet? The answer is ‘no’, because
all Pauli matrices do not satisfy the condition τ∗a = −τa.

We therefore change the question and ask ourselves whether it is possible to find a matrix ε
such that εφ∗ transforms like a doublet. The matrix ε will have to be a constant matrix, in the
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sense that it should be invariant under SU(2) transformations. Eq. (8.74) implies that, under
an SU(2) transformation,

εφ∗ → ε exp
“

i
τ∗a
2
θa

”

φ∗ . (8.75)

On the other hand, we want εφ∗ to transform exactly as in Eq. (8.73), i.e.,

εφ∗ → exp
“

− i
τa

2
θa

”

εφ∗ . (8.76)

These two equations would be consistent with each other if the matrix ε satisfies the condition

ετ∗a = −τaε (8.77)

for each Pauli matrix. It is easy to see that this condition can in fact be satisfied if we choose

ε = iτ2 =

„

0 1
−1 0

«

. (8.78)

Clearly, the factor i in this choice is arbitrary. We have made this choice only to make the
elements of ε real. We have thus proved that if φ transforms like a doublet, so does

eφ ≡ εφ∗ =

„

0 1
−1 0

«

“φ∗1
φ∗2

”

=
“ φ∗2
−φ∗1

”

. (8.79)

We now get back to the quarks. For any quark field, the antiquark field will be defined
through Eq. (6.49, p 160). Apart from the matrix γ0C which shuffles the different components
of a quark field, it contains a complex conjugation of the field. Our exercise above then tells us
that, since the quark doublet is given by Eq. (8.67), the antiquark doublet will be given by

bq =
“

bd

−bu
”

. (8.80)

Combining two doublets into a triplet is easy. We can use the tables of
Clebsch–Gordan co-efficients and find that

|1,+1〉 =
∣∣ 1
2 ,

1
2

〉 ∣∣1
2 ,

1
2

〉
,

|1, 0〉 =
1√
2

( ∣∣ 1
2 ,

1
2

〉 ∣∣1
2 ,− 1

2

〉
+
∣∣ 1
2 ,− 1

2

〉 ∣∣1
2 ,

1
2

〉 )
,

|1,−1〉 =
∣∣ 1
2 ,− 1

2

〉 ∣∣ 1
2 ,− 1

2

〉
, (8.81)

where the states of the combined system are on the left hand sides of these
equations. From the two doublets given in Eqs. (8.67) and (8.80), we find
that the combination ud̂ will transform like

∣∣1, 1
〉
. Thus,

∣∣π+
〉

= d̂u , (8.82a)

as already mentioned from considerations of electric charge only. Similarly,
the π

− is the state that transforms like
∣∣1,−1

〉
of isospin, and so

∣∣π−〉 = ûd , (8.82b)

apart from an overall sign. The neutral pion is given by

∣∣π0
〉

=
1√
2

(
ûu− d̂d

)
. (8.83)
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Of course there might be an overall phase in the definitions of each of these
bound states.

One property of the pions is very easily explained in this model. The
pions are bound states of a quark and an antiquark, and in this respect are
like the positronium states discussed in §6.7. We saw, in Eq. (6.113, p 172),
that the parity of such states is given by (−1)L+1, where L is the relative
orbital angular momentum between the fermion and the antifermion. Pions
are the lightest mesons known, so the quark and the antiquark are expected
to be in an L = 0 state in pions. This tells us that the intrinsic parity of
the pions should be −1, consistent with the value deduced from experiments
mentioned in §6.8.

8.7.3 More hadrons

We have discussed the nucleons and the pions, but many other hadrons can
be built with the two flavors of quarks and their antiparticles. We can have
baryons, i.e., hadrons with half-integral spin, from three quarks. The other
kind of hadrons, which have integral spin and are called the mesons, can be
obtained by combining a quark and an antiquark. Let us get acquainted with
some of them.

In constructing the π
0 state, we combined the quark and the antiquark

into an isospin triplet. We can also combine them in an isosinglet. The only
difference would be in the relative sign between the two terms appearing in
the expression. Thus, the isosinglet state can be written as

|η0〉 =
1√
2

(
ûu+ d̂d

)
. (8.84)

In Ch. 10, we will see that this is not really the wavefunction of a physical
particle. Nevertheless, this combination appears in the wavefunction of two
mesons called η and η′.

As already remarked, the quark and the antiquark in pions are in a relative
L = 0 state. The combined spin must be zero, since the spin of the pion has
to be zero. Thus, the space-spin part of the pion wavefunction is 1S0. One
can easily contemplate other possibilities. For example, we can have mesons
whose isospin part of the wavefunctions will be the same as that for the
pions, but whose space-spin part has a 3S1 wavefunction. Spin is 1, orbital
angular momentum is 0, so the total angular momentum has to be 1, as
indicated in the notation. When we look at the whole combination as a single
unit, these details are irrelevant: we see a total angular momentum of the
constituents of the composite unit, which should be treated as the intrinsic
angular momentum of the meson. These will thus be spin-1 mesons, or vector
mesons. These are called the ρ mesons. Obviously this is an isotriplet, with
masses around 770 MeV. One can have higher values of L in the space-spin
configuration as well, which will give heavier mesons.
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There are baryons heavier than the nucleons. In nucleons, the spins of the
three quarks combine to make a spin- 1

2 particle. Obviously, the spins can be
combined into a total spin of 3

2 as well. It turns out that the isospin of the
resulting baryons is also 3

2 , and consequences of this fact will be discussed
in detail in §10.11.1. Thus, these baryons form a isoquartet, i.e., an isospin
multiplet with four members. Collectively, they are denoted by ∆, with masses
around 1232 MeV. If all the quarks are u-quarks, the hadron will be doubly
positively charged and will be denoted by ∆++. If there are two u-quarks
and one d-quark, the hadron is ∆+. With two d-quarks and one u-quark, we
obtain ∆0, and finally, with three d-quarks, we obtain ∆−.

A word of caution on the names of the baryons. Unlike the pions where π− is the antiparticle
of π+, the ∆− is not the antiparticle of the ∆+. The superscript on ∆ denotes the charge of
the baryon. Different charges occur due to different combinations of up and down quarks. The
antiparticles of baryons should contain antiquarks, and will be adorned with hats according to
our general scheme of denoting antiparticles. Thus, for example, the antiparticle of ∆+ will be
denoted by b∆−, and so on.

2 Exercise 8.8 The ∆ particles decay mainly to Nπ, i.e., to a nucleon
and a pion. Using the Smushkevich method or the Clebsch–Gordan
co-efficients, show that

Γ(∆++ → pπ+) : Γ(∆+ → pπ0) : Γ(∆+ → nπ
+) = 3 : 2 : 1 . (8.85)

[Hint : To apply Smushkevich’s method, start with equal numbers of ∆++, ∆+,
∆0 and ∆−, which will make it a uniform collection.]

8.8 Pion–nucleon interaction

Let us go back to Yukawa’s theory where the nucleons are supposed to interact
via exchange of pions. We are talking of strong interactions, so the theory
should conserve isospin. We can ask, what would be the exact form of this
interaction?

Even before that, let us settle some other issues. The interaction must
be Lorentz invariant. Since the pions are spinless, the nucleon fields must
also appear in a spinless combination. There are two such combinations, as
listed in Eq. (4.93, p 79), called the scalar and the pseudoscalar. Among these,
the pseudoscalar is odd under parity, as noted in Eq. (6.26, p 156). Since the
pions are odd under parity, they should couple to the pseudoscalar current in
order that the interaction is parity invariant. This means that the interaction
should involve terms like

pγ5nπ
+, nγ5pπ

−, pγ5pπ
0, nγ5nπ

0 . (8.86)

Isospin invariance would imply certain relations between the strengths of the
couplings of these different terms.

The interaction itself must be isospin invariant, i.e., an isosinglet. The
pion is an isotriplet. It can give an isosinglet only if it is coupled to another
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isotriplet. Since the nucleon is an isodoublet, two nucleon fields must appear
in an isospin-symmetric combination in the interaction.

What is a symmetric combination? Consider two doublets N and N ′,
written as column vectors. Obviously, the symmetric combination is of the
form MijN

′
iNj, where Mij = Mji. In matrix notation, we can say that a

combination of the form N ′⊤MN will be symmetric when M is a symmetric
matrix. The matrix will have to be hermitian so that the interaction is her-
mitian. Thus, the only choices are the unit matrix, and two of the three Pauli
matrices. Writing the Pauli matrices by τa (with a = 1, 2, 3), we can write
these choices for M as

M = ετa , (8.87)

with ε defined in Eq. (8.78). We need a combination with the nucleon dou-
blet N introduced in Eq. (8.2), and its complex conjugate. As shown in the
argument leading from Eq. (8.73) to Eq. (8.79), the object involving N∗ that
transforms like a doublet is the combination ǫN∗, which we identify with N ′.
Thus, the combination will be of the form (εN∗)⊤MN , or N †ε⊤MN , which
will be SU(2) invariant and symmetric, where M is given by Eq. (8.87). How-
ever, in order to make it Lorentz invariant as well, we need to use N , not N †.
Thus, finally, we can write the nucleon-pion interaction term of the Yukawa
theory as

Lint = g
∑

a

Nτaγ5Nπa , (8.88)

where the quantity g is a coupling constant. This is a compact form of writing
the interaction. If we expand it by explicitly writing down both components
of N as well as the explicit forms of the Pauli matrices, we get interaction
terms like those shown in Eq. (8.86).

Although Eq. (8.88) is consistent with the known symmetries of strong
interactions and should describe the dynamics of pion–nucleon interactions, it
is difficult to test it against experiments. The reason is that strong interactions
are, well, strong, which means that the coupling constant g appearing in
the interaction Lagrangian is not small. Thus it is meaningless to perform
calculations using perturbation theory as we have done for electromagnetic
interactions earlier in Ch. 5. Theoretical predictions are therefore hard to
obtain using Eq. (8.88).

2 Exercise 8.9 The objects πa appearing in Eq. (8.88) are not nec-
essarily the pions with specific electric charges that appear in Eq.
(8.86). Identify the charged and neutral pions in terms of π1, π2

and π3.

8.9 Isospin breaking

Even though isospin symmetry is respected by strong interactions, it is quite
obvious that it cannot be a good symmetry for all types of particle interac-
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tions. Electromagnetic interactions, e.g., are not isospin invariant. Making
an isospin rotation, we can turn a proton into a neutron, but a neutron has a
different electric charge and therefore does not have the same electromagnetic
interactions as the proton.

A little thought confirms that this cannot be the only source of isospin vi-
olation in nature. Of course weak interactions also do not respect isospin, but
the violations coming from it would be tiny. If electromagnetic interactions
were the only dominant sources of isospin violation, the proton would have
been heavier than the neutron, since Coulomb repulsion among the quarks in
a proton is higher than the same quantity in a neutron. In reality, however,
the neutron is heavier than the proton by about 1.3 MeV.

One possibility is that the d-quark is somewhat heavier than the u-quark.
Since the quark content of the neutron is udd as opposed to the proton’s uud,
a heavier d-quark would certainly make the neutron heavier than the proton.

The credibility to this hypothesis is strengthened by looking at the ∆
baryons. The average mass of the ∆’s, as mentioned earlier, is about
1232 MeV. But there are minute mass differences between the four particles
collectively known as ∆, signifying isospin violation. The ∆++, which con-
tains three u quarks, is about an MeV lighter than the ∆+, where one of the
quarks is d. Once again, this cannot be explained by electromagnetic inter-
actions, and can be explained by a heavier mass of the d-quark compared to
the u-quark.

This should not be taken to imply that the mass difference between the d
and the u quarks is the mass difference between the neutron and the proton,
or, for that matter, that between ∆++ and ∆+. As already stated, elec-
tromagnetic interactions between the quarks also introduce a mass difference
between the hadrons. Thus, we can write

mn −mp = (md −mu) + (electromagnetic contribution) . (8.89)

Since the electromagnetic contributions are negative, as discussed above, md−
mu is expected to be somewhat larger than mn −mp.

8.10 Baryon number

So far, we have talked about the isospin SU(2) symmetry of strong interac-
tions. We have not talked about the U(1) part that appeared in Eq. (8.4).
Let us now discuss that.

As we said earlier, the U(1) part commutes with the SU(2) part. It means
that the U(1) quantum number must be the same for all components of an
SU(2) multiplet. In particular, we can consider the nucleon, which is an
isodoublet introduced first in Eq. (8.2). The proton and the neutron should
have identical charge under this U(1). This charge is called baryon number ,
which we will denote by B. Since the scale of any U(1) charge is arbitrary,
we can set this charge to be +1 for both proton and neutron.
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We know the electric charges of both proton and neutron. We know their
I3 values. Now we assign their baryon numbers. Obviously, this new number
can be written as a combination of Q and I3. The relation can be easily
obtained, and it reads

Q = I3 +
B

2
. (8.90)

If we apply this formula to pions as well, we find that pions have B = 0.
Anything with B = 0 is not a baryon. Indeed, we said earlier that pions are
classified as mesons. Looking at the quark level structure, it is easy to see
why it must be so: the mesons have quarks and antiquarks, so the baryon
number cancels between them.

If we apply Eq. (8.90) for the up and down quarks as well, using their
isospin assignment from Eq. (8.67) and their charges from Eq. (8.69), we find
that

B =
1

3
(8.91)

for both quarks. This makes sense, since nucleons have the quantum numbers
of three quarks, and baryon numbers for quarks add up to give the baryon
number equal to +1 for nucleons. Under the same token, pions, which have
one quark and one antiquark, should have B = 0, because the baryon number
of the quark must cancel with that of the antiquark.

More generally, consider a hadron made up of the u and d quarks and their
antiquarks. Now define the following quantities:

Nu = (number of u-quarks)− (number of anti-u) (8.92)

in the hadron, and similarly the quantityNd. Then, obviously the total charge
of the hadron is given by

Q =
2

3
Nu −

1

3
Nd , (8.93)

and the I3 of the hadron is given by

I3 =
1

2
Nu −

1

2
Nd . (8.94)

And of course the baryon number of the hadron is given by

B =
1

3
Nu +

1

3
Nd . (8.95)

Eliminating Nu and Nd from these equations, we obtain Eq. (8.90). This
means that Eq. (8.90) is true not only for nucleons and pions, but for any
hadron made up of u and d quarks and their antiquarks.

2 Exercise 8.10 Verify that Eq. (8.90) holds for the ∆ baryons.
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In Eq. (8.4), we talked about the invariance of strong interactions under
the group U(2). Since baryon number is a part of it, it implies that baryon
number is conserved. This principle of conservation of baryon number in fact
holds for all interactions, as we will see.

One striking consequence of baryon number conservation is the absolute
stability of the proton. The reason is that the proton is the lightest baryon.
It cannot pass on its baryon number to a lighter particle. If anyone observes
an instance of proton decay, that would signal baryon number violation. No
one has ever seen anything to this effect.

We would like to make a comment about the expressions appearing in Eqs.
(8.93), (8.94) and (8.95). As mentioned clearly, they were intended only for
systems made from the two flavors of quarks and their antiquarks, and nothing
else. We know quite well that the total electric charge of any system cannot
be given by Eq. (8.93): there will be contributions from other fundamental
particles like the electron. Similarly, baryon number also receives contribution
to other flavors of quarks which will be discussed in subsequent chapters. The
expression for I3 is however the most general one, i.e., the only fundamental
particles that carry isospin are the u and the d quarks. Thus, from the
conservation of isospin in strong interactions, we can conclude that strong
interactions conserve the combination Nu − Nd. In fact, strong interactions
conserve more. The individual quark numbers, Nu and Nd, defined in the
sense of Eq. (8.92), are conserved in strong interactions. This will be discussed
later in §12.3 when we write the fundamental Lagrangian of strong interactions
in terms of quark fields.

Notice that electromagnetic interactions cannot change Nu or Nd either.
Fundamental electromagnetic interaction, whose theory was developed in
Ch. 5, always contains a ψ for every fermion field ψ, or a φ† for every scalar
field φ. Therefore, electromagnetic interactions cannot change the number
of any fundamental particle. The case is the same with strong interactions:
the number of each kind of fundamental particle (minus the corresponding
antiparticle) is conserved in strong interactions.
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Discovering particles

In Ch. 1, we mentioned names of various leptons and hadrons. Some of the
leptons appeared in our discussion of Ch. 5. In Ch. 8, some hadrons started
making their importance felt. At this point, let us make an experimental in-
terlude and ask ourselves how these particles were discovered. Of course we
cannot perform an experiment on the pages of a book. We will do something
that is next best: explain the principles that go behind the discovery of par-
ticles. As can be guessed, not all particles are discovered the same way. Here,
we will outline some basic techniques only. Specifics for individual particles
may be discussed in the later chapters as and when they are needed.

9.1 Discoveries of electron, proton and neu-
tron

This section summarizes the prehistory of particle physics. Among the parti-
cles which are today recognized as elementary, the earliest one to be identified
was the electron. In the first half of the nineteenth century, Faraday noticed
a luminescence when an electric current was passed through two electrodes
in a tube of rarefied air. The luminescence was termed cathode rays , and its
origin was debated. Some people thought that the rays came from some kind
of ions, while some others thought that the source was some kind of wave
phenomenon.

In 1896, Thomson thought of identifying the nature of cathode rays by
making a hole in the anode. Some of the particles coming from the cathode
would escape through this hole. Thomson passed the escaping cathode rays
through a crossed electric and magnetic field. On a screen placed at the
far end, he could see that the ray was deflected by this process, implying
that the ray consisted of charged particles. He found that the charge was
negative. Moreover, from the amount of deflection, he could determine the
ratio of charge and mass of the particle and found that it was three orders of
magnitude larger than that of any known ion. He concluded that the cathode

228
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rays consisted of very light particles with a negative electric charge, and called
them electrons.

2 Exercise 9.1 Consider Thomson’s experiment, with the electrons
traveling in +x direction. We find where it hits a screen placed on
its path. Call this point P . If we apply an electric field E = Eby,
the electrons will hit the screen at a point displaced from P along the
y-direction. Now we apply a magnetic field B = Bbz and adjust its
magnitude such that an electron hits the point P on the screen again.
Show that the velocity of the electrons is given by

v = E/B . (9.1)

Now we turn off the electric field so that the electron moves in a
circular path. If the radius of this path is R, show that the charge to
mass ratio of the electron is given by

|q|
m

=
v

BR
. (9.2)

[Note : This is how Thomson found the ratio q/m for the electron.]

No person’s name is attached to the discovery of the proton. Once the
existence of the electron was confirmed, it was obvious that an atom must also
contain some positively charged particle, since an atom is electrically neutral.
Geiger and Marsden published the results of their α-scattering experiments in
1909, which showed scattering through large angles. In a paper published in
1911, Rutherford demonstrated that the results of that experiment implied the
existence of an atomic nucleus that is positively charged. It was then naturally
concluded that the positively charged building blocks of atoms reside in the
nucleus.

The presence of some electrically neutral particles in the nucleus was antic-
ipated by the existence of nuclear isotopes. In 1932, Irene Curie and Frederic
Joliot showed that some neutral radiation coming out of nuclei in certain pro-
cesses cannot be gamma rays, i.e., electromagnetic radiation. Because the
radiation was neutral, one could not determine the mass of the particle from
its charge and its q/m ratio, as was done for the electron. In the same year,
James Chadwick determined the mass of the particles emitted by these pro-
cesses and found that the mass was very close to that of the proton. With
this, the existence of the neutron was established.

Although this happened in 1932, the idea of the neutron was around for
more than a decade by that time. Scientists started to believe that the elec-
tron, proton and the neutron are the only fundamental fermions in the uni-
verse. The proton and the neutron make the atomic nucleus, and the elec-
trons move around the nuclei. Electromagnetic interactions are mediated by
the photon. That is all there is to it! But this worldview was shattered al-
most as soon as it was born, with the advent of experiments with high energy
particles.
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9.2 New particles in cosmic rays

In §1.5, we explained why an exploration into smaller and smaller objects
required the control of higher and higher energies. In the early part of the
twentieth century, the kind of energy that could be produced in a laboratory
was not enough to produce any of the unstable particles in a collision process.

In the beginning of twentieth century, it was observed that various de-
tectors for charged particles, like the gold-leaf electroscope, produced a small
but non-vanishing signal even when not near any known source of charged
particles. At first it was thought that it was caused by radioactive substances
in the earth’s crust. However, Hess found that the flux increased in balloon-
borne experiments sent high up into the atmosphere. It was then concluded
that the signals came from processes taking place outside the earth, and were
therefore named cosmic rays. In various astronomical environments, processes
involving very high energies take place and produce particles. These particles,
on hitting our atmosphere, produce secondary particles.

Cosmic rays gave scientists an opportunity for studying high energy in-
teractions between particles to see what particles are involved. All that was
needed were detectors. Various kinds of detectors were developed in the first
half of the twentieth century. For example, Wilson developed the cloud cham-
ber in the 1910s. It consists of a chamber where supersaturated vapor of wa-
ter or alcohol is kept. The vapor cannot condense into liquid because there
is nothing like a dust particle that will provide a seed for condensation. If a
charged particle passes through the vapor, it ionizes the atoms along the path,
and these ions can act as seeds. Condensation of the vapor occurs along the
path, and the path has a foggy appearance. This can be photographed and
the paths analyzed later. The bubble chamber, developed in 1952 by Glaser,
utilized roughly the same kind of technique, except that a superheated liquid
took the place of the supersaturated vapor. With the need for detectors with
faster response and better resolution, detection techniques based on other
properties of matter were also invented, like the scintillation counter, photo-
graphic emulsions and so on.

The first new particle discovered in cosmic rays was the positron. In 1932,
Carl Anderson analyzed some cloud chamber photographs and found tracks
of a positively charged particle whose charge-over-mass ratio had exactly the
same magnitude as that for the electron. The absolute value of the charge-to-
mass ratio was determined by measuring the radius of curvature in an applied
magnetic field, which caused the charged particle tracks to be curved. In order
to find the sign of the charge, Anderson put a lead plate in the chamber, as
seen in Fig. 9.1. Any particle, after passing through the lead plate, would slow
down, so that its radius of curvature would decrease. Seeing the tracks, he
could tell which direction a particle’s path bent in the magnetic field, thus
determining the sign of its charge.

After Yukawa’s theory of nucleon-nucleon interaction was proposed in
1935, a search for pions in cosmic rays was launched. Indeed, within a cou-
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Figure 9.1: Discovery of the positron. The lead plate shows in the middle. The
curvature of the track clearly shows that the particle went from the lower side to the
upper side of the plate. [Reprinted with permission from: C. D. Anderson, Phys. Rev.
43 (1933) 491; c© (1933) by the American Physical Society.]

ple of years of Yukawa’s proposal, Anderson and Neddermeyer found some
cloud chamber tracks which corresponded to particles which were much heav-
ier compared to the electron but lighter than the proton. They thought that
they had found the pion. However, on closer scrutiny, it was revealed that
the properties of this new particle were rather similar to that of the electron.
In particular, the particle did not have strong interactions and had the same
charge as the electron. Later, in 1947, this particle was seen in the decay track
of yet another new particle, somewhat heavier. It was then concluded that
the heavier of these two new particles was the charged pion, and its decay
gave rise to the other particle, which is now called the muon. The existence
of the muon was completely unexpected from any theory at that time. When
the muon’s existence was finally confirmed, it still felt so much out of the
scheme of everything else that was known at that time that I. I. Rabi asked
his famous question about the muon: “Who ordered that?”

Discoveries continued. After the end of the second world war, the en-
deavor got boosts from accelerators in which controlled experiments could be
performed. Let us introduce the accelerators before getting into a discussion
of the newer and newer particles which were discovered.

9.3 Accelerators

There are limitations with cosmic rays: they cannot be used to search for new
particles beyond a few hundred MeV. Not that there are no processes with
energies higher than that range in cosmic rays. There are, but their numbers
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Figure 9.2: The basic idea of a cyclotron.

fall with energy, and become small enough beyond a few hundred MeVs so
that it is difficult to accumulate enough data to conclude the existence of new
particles.

It was therefore necessary, for the advancement of the field, that particles
be accelerated to high energies in a manner that their energy and flux can be
controlled within a range. The simplest way of accelerating charged particles
would be to let them travel through an electric field. Basically, this is what
was done in devices called generators , like the Cockcroft–Walton generator
or the van de Graaf generator. A huge potential difference was created and
maintained in such machines. Particles injected into one part of the machine
pass through the potential difference and come out at a higher energy. If the
charge of the particle is q and it is passed through a potential difference V ,
the gain of energy would be qV .

Experiments were performed by accelerating particles in such machines,
but the limitation of these machines was quickly realized. In order to pro-
duce particles with higher and higher energies, one needed higher and higher
potential differences. It is difficult to maintain huge voltages. Even the best
insulators break down beyond the megavolt range: sparks and breakdowns
occur. It was desirable to accelerate particles to high energies without actu-
ally giving them a big push with a high voltage. Rather, if the same thing
could be done by giving numerous pushes of smaller magnitude, one could
reach high energies without having to deal with the perils of high voltage.

Lawrence found a way of doing this around 1930. The basic idea is simple.
If a charged particle moves in a magnetic field, the force on it is qv×B, which
is perpendicular to the velocity. If the magnetic field B is homogeneous, the
magnitude of the force is constant. If the initial velocity of the particle is
perpendicular to B, the particle moves in a circular path whose radius is
given by Eq. (9.2). The time taken for the particle to go around half the
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∼

Figure 9.3: Schematic diagram of a linear accelerator.

circle would be

πR

v
=

πm

|q|B , (9.3)

which is independent of v. Lawrence now made the breakthrough by contem-
plating a mechanism to provide a periodic kick to the particle to increase its
speed. The result was his brainchild, the cyclotron. The first cyclotron was
built in 1931.

The cyclotron consists of two D-shaped cavities, with a magnetic field
perpendicular to the plane of the D’s. There is a little gap between the two
D’s. The two D’s are kept at different potentials, so that there is an electric
field in the gap. Whenever a charged particle finishes a half circle in a D,
it comes near the gap and gets a kick from the electric field there. The
potential on the D’s is alternating, with a frequency adjusted so that every
time the particle comes near a gap, the electric field is in the right direction
to accelerate the particle. As the energy of the particle increases, it travels
in bigger and bigger circles. Thus, repeated application of the electric field
increases the energy of the particle.

Lawrence’s argument about the fixed time taken for every half rotation
breaks down when relativistic effects become important. For this reason, and
for others which will be clear shortly, cyclotrons are rarely used in present day
high-energy experiments. They have been superseded by two different kinds
of accelerating machines.

The first kind of machines are called linear accelerators. In these ma-
chines, a charged particle passes through cylindrical cavities, with a small gap
between successive cavities. Alternate cylinders are connected to be on the
same potential, and all such cylinders are connected to an alternating source.
The frequency of the source is so adjusted that each time a particle comes
to the end of a cylinder, the potential difference between this cylinder and
the next one is of the right sign in order that the electric field accelerates the
particle.

The second kind of machines are called synchrotrons. Here the basic ge-
ometry is circular, like the cyclotron. The difference is that, whereas for a
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cyclotron the magnetic field is kept constant and the radius of the particle’s
path increases with energy, exactly the opposite occurs in a synchrotron. Par-
ticles orbit in a fixed circular ring, and the magnetic field is adjusted so that
the particles stay on the same path. There are also magnets which focus the
paths of the particles. The particles are accelerated by an electric field which
is applied at certain segments of the path.

There are two big problems in obtaining high energies in synchrotrons. The
first is the magnetic field available in the bending magnets. The second is that
the charged particles in a circular path are always accelerating because the
direction of their velocity is changing continuously. Any accelerating charged
particle emits electromagnetic radiation, known as synchrotron radiation. For
a particle of mass m moving in a circular path of radius R, the amount of
power radiated in the form of radiation is proportional to E4/(m4R2) when
the particle’s energy is E. Thus, both problems are ameliorated if one goes to
bigger and bigger values of R. This is the reason bigger and bigger machines
are built to explore higher and higher energies. Starting from hundreds of
MeVs of energy in the 1950s, GeV scale energies were available already the
1960s. In the 1980s, protons could be accelerated to TeV (i.e., 1012 eV or
tera-eV) energies.

There was another aspect of accelerator technology that helped us explore
high energy effects. In the early days, experiments were carried out by accel-
erating a beam of particles and dumping it on a fixed target. In other words,
the lab frame was the fixed target (FT) frame. In this case, only a fraction
of the energy of the incident beam can be utilized to produce heavy particles
in the final state. This is because the particles in the initial state have some
net 3-momentum. Therefore, the particles in the final states will also carry
the momentum, and will have some kinetic energy in addition to their mass
energy.

2 Exercise 9.2 Consider a scattering experiment A + B → C + D, per-
formed in the laboratory where the A particles are at rest. Suppose
mC + mD > mA + mB. Show that the minimum energy E that the
B particle must possess in order for this scattering to happen must
satisfy the relation

E >
(m2

C +m2
D) − (m2

A +m2
B)

2mA
. (9.4)

To get a feeling for the magnitudes, let us look at Eq. (9.4). To make the
exercise simple, let us consider thatmB andmD are negligible compared to the
other masses in this equation. Then, it shows that, in order to produce a C-
particle through this reaction that is r times heavier than A, (i.e., mC = rmA),
the incident B particle should have energies in excess of 1

2 (r2 − 1)mA. The
seriousness of this threshold can be understood if we consider, say, r = 10. It
shows that, in order to produce a particle 10 times heavier than A, we need
energies about 50 times the mass of A. Most of the energy is wasted: it is not
utilized in producing heavy particles.
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This loss can be avoided if, instead of taking one of the initial particles to
be stationary, we can make two particles collide head to head. This means
that the lab frame should essentially be the CM frame, in which there is
no net 3-momentum in the initial state. The final state particles can then
be produced even with vanishing 3-momentum, which means that we won’t
waste energy by giving kinetic energy to the final particles.

In order to achieve this in an experiment, we need to produce not one
but two oppositely moving beams. Two beams can be accelerated in opposite
directions with the same set-up if the charges of the two types of particles are
opposite and the masses equal, i.e., the two beams are composed of a particle
and its antiparticle. Otherwise, different mechanisms for acceleration have to
be installed for the two beams. Finally, the two beams are made to collide.
The idea of such machines developed in the 1960s. At first, they were called
storage rings, but the word collider has become more common gradually.
Because of these machines, the task of producing high mass particles has
become easier and more efficient. We will discuss some colliders in §9.8.

9.4 Detectors

Accelerators only accelerate particles and prepare them for a high energy
reaction. One still needs detectors to find out what are the products of the
reactions. Some forms of detectors like the cloud chamber or the bubble cham-
ber have been discussed earlier. Some of these are still used, especially the
bubble chamber. In addition, newer technologies have developed for detecting
particles.

The particular type of detector, or detectors, used in an experiment de-
pends not only on the energy range for which an experiment is intended, but
also on the type of particles that one wants to detect. For detecting photons,
photomultiplier tubes are widely used. For detecting charged particles, a vari-
ety of methods are employed. The principle of operation of a bubble chamber
has been described already. In scintillation detectors, one uses organic or plas-
tic material which generates optical photons when hit by an ionizing particle.
Čerenkov radiation, described in §5.2, is also utilized for the identification of
fast moving charged particles in a medium as well as for calorimetric measure-
ments. Compressed gas is used as the medium usually, but water has been
used as well. Since the refractive index of water is about 1.33, a particle will
emit Čerenkov radiation if its speed exceeds three-quarters of the speed of
light in vacuum.

There are also methods for detecting electrically neutral particles. Such
detectors are, in a broad sense of the term, calorimetric, meaning that the
method of detection hinges on the energy deposited in a detector when a
fast particle passes through it. Details vary about how the deposited energy
is measured. Of course, such methods can be used for charged particles as
well. The materials comprising the detectors have to be chosen according to
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Figure 9.4: Section of the CMS detector at the large hadron collider. The detector
is cylindrical, with small openings along the axis through which the two colliding beams
enter. The interaction point is at the center of the cylinder. The overall size of the
detector is indicated by drawing a person in the same scale. [Image: Tai Sakuma
c© CERN, for the benefit of the CMS Collaboration. Reprinted with permission.]

the needs, i.e., one has to make sure that the particles that one intends to
detect lose their energy fast enough to be registered. For detecting electrons
or photons, a light crystal, usually of sodium iodide, may be used if the energy
is not very large. For highly energetic electrons or photons, one has to use
metals of high atomic number, like lead or tungsten. For detecting hadrons,
a material like iron or copper is used.

In one aspect, detectors used in high energy collider experiments are very
different from those used in any other experiment. Think, e.g., of an experi-
ment where one is trying to study the gas discharge spectrum from a certain
element. One would take the gas in a discharge tube, would pass electricity
through it, and would set up a detector some place away from the discharge
tube to study the spectrum. This way, the experiment area subtends a small
solid angle in the detector, and a lot of information from the experiment never
reaches the detector. One can be nonchalant about this loss if a lot of data
can be collected despite such loss, and the experiments can be repeated eas-
ily to obtain more. High energy experiments involve huge accelerators which
are difficult to set up and are thus not many in number. Besides, in such
experiments one also often studies very rare processes, for which the event
count is very low. Some processes are not seen at all, and the experiment
puts upper bounds on the rates of these processes. For these reasons, high
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Figure 9.5: Parts of a modern detector, showing the functions of the different parts
as explained in the text. Regions have not been drawn to scale.

energy experimentalists do not want to lose data. They, therefore, do not
build small detectors which cover a small solid angle around the system under
study. Instead, the detectors in high energy experiments surround the colli-
sion region of the experiment. For collider experiments, the detector is set
up all around the interaction region, covering almost the entire 4π solid angle
around the interaction point. It cannot possibly be the full 4π because one has
to leave some room for the beam to enter the interaction point. But efforts
are made to minimize the opening due to the beam path. In Fig. 9.4, we show
the schematic diagram of one modern detector, surrounding the beam path
completely, except for the small opening through which the beams come in.

In a modern detector, detection of different particles takes place in different
coaxial cylinders carrying different kinds of detector materials. In Fig. 9.5, we
have schematically shown the functions of different zones of the detector. The
left end of the figure is the interaction region where the beams collide and
different particles come out in the process. First they have to go through
the tracking chamber, which records the paths of charged particles. After
crossing this zone, the particles enter the electromagnetic calorimeter, where
the electrons and the positrons are absorbed, and one can measure the energy
deposited by them. Photons are also absorbed in this zone, but they are
distinguished from the electrons and the positrons by the fact that they leave
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no track in the previous zone. Hadrons go through and enter the next zone,
where they lose their energy by interaction with the detector material. The
muons go through all these zones and are identified by their tracks in the
muon chamber, which is the outermost layer of a detector.

That being said, it should also be mentioned that not all experiments
relevant for particle physics are based on particle beams coming from a collider
or an accelerator, or even nuclear reactors. For example, it will be of great
interest to know whether the particles that we know as absolutely stable
are indeed so, or they decay with very large lifetimes. Many experiments
have been set up to check whether protons decay. Such experiments consist
of a huge container full of some material which invariably contains protons,
and detectors around the sample to see whether any of the protons decay.
No high energy particle is involved in the experiment. In addition, there
are a huge number of experiments where one tries to detect particles from
various extra-terrestrial sources in somewhat modern-day versions of cosmic
ray experiments. For example, there have been elaborate efforts to detect solar
neutrinos, i.e., neutrinos coming from the sun, a topic that will be discussed
in Ch. 22. Neutrinos from supernova explosions have also been detected. And
completely old-fashioned cosmic ray experiments, where one does not care
about the source but sees only the particle tracks or their energy deposition,
are still performed. In such experiments, the detector is obviously not near
the region of production of the particles.

9.5 Hadronic zoo

We said earlier that when the second world war ended in 1945, only a handful
of particles were known. Apart from the electron, proton and the neutron, the
muon was seen but not understood, and the positron was discovered in cosmic
rays. Neutrinos were suggested in order to explain the continuous spectrum of
electrons in nuclear beta decay and pions were suggested as carriers of strong
interactions, but there was no experimental confirmation of their existence.

The situation started to change in the late 1940s, and by the end of the
1950s, a great many new hadrons were found. We have already described the
discovery of pions. The antiproton was discovered in 1955. The pions were
expected on the basis of Yukawa’s theory, and the antiprotons on the basis of
Dirac’s theory of antiparticles, and the experiments confirmed the theoretical
expectations. Neutrinos were detected in 1956, some details of which will be
given in §9.7.

The first big taste of the unexpected came in 1947, the same year that
charged pions were discovered, in the form of some particles which appeared
always in pairs. It was conjectured that they carried a quantum number
that the earlier-known particles did not carry. This quantum number was
dubbed strangeness . The point was that, since the nucleons and pions did
not have any strangeness, a strong interaction involving them cannot produce
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Figure 9.6: The picture on the left shows bubble chamber tracks originated by an in-
coming π

− hitting a proton in the target. [Reprinted with permission from the Lawrence
Berkeley National Laboratory.] Some of these tracks have been shown in the diagram
on the right in solid lines, with dashed lines to show the inferred neutral particles which
have not left any tracks. The reaction at the lower right vertex is the reaction shown in
Eq. (9.6).

just one particle carrying this quantum number. There must be two, carrying
opposite values of strangeness, so that their contributions cancel. The first
strange particles found were the kaons (earlier called K-mesons) which are
spinless, and hyperons or Λ-particles which are spin- 1

2 fermions, produced in
reactions like

π
+ + n→ Λ +K+ . (9.5)

The charged particles were detected by their tracks, and the tracks of the
neutral particles were reconstituted from their production point and decay
point, where the decay particles left tracks. An example is shown in Fig. 9.6.

Here comes another important point. The tracks of these particles are long
enough to be seen or reconstituted. In §9.6, we argue that this means that
these particles do not decay via strong or electromagnetic interactions. Nev-
ertheless, they decay, which means in addition that the property strangeness
can be violated in weak interactions.

It is clear why the hyperons or kaons cannot decay through strong or
electromagnetic interactions. The kaons have masses around 495 MeV. They
are the lightest particles that carry any strangeness. Obviously, they cannot
decay unless strangeness is violated. The case for hyperons is a little more
complicated. They are certainly heavier than the kaons, so strangeness alone
cannot prevent their decay. As mentioned earlier, hyperons are fermions.
So, angular momentum conservation would demand that the decay product
should contain some fermions. The hyperon mass is 1115 MeV, and nucleons
are lighter. However, the mass is not heavy enough to produce a nucleon
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and a kaon in the decay. With a much bigger mass, it could have decayed
into a nucleon and a kaon, and then it could have decayed through strong
interactions. However, that does not happen and hyperons decay weakly into
non-strange particles like the nucleon and the pion. We will take the issue of
decays of hyperons and many other hadrons again in §10.9.

The K+ is not alone. A neutral particle can also be produced through the
reaction

π
− + p→ Λ +K0 . (9.6)

In fact, the reaction

π
0 + n→ Λ +K0 (9.7)

can also happen, although it would be difficult to observe because π
0 has a

very short lifetime. This K0 forms an isodoublet along with the K+, and
both of them have the same value of strangeness. The Λ, on the other hand,
proved to be an isosinglet. A convention was set such that the strangeness
(S) of K+ is +1, so that Λ has S = −1.

More baryons with S = −1 were found soon. An isotriplet of baryons was
found, with masses around 1190 MeV. They were collectively denoted by the
symbol Σ. The three particles in the isomultiplet have electric charges equal
to +1, 0 and −1, so that their individual names were decided to be Σ+, Σ0

and Σ− respectively. Like for the ∆ baryons mentioned in §8.7.3, it should
be noted that the Σ+ and the Σ− are not antiparticles of each other. Both of
them carry one unit of baryon number.

Baryons with S = −2 followed. They were called the cascades, and de-
noted by Ξ (the Greek capital letter ‘xi’). They form an isodoublet, consisting
of Ξ0 and Ξ−, with masses around 1320 MeV. The story of the discovery of
an S = −3 baryon will be discussed in Ch. 10.

In addition, there were discoveries of many hadronic states which did not
involve any novel quantum number like strangeness. The ∆ particles were
discovered in the early 1950s. As mentioned in Ch. 8, they do not carry any
strangeness, and seem to be composed of the u and the d quarks, just as
the nucleons are. At least the ∆’s differ from nucleons in their spin and
isospin (both of which are 3

2 ); some of the hadrons looked tantalizingly sim-
ilar to other hadronic states of lower mass. For example, isodoublet baryons
carrying no strangeness have been discovered around the mass of 1440 MeV,
around 1520 MeV, and 1535 MeV and so on. Similarly, non-strange I = 3

2
baryons have been found at 1600 MeV, 1620 MeV, and so on. The list of
mesons show similar features as well. We have mentioned the ρ mesons in
Ch. 8. We also commented that such a variety of particles is expected in the
quark model because the quarks can have many different space-spin configu-
rations within a hadron. There are many such strange hadrons as well, like
an isodoublet of mesons around 892 MeV which carry the same strangeness
as the kaons, although their spin is 1. The two particles in this isodoublet
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are collectively called K∗. As for baryons, there are the isotriplet Σ∗ particles
and the isodoublet Ξ∗, having the same values of strangeness as the Σ and Ξ
particles respectively.

The purpose of the section is not to give a complete catalog of each new
hadron that has been detected so far. In fact, it is not even possible to
do so, because there are literally hundreds of hadronic states which have
been discovered. We have presented only a few here to give examples of new
hadrons, and new quantum numbers that came with them. In Ch. 10, we will
explain that the quantum number strangeness is related to the existence of a
third flavor of quark, called the strange quark , apart from the up and down
introduced in Ch. 8. Beginning in the 1970s, scientists discovered hadrons with
three other quarks beyond these three. These quarks have been named the
charm, the bottom and the top, as was mentioned in Ch. 1. Physics involving
these three quarks will be discussed in Ch. 20.

9.6 Detecting short-lived particles

If a stable charged particle is created in a collision, one can see its track
through the detector. Even for unstable particles, one can see the tracks if
the tracks are long enough to be seen. For weakly decaying particles like the
charged pion or the muon, the tracks are indeed quite long. Charged pions,
for example, have a lifetime of the order of 10−8 s. If they travel at a speed
close to the speed of light, they would travel a few metres and will leave a
track. Even with a lower speed, the track will be appreciable. Muons have
even larger lifetimes: their tracks are long.

This is not the case if the lifetime is much shorter. Hadrons have strong
interactions. If a hadron can decay through strong interactions, its lifetime
will be very short. To obtain an idea of the shortness, we can make a very
rough order-of-magnitude estimate. In natural units, the decay rate (inverse
of lifetime) has the dimensions of mass. Without giving much thought about
anything else, we can write down a formula like

Γ ∼ g2m, (9.8)

where m is the mass of the decaying particle, and g is the strong coupling
constant without which the particle would not have decayed. We ignored the
masses of the decay products in order to obtain this näıve estimate.

The strong interactions are strong because the strong coupling is not small.
If we use g ∼ 1, the lifetime of a particle of mass of a few GeV turns out to be
of order 10−23 s. Needless to say, within such a small time the particle cannot
travel any distance for which a track can be seen in a detector. Of course a
particle can be produced with an energy much larger than its mass so that
its lifetime is longer in the lab frame because of time dilation. But even in
the most energetic machines, the effect is not large enough to be helpful in
this regard. For example, if a GeV-scale particle is produced with an energy
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of the order of 10 TeV, the time dilation factor is about 104, and the particle
can travel a distance of about 10−9 cm in its entire lifetime.

Even if a hadron decays dominantly through electromagnetic interactions,
the problem is the same. For electromagnetic interactions, the naive decay
rate formula given in Eq. (9.8) should be modified: the factor g2 should be
replaced by e2, or by the fine-structure constant α. Even after considering
the fact that α ≈ 1/137, the lifetimes are too short to leave any track of
any sort. It is therefore clear that hadrons which decay through strong or
electromagnetic interactions cannot be detected through their tracks. Some
indirect methods have to be applied, which we discuss now.

9.6.1 Resonances

Scattering cross-sections sometimes show a big increase in some energy range.
Such phenomena are called resonances.

To understand why resonance happens and what it indicates, let us take
a specific example of π

+ collision with protons. Starting from low momenta,
suppose we keep increasing the incoming energy. In order to make the discus-
sion simple, we consider the collision in the CM frame. The total 3-momentum
in this frame is zero. As the energy increases, the cross-section changes in some
manner that depends on the interaction dynamics. In the course of increasing
the energy, we reach a point when the total energy, including the mass ener-
gies of the pion and the proton, is equal to the mass of the ∆++. Certainly,
at this energy, a ∆++ particle can be created at rest.

Once created, the ∆++ particle lives for a very short time, decaying to
pπ+. Thus, the final result of the whole process is a proton and a pion,
the same as the initial particles in the scattering. The process, with the
intermediate production of the ∆++ and its subsequent decay, can therefore
be thought of as elastic scattering between a proton and a pion. Our goal
would be to understand the effect of the intermediate production of the ∆++

particle on the elastic scattering cross-section.
We can think of the proton-pion interaction to be mediated by an inter-

mediate ∆++. If we now try to write down the amplitude of the scattering
process using the normal prescriptions that were outlined in Ch. 4, the am-
plitude will involve the propagator of the ∆++. Our experiences so far show
that the propagator of any particle of mass m contains a denominator of
(p2 −m2). When the incoming energy of the proton and the pion is equal to
the mass of the ∆++ in the CM frame, this denominator vanishes since the
total 3-momentum is zero. It thus seems that the amplitude blows up at this
energy.

Of course, an amplitude cannot become infinite. We seem to be staring at
infinity because we have not considered the propagator properly. When we
wrote down expressions for propagators of different fields in Ch. 4, we tacitly
assumed that the particles corresponding to those fields are stable particles.
The ∆++ that we are encountering here is certainly not stable. If it were,
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i.e., if it had not decayed after being produced, we would not have obtained
an elastic scattering between the proton and the pion. In that case, the ∆++

would have been the final state particles, and its propagator would not have
been necessary.

To see the behavior of propagators of unstable particles, consider a scalar
field φ(x) for the sake of simplicity. The Klein–Gordon equation will not
describe such a particle, because that would give plane wave solutions, for
which |φ(x)|2 is constant. When the particle decays with a lifetime Γ in its
rest frame, the probability should go like

|φ(x)|2 ∼ exp
(
−m
E

Γt
)

(9.9)

in a frame where it has an energyE. The factor E/m present in this expression
is the usual time dilation factor for the lifetime, which is 1/Γ in the rest frame.
This suggests that we should have solutions of the form

φ(x) ∼ exp
(
−iEt+ ip · x− m

2E
Γt
)
. (9.10)

It is straightforward to check that this implies a differential equation

(2 +m2)φ(x) = imΓφ(x) , (9.11)

ignoring a term that contains Γ2, the cause for which will be given shortly.
Eq. (9.11) can be obtained from a Lagrangian

1

2
(∂µφ)(∂µφ) − 1

2
(m2 − imΓ)φ2 . (9.12)

Using the method outlined in §4.10, we then find that the propagator of the
unstable particle is given by

i

p2 −m2 + imΓ
. (9.13)

Before proceeding, let us discuss why the Γ2 term was neglected in writing Eq. (9.11). The term
would have been (mΓ/2E)2φ in the equation, and would be largest in the rest frame where
E = m. Denoting by T1 and T2 these two terms which are respectively linear and quadratic
in Γ, we see T2/T1 = 1

4
Γ/m. Now, if a measurement of the energy of the particle has an

uncertainty ∆E, according to the time-energy uncertainty relation the time ∆t required for
making the measurement must satisfy the relation ∆t∆E ≫ 1. For an unstable particle we
need ∆t < 1/Γ because otherwise the particle will disappear, and ∆E < m in the rest frame
where the energy is m. This gives m/Γ ≫ 1, which shows that T2/T1 ≪ 1.

The exact expression for the propagator is different for particles with dif-
ferent values of spin, but all of them contain a factor of the expression given
in Eq. (9.13). Going back to the example of proton-pion scattering, we can
now say that such a factor is present in the amplitude, where m is the mass
and Γ is the decay rate of the ∆++. In the CM frame of the proton and the
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Figure 9.7: Schematic nature of variation of cross-section with energy near the mass
of an unstable intermediate particle.

pion that we have been considering for the sake of simplicity, the amplitude
therefore has the form

a(E)

E2 −m2 + imΓ
+ b(E) . (9.14)

Here, a(E) represents all other factors that appear in the amplitude com-
ing from the intermediate ∆++ contribution, and b(E) represents amplitudes
coming from all other kinds of intermediate states.

The cross-section contains the absolute square of the amplitude, and so

σ ∝ a2 + 2ab(E2 −m2)

(E2 −m2)2 + (mΓ)2
+ b2 , (9.15)

if a and b are real. When E is not close to m, the b2 term dominates. As
E approaches m, the contribution from the a term increases, and becomes
maximum at E = m. The schematic nature of the variation of cross-section
with energy is shown in Fig. 9.7 with some arbitrary choice of the parameters
and functions that appear in the expression for cross-section. As we see,
because of the finite value of the lifetime, i.e., non-zero value of Γ, the cross-
section does not really blow up to infinity, but rather shows a hump. Such
humps are called resonances.

Now let us look at the whole problem from an experimental point of view.
Suppose we measure the cross-section for proton-pion scattering and see its
variation with the CM energy. We see that near 1232 MeV, the cross-section
shows a hump. We would then conclude that there is an unstable particle with
mass 1232 MeV that can decay to proton and pion. In fact, this is exactly
the way that the ∆ particles and numerous other hadrons were discovered.

At first people were reluctant to call these humps ‘particles’. The name
‘resonance’ seemed appropriate. However, gradually it was realized that there
is no good reason for not calling them particles. A particle has a definite mass:
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so does the peak of the resonance, which can be taken as its mass. Certainly
the resonance has a definite value of the electric charge, equal to the sum of
the electric charges of the particles whose scattering produces the resonance.
A hadron is expected to have a definite value of isospin. Comparison of the
decay rates of the resonances, like those shown in Eq. (8.85, p 223), confirmed
that the resonances indeed have a specific value of isospin. So there is really no
difference in the properties of a particle and a resonance: only that a resonance
can be a very short-lived particle. The width of the resonance indicates the
lifetime of this particle. One can study the properties of such particles by
studying the scattering phenomenon which shows the resonance.

One might wonder why the hump is bell-shaped rather than like a spike.
Naively, it might seem that the resonance particle will be produced only for a
particular value of the total energy of the initial particles. For example, if we
consider the process in the CM frame of the colliding particles, this particular
value should be equal to the mass of the resonance, since the resonance will
be produced with zero 3-momentum. True. But the point is that the time-
energy uncertainty relation tells us that the mass cannot be defined with an
accuracy better than the inverse lifetime, in natural units. This is the reason
for the width of the hump, and this is also the reason that the width of the
hump gives the lifetime of the resonance. The width of the hump, in energy
units, is often called the decay width for the same reason.

9.6.2 Reconstruction of events

Consider the following situation. In a scattering experiment, we see events
where four particles (say, A, B, C and D) are produced. To make things easy,
let us assume that each product particle is charged and lives long enough so
that we can see its track and determine its energy and 3-momentum. We also
notice the following feature of the particles produced. We take the particles
C and D, and calculate what the momenta and energies of these two particles
would be in a moving frame in which the total 3-momentum of these two
particles is zero, i.e., in the center-of-mass frame of these two particles. In
this frame, we calculate the total energy that these two particles have, and
find that its value is the same in all scattering events of the type described.

If the initial states directly produced the four particles A, B, C and D, such
a coincidence could never have occurred. Consider, however, the following
chain of events:

(initial state particles) A + B + X

︷ ︸︸ ︷
C + D . (9.16)

In other words, the scattering process really produced the A and B particles
and another particle X. This X is very short-lived, so we cannot see its track
and can only see its decay products, which are C and D. In this case, the total
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energy of the C and D particles in their CM frame should be equal to the mass
of X. Thus, by measuring the energies and momenta of the decay products,
we can infer whether a short-lived particle was produced in the intermediate
state even though we don’t see the particle directly, and can also deduce the
mass of the particle.

2 Exercise 9.3 Suppose in an experiment we find two particles whose
energies are E1 and E2 in the lab frame, and the 3-momenta are p1

and p2 (not necessarily along the same line). What would be the total
energy of these two particles in a frame in which they have equal and
opposite 3-momenta?

In practice things are often not so simple. For example, the final state
might contain not three but more particles. All of them may not be charged,
so we may not see the tracks of all decay particles. Also, if some of the particles
are identical, that would cause problems. For example, in the example above,
suppose C and A denote the same particle. This means that we got an A
particle from the scattering experiment directly, and another A particle from
the decay of X. As we look at the final tracks, we have no way of knowing
which A track came from the decay and which one from the earlier stage. In
this case, we will have to perform the analysis involving each AD pair. There
will now be a distribution of energies (by ‘energy’, we mean the total energy
of the AD pair in a frame in which their total 3-momentum is zero). However,
if we plot the number of pairs obtained with any given energy, there would
be a peak in the plot where energy equals X mass.

9.7 Discovering leptons

As mentioned in Ch. 1, there are three known charged leptons, and three
associated neutrinos. Among the charged leptons, the story of the discovery
of the electron and the muon have already been described in this chapter.
The story of the tau will be taken up later in this section, after we describe
the neutrinos.

Leptons do not have strong interactions. Neutrinos, among the leptons,
are electrically neutral and therefore do not have any electromagnetic interac-
tion either. Thus the only interaction they experience is the weak interaction.
Earlier in §9.6, we described problems in detecting strongly interacting parti-
cles: some of them which decay strongly decay very fast. Weakly interacting
particles cannot possible have this problem, but they pose problems of a dif-
ferent kind. Their scattering cross-section is so small with any kind of detector
material that they escape almost unscathed through any detector. To get a
feel for the magnitudes involved, consider neutrino interactions with nucleons.
We will derive formulas for the cross-section in Ch. 14. If 10 MeV neutrinos
fall upon nucleons at rest, the cross-section is of order 10−43 cm2, about 19
orders of magnitude smaller than the Thomson cross-section, introduced in
Ex. 5.9 (p 129), which gives a benchmark value for electromagnetic scattering
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cross-section. With the cross-sections that they have, the mean free path of
neutrinos through matter of normal densities is of the order of 1018 to 1019 cm,
about a million times larger than the earth-to-sun distance.

This is the main reason why neutrinos remained undetected for about a
quarter of a century after being proposed theoretically by Pauli. Finally, with
the advent of nuclear reactors, one could attempt to detect them in the 1950s.
Since reactors produce enormous numbers of antineutrinos, it was hoped that,
despite the feeble probability of interaction with the detection material, a few
neutrinos would in fact interact with their detector material and therefore be
detected. And this turned out to be right — from about 1020 antineutrinos
that are produced in a reactor per second, Reines and Cowan succeeded in
detecting about 2.88 per hour at an average.

The signal by which they performed their detection was indirect, but inge-
nious. According to Pauli’s hypothesis, a nuclear beta decay process involves
three particles in the final state. Essentially, a neutron in a nucleus decays:

n→ p+ e+ ν̂e , (9.17)

the decay products being a proton, an electron and a particle that is now
called the electron-type antineutrino. Because of crossing symmetry, one can
also contemplate the scattering process

p+ ν̂e → n+ e+ , (9.18)

which is often called the inverse beta process . Thus, if antineutrinos are
allowed to pass through a tank of water, a hydrogen nucleus (which is nothing
but the proton) will occasionally interact with the antineutrino to produce a
neutron and a positron. The task of detection is complete if one can detect
the neutron and the positron.

A positron, once it is produced, quickly undergoes pair annihilation with
an electron within the detecting material, releasing energy in the form of
gamma rays. To detect the neutron, Reines and Cowan kept cadmium in
their detector. This metal absorbs neutrons very efficiently by going to an
excited state, and relaxes by emitting a photon:

n+ 108Cd→ 109Cd∗ → 109Cd + γ . (9.19)

Thus, once the inverse beta reaction occurs, there will be two spurts of energy,
once from the positron annihilation and once from the neutron absorption.
From the rates of these processes, one can estimate the time difference between
the two spurts. If one sees two spurts of energy separated by that length of
time, that would constitute a signature for the antineutrino. That is what
Reines and Cowan succeeded in doing.

By the time this detection experiment was performed, muons and pions
had been identified. The decay of π

+ to positron and neutrino is very sup-
pressed, for reasons that will be elaborated in §17.5.1. The dominant decay
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channel turned out to be µ
+ and a neutral fermion, implying that the muon

is also accompanied with a neutrino. It was not known whether this neu-
trino was different from the neutrino that accompanies the electron. In 1962,
a group led by Lederman, Schwartz and Steinberger showed that neutrinos
produced from decays of charged pions in flight cannot induce inverse beta
reactions to produce electrons. This proved conclusively that the muon and
the electron are not associated with the same neutrino. The symbols νe and
νµ have been employed to denote the respective neutrinos ever since then.

Thus the list of elementary particles came to contain two charged leptons
and two associated neutrinos. The count changed in 1975, when Perl and
his team observed that in e+e− collisions with CM energy exceeding 3.5 GeV,
there were final states containing muon without any antimuon, or the opposite.
In other words, starting from the initial e+e− beams, they found final states
where µ

+e− or µ
−e+ were the only charged particles, and these two options

seemed to have equal branching ratios. The explanation of this phenomenon
was that in the collisions a third kind of charged lepton was produced along
with its antilepton. This new lepton, named τ

−, decayed with a lifetime short
enough so that its track could not be seen. The τ

− decay can occur through
electrons or muons, and some neutrinos. The τ

+ decay would occur to e+

or µ+. If the τ is much heavier than the muon, the phase spaces going to
e or µ final states would be roughly equal. In that case, the decay of τ

−

would produce e− or µ
− with equal probability, and similarly the decay of

τ
+ would produce e+ or µ

+ with equal probability. Overall then, charged
leptons and antileptons coming from the decay of a τ

+
τ
− pair can be e+e−,

µ
+e−, µ

−e+ or µ
+

µ
−, with roughly equal probability. Of course µ

+
µ
− can

be produced directly from e+e−, and there are e+e− pairs can be produced
in elastic scattering of the original beam. But µ

+e− or µ
−e+ pairs cannot be

produced otherwise, so observation of such final states with equal probability
indicated the existence of a third charged lepton, the τ.

With the knowledge that neutrinos associated with the muon and the elec-
tron are different, it was natural to assume that the τ-lepton has a separate
neutral particle, the ντ, associated with it. There was indirect evidence for
this belief that came from multiple sources. First, such a neutrino was re-
quired to cancel gauge anomalies, a subject that will be discussed in Ch. 18.
The Z boson decay width came out to be consistent with three neutrino
species that the boson can decay to, an issue that will be discussed in some
detail in Ch. 19. There were also the neutrino oscillation experiments, to be
described in Ch. 22. Such experiments, with neutrinos from different kinds of
sources, show that there are two different non-zero mass differences among the
neutrinos. Certainly, this needs at least three different neutrinos. The direct
experimental proof of the existence of ντ came about a quarter of a century
after the discovery of the τ-lepton, in a paper by the DONUT collaboration
published in 2001.

There is some reason to believe that there isn’t any other neutral fermion
similar to these three varieties of neutrinos. The biggest reason comes in
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the form of the decay rate of the Z bosons, one of the bosons that mediate
weak interactions. One can measure its total decay width as well as its decay
rates to all charged fermion-antifermion pairs. There is a mismatch, to be
described in more detail in Ch. 19, which can be accounted for if there are
three different neutral channels to which the Z boson can decay. Two such
channels are provided by the νe and the νµ, and the third one should be ντ.
If there are any more neutral leptons, they must either be heavier than 1

2MZ ,
or have very little coupling with the Z boson, so that they do not contribute
to the decay width of the Z.

9.8 Overview of particle physics experiments

In this section, we describe different kinds of experiments that are currently
in operation, or had been in operation in the recent past, which aim at under-
standing basic properties and interactions of fundamental particles. As might
be suspected, this will involve some overlap with the material presented in
earlier sections of this chapter.

Broadly speaking, all experiments related to particle physics can be divided
into two categories:

1. Non-accelerator experiments

2. Accelerator experiments

We discuss them separately.

9.8.1 Non-accelerator experiments

This category of experiments can be divided into two subclasses: those that
do not involve any high energy particle at all, and those that involve some
high energy particle in the initial state. The phrase “high energy particle” in
this context means that the kinetic energy of the particle is greater than, or
at least comparable to, the particle’s mass energy.

Let us first describe some of the experiments which do not involve any
high energy particle at all. These are usually experiments to test various
conservation laws. For example, we have talked about the conservation of
baryon number in §8.10, and said that it implies that the proton is absolutely
stable. To check whether this number is really conserved, we can test whether
the proton decays. This type of experiment is carried out by taking a huge
container or tank of matter and putting detectors all around, trying to detect
whether any signal of possible decay channels are seen. Many such experi-
ments were set up beginning in late 1970s, when the grand unified theories
made their appearance and predicted finite proton lifetimes, a topic that will
be discussed in Ch. 23. In another example of this sort, lepton number viola-
tion is searched by trying to observe whether neutrinoless double beta decay
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occurs in certain nuclei. The importance of this process will be described in
some detail in Ch. 22.

The second sub-class of non-accelerator experiments are done with cosmic
rays. This is still a vigorous area of research, although there has been a shift
in the emphasis since the early days of cosmic ray research. For energies which
are accessible to accelerators, cosmic rays are not very interesting. However,
sources outside the earth can provide particles with energies beyond the reach
of present day accelerators. Very high energy photons, or high energy neutri-
nos, can tell us about fundamental interactions at very high energies. They
can also be used to investigate possible sources of such high energy processes
in the universe.

Sometimes, the table is turned around in such investigations. For example,
since the late 1960s many experiments were set up to detect neutrinos coming
from the sun. The basic aim was to test models of the sun. Discrepancies
were observed between solar model predictions and the number of detected
solar neutrinos. Finally, it was found out that the key to the discrepancy lay
in some properties of neutrinos. The story will be described in Ch. 22.

9.8.2 Accelerator experiments

Accelerator experiments are of two types, as has been indicated earlier. In one
type, there is a fixed target, and it is hit by some kind of fast-moving particle.
In fact, this was the only kind of accelerator experiment until storage rings, or
colliders, were invented. In a collider, two opposite moving beams of particles
are made to collide.

The colliding beams must be beams of charged particles so that they can
be accelerated to high energies. The particles must be stable, at least in the
time scale needed to accelerate them, because otherwise the beams would
disappear through decay. An easy choice of stable charged particle is the
electron. Indeed, electron–positron colliders have been used for many exper-
iments, and many particles have been discovered through such experiments.
Another popular choice is the proton, for obvious reasons.

The machine at CERN which discovered the W and the Z bosons, carriers
of weak interactions, was called the SpS , or the super proton synchrotron. It
was a proton-antiproton collider, about 7 km long. After it discovered the W
and Z bosons, a more energetic machine called the LEP , or the large electron–
positron collider, was built, which had a circumference of about 27 km. It
made accurate measurements on the masses and decay widths of the bosons.
The mark of TeV as the CM energy was crossed by the machine called Teva-
tron at Fermilab. This was also a proton-antiproton collider, and the top
quark was discovered at this machine. The most energetic machine built so
far is the LHC or the Large Hadronic Collider , which uses the LEP tunnel
that is 27 km long. As the name suggests, it is a hadronic collider where
two proton beams are collided. There are plans for building an International
Linear Collider or ILC , which will be a electron–positron machine. It is pro-
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posed to be between 30 to 50 km long, more than ten times longer than the
longest linear accelerator that exists now, which is a 3.2 km long machine at
the Stanford Linear Accelerator Center (SLAC).

Note that the LHC machine has two proton beams, unlike the Tevatron which is a proton-
antiproton collider. The reason for this will be explained in Ch. 13.

It seems that, while making plans for building bigger and bigger machines,
one alternates between electron–positron and hadronic projectiles. There is
a reason behind it. Hadronic colliders have an advantage that protons are
roughly two thousand times heavier than the electrons. Thus, in order to
obtain colliding beams where the CM energy of each particle should have
a certain value E, the Lorentz factor E/m needed for the protons will be
much less than that needed for an electron. Put another way, using the same
resources, a proton-antiproton pair can be raised to much higher CM energy
compared to an electron–positron pair.

This advantage is counterbalanced by the fact that, as mentioned already
in Ch. 8, protons are not fundamental particles, while the electrons are. Pro-
tons are composed of quarks. From a fundamental point of view, when a
proton collides with an antiproton, the collision really occurs between a quark
in the proton and an antiquark in the antiproton. In fact, protons have a
substantial share of other fundamental particles in their constituents, like the
gluon, as will be shown in Ch. 13, and the collision can also take place between
such constituents. We do not know the momenta of individual quarks and
gluons inside the proton. The bottom line is that, when a proton-antiproton
collision occurs, we do not really know the momenta of the fundamental con-
stituents which are actually experiencing the collision. On the one hand, it
can be seen as an advantage: collisions occur for a broad range of momenta
of the constituent particles. But on the other hand, this fact introduces a lot
of uncertainty in interpreting the final state particles. Conversely, there is no
such problem in an electron–positron collision. We know precisely the energy
of the electron and of the positron which are undergoing collision.

Because of the advantage of hadronic colliders mentioned above, it is easier
to break energy barriers with them. Thus, exploration into higher energy
always starts with hadronic machines. Once some new particle is found with
the hadronic machine, an electron–positron machine is used to make accurate
measurements on it. This is why the two types of machines are called discovery
machines and precision machines respectively, and this is why the two types
of machines are alternately built.

There are also machines that use nuclei, rather than single electrons or
protons, for acceleration. A dedicated machine of this sort is the RHIC , or
relativistic heavy ion collider , at the Brookhaven National Laboratory. The
LHC can also use heavy ions. Collisions between heavy ions involve many
particles at a time, and one can obtain glimpses of collective behavior of
particles in such experiments.
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Earlier, we mentioned that if a hadron decays through strong or electro-
magnetic interactions, its path will be too short to be observed. If a hadron
decays via weak interactions, this is not in general the case. For example, the
charged pions have a lifetime of the order of 10−8 s. The Λ baryon has a life-
time that is a few times 10−10 s, so that even it can travel a few centimetres
before decaying. However, as we go to study heavier and heavier hadrons,
this advantage quickly fades away. For example, B0 mesons, which will be
discussed in detail in Ch. 20, have a mass of 5.28 GeV. Partly because of this
mass which is much larger than that of the Λ, the lifetime of this particle
is much shorter, about 1.5 × 10−12 s, even though the decay occurs through
weak interactions. Obviously, if the B0 particles are produced almost at rest,
the amount of path they travel in the entire lifetime would be too small to be
seen.

This was a problem in studying the properties of B mesons. In electron–
positron colliders, one produces bottomonium states, which are bb̂ states de-
noted by Υ. The ground state energy of the quark-antiquark pair is not
enough to produce the pair of mesons B0 and B̂0. However, there is an ex-
cited state, called Υ(4S), whose mass is just above the mass of the B0-B̂0 pair.
Thus, if Υ(4S) is produced at rest, or nearly at rest, the B0-B̂0 pair obtained
from its decay would also be nearly at rest, and hence the problem with the
short lifetime. It was therefore proposed that an asymmetric collider be built,
where the electron and the positron beam would have very different energies,
and therefore different magnitudes of momentum. Two such facilities started
operating around the year 2000, one in SLAC and one in the KEK laborato-
ries in Japan. In the SLAC facility, the electrons are accelerated to an energy
of 9 GeV whereas the positrons in the beam have an energy of 3 GeV each.
Thus the momentum imbalance is 6 GeV whereas the total energy is 12 GeV,
and therefore the Υ(4S) meson is produced with a velocity of 6/12 or half the
speed of light. The resulting B0 and B̂0 mesons also have roughly the same
speeds. In the lab frame, their lifetimes look longer because of time dilation,
and hence the track can also be longer and observable. The two detectors
mentioned have unearthed a lot of data, to be discussed later in the book.

We should mention that smaller machines are not rendered useless with
the advent of higher energy machines. The smaller machines act as injectors,
or pre-accelerators, to higher energy machines. For example, the SpS collider
at CERN has not been made obsolete with the installation of LHC. Rather,
the particles are pre-accelerated through SpS and then injected into the main
LHC tunnel. This chain, or hierarchy, goes on much further. At the beginning
of this chapter, we mentioned van de Graaf generators and Cockcroft–Walton
generators, which cannot be used these days to obtain the highest of energies
at which experiments are performed. However, they are still used in the
first stage of acceleration in almost all experiments. Once the projectiles are
accelerated through these generators, they are injected into other parts of the
machinery where further acceleration is obtained through more sophisticated
means.
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The effectiveness of an accelerator depends not only on the energy that can
be obtained with it, but also on the number of particles that can be stuffed in
the beams. The relevant physical parameter in this regard is called the lumi-
nosity, which gives the number of particles in each beam that crosses a unit
area in unit time. Sometimes it is called instantaneous luminosity in order to
distinguish it from integrated luminosity, which will be introduced presently.
Every machine is built with the plan of achieving a certain luminosity, which is
called the design luminosity . The machine first starts operating with a lower
luminosity, and then the luminosity is gradually increased toward the design
luminosity. For example, the design luminosity of the LHC is 1034 cm−2 s−1,
meaning that each beam contains a flow of 1034 protons per square centimetre
per second.

Certainly, the longer the beam is kept on, the more data is obtained. Thus,
the amount of data collected in a machine is given by its integrated luminosity,
which is nothing but the time integral of the luminosity at which the machine
operates. Consider, e.g., that the LHC operates at its design luminosity for
106 s. The integrated luminosity is then 1040 cm−2. Experimentalists often
use the unit barn for denoting cross-sections, the definition being

1 barn = 10−24 cm2 . (9.20)

The unit is motivated by the Thomson cross-section given in Eq. (5.77, p 129),
whose magnitude is of this order. Thus,

1 fb = 10−39 cm2 , (9.21)

where ‘fb’ denotes ‘femtobarn’, the prefix ‘femto’ implying 10−15. An inte-
grated luminosity of 1040 cm−2 will therefore be usually referred to as 10 fb−1.
As said above, the integrated luminosity gives a measure of the amount of data
accumulated in an experiment. For example, if the data accumulated is 1 fb−1,
it means that if some process has the cross-section of 1 fb, there will be at an
average one such event in the accumulated data.



Chapter 10

SU(3) quark model

We introduced two quarks in Ch. 8, and discussed hadrons which are made up
of these two quarks. We also saw how an SU(2) symmetry, viz., the isospin
symmetry, helps us understand various properties of these hadrons. At the
time when the idea of quarks was introduced, there already existed some
hadrons which could not be understood with only the u and the d quarks. So
the quark model was born with three types of quarks. We begin this chapter
with the reasons for assuming the third quark, and discuss the physics of
different hadrons made from the three types of quarks.

10.1 Strange quark

In Ch. 9, we talked about the discovery of a property called strangeness that
some hadrons possess. This property is conserved in strong and electromag-
netic interactions. Electromagnetic interactions are obtained by replacing the
derivatives occurring in the free Lagrangian of a field by ieQAµ, and hence
such interactions cannot contain two different fields other than the photon
field. As a result electromagnetic interactions cannot change one particle into
another. Strong interaction cannot change flavors of quarks as well, as has
been hinted earlier and will be explicitly seen when we write down the basic
Lagrangian of strong interactions in Ch. 12. So, probably the easiest way to
understand the conservation of strangeness quantum number is to imagine
that this quantum number is carried by a new particle. Since the strangeness
quantum number occurs in hadrons, it is natural to imagine that the new
particle needed to understand this conservation law is a quark, like the u and
the d quarks that constitute the nucleons and pions. This quark is called the
strange quark , and is denoted by s. This is then a third type of quark. Using
a word that was introduced in §8.7, we can say that it is a third flavor of
quark.

The K+ and the K0 constitute an isodoublet, as mentioned in Ch. 9. It
is natural to assume that the isospin property comes from the u and the d
quarks introduced in §8.7. Mesons, as seen earlier, have the composition of a

254



§10.2. Hypercharge 255

quark and an antiquark. Thus we can write

∣∣K+
〉

= uŝ ,
∣∣K0

〉
= dŝ . (10.1)

Their antiparticles will contain an s-quark:

∣∣K−〉 = ûs ,
∣∣∣K̂0

〉
= d̂s . (10.2)

From the charges of the mesons, it is clear that the electric charge of the
s-quark should be − 1

3e, i.e., exactly equal to that of the d-quark.
The quark compositions of the kaons and pions are quite similar. The

similarity does not end there. Both kinds of particles are spinless. Moreover,
measurement of parity of the particles shows that the kaons have odd parity,
just like the pions. In a succinct notation, one says that both pions and kaons
have JP = 0−, where J stands for the spin and the subscripted sign gives the
intrinsic parity of the particle.

10.2 Hypercharge

10.2.1 Hypercharge and charge of hadrons

Clearly, the charge formula of Eq. (8.93, p 226) does not hold for kaons. The
kaons are quark-antiquark states, so that their baryon number is zero. But
K+, for example, has I3 = + 1

2 .
However, it is also easy to see that a little modification of the formula will

make it applicable to kaons as well. Consider a hadron made up of nothing but
u, d and s quarks, and their antiquarks. Now define the following quantities:

Nu = number of u-quarks− number of anti-u (10.3)

in the hadron, and similarly the quantities Nd and Ns. Then, obviously the
total charge of the hadron is given by

Q =
2

3
Nu −

1

3
Nd −

1

3
Ns . (10.4)

As for the I3 value, notice that the strange quark and its antiparticle do not
carry any isospin, so that I3 of the hadron is given by

I3 =
1

2
Nu −

1

2
Nd . (10.5)

And of course the baryon number of the hadron is given by

B =
1

3
Nu +

1

3
Nd +

1

3
Ns , (10.6)

since all quarks carry a baryon number of 1
3 and all antiquarks − 1

3 .
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I3

Y

K+K0

π
− π

0, η π
+

K̂0K−

Figure 10.1: Isospin and hypercharge of JP = 0− mesons. The grid marks are at
distances of half units on both axes. Two circles (one filled and another around it) at
the center indicate that there are two particles there.

2 Exercise 10.1 For non-strange hadrons, i.e., for hadrons with Ns = 0,
verify that Eq. (8.93, p 226) follows from the above expressions for Q,
I3 and B.

It is not possible to eliminate Nu, Nd and Ns from these three equations to
obtain a relation between Q, I3 and B. However, there is a fourth quantity,
the strangeness S, which we have introduced in §9.5. We mentioned there
that according to the accepted convention, the K+ has S = +1. Since K+

contains the combination uŝ, as discussed in §10.1, we identify

S = −Ns . (10.7)

Taking help of Eq. (10.7), we can now eliminate Nu, Nd and Ns to obtain a
relation of the form

Q = I3 +
Y

2
, (10.8)

where the quantity Y is defined by

Y = B + S , (10.9)

and is called the hypercharge. The relation of Eq. (10.8) is called the Gell-
Mann–Nishijima relation.

10.2.2 Hypercharge and isospin

It is interesting to see the hypercharge and isospins of different particles that
we have already encountered. To be specific, we concentrate on the pseu-
doscalar mesons, i.e., mesons with JP = 0−. These include the isotriplet of
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I3

Y

K∗+K∗0

ρ− ρ0, ω8 ρ+

K̂∗0K∗−

Figure 10.2: Isospin and hypercharge of JP = 1− mesons.

pions, the two isodoublets of kaons and antikaons, and the isosinglet state
encountered in Eq. (8.84, p 222). In Fig. 10.1, we show these particles on a
plot of I3 versus Y .

We see a pretty pattern, and this is not a coincidence. The same pattern
occurs for other mesons as well. The mesons appearing in Fig. 10.1 all have
JP = 0− because the quark and the antiquark in any such meson are in a
relative 1S0 state. These are the states of lowest energy, as is usual in any two-
body bound state. But there are other possibilities. For example, the quark
and the antiquark might be in a relative 3S1 state. From the formulas derived
for positronium states in §6.7, it is obvious that the intrinsic parities of such
states would also be negative, so that these will be mesons with JP = 1−. We
show the I3 and Y values of such mesons in Fig. 10.2. It has the same pattern
as was seen in Fig. 10.1. Similar patterns can also be seen for baryons, and
we will discuss them shortly.

10.3 SU(3)

Gell-Mann and Neeman realized, in 1961, that the structure shown in Fig. 10.1
represents an irreducible representation of the group SU(3). Historically, it
is this realization which ushered the idea of quarks, which we have already
introduced, anachronistically, in our discussion. To see the connection, it
would be necessary to have a discussion on the mathematical structure of this
group and its representations.
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10.3.1 Some general properties of SU(N) groups

By definition, SU(3) is a group of 3×3 unitary matrices of unit determinants.
This means that, to each element of the abstract group, we can associate a
3 × 3 unitary matrix. More generally, the group SU(N) is defined by the
abstract group with which N × N unitary matrices can be associated. In
§3.4.1, it was shown that the number of generators of the group SU(N) is
N2 − 1. This means that the group elements of SU(N) are written in terms
of N2 − 1 parameters θa (a = 1, · · · , N2 − 1) as

U = exp (−iTaθa) , (10.10)

where the Ta’s are called generators of the group, and a sum over the index
a is implied. The determinant of U can be written as

detU = det exp (−iTaθa) = exp (−i trTaθa) . (10.11)

Since the left hand side is to equal 1 for arbitrary values of θa, we obtain

trTa = 0 . (10.12)

The generators of SU(N) groups are therefore always traceless matrices.
If we take all the parameters θa to be real, it easily follows that the gen-

erators will be hermitian. The generators of SU(N) can thus be represented
by traceless hermitian matrices. As is obvious from Eq. (10.10), the number
of generators is equal to the number of parameters, i.e., N2 − 1 for the group
SU(N).

It should be emphasized that it is not necessary to take the parameters θa to be real, or
equivalently, the generators to be hermitian. For example, for the rotation group, we can use
the hermitian generators Jx, Jy and Jz , but for some problems it is convenient to use the ladder
operators J± = Jx ± iJy, which are not hermitian. Of course, if we want to define a general
element of the rotation group in terms of the generators J± and Jz , the parameters multiplying
J+ and J− will be complex, and in fact they should be complex conjugates of each other.

2 Exercise 10.2 Prove that the structure constants of SU(N) are real
when the parameters are chosen to be real.

10.3.2 Fundamental representation

From the general discussion on SU(N) groups, we learned that one requires
eight parameters to represent SU(3) group elements and consequently eight
generators. The generators are traceless, and can be chosen to be hermitian.

By the very definition of the group, the elements of SU(3) can be repre-
sented by 3×3 matrices. This representation, which follows from the definition
of the group, is called the fundamental representation of the group. To ob-
tain the generators in this representation, we can try to find 3 × 3 traceless
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hermitian matrices. Here is a set:

λ1 =




0 1 0
1 0 0
0 0 0


 , λ2 =




0 −i 0
i 0 0
0 0 0


 ,

λ3 =




1 0 0
0 −1 0
0 0 0


 ,

λ4 =




0 0 0
0 0 1
0 1 0


 , λ5 =




0 0 0
0 0 −i
0 i 0


 ,

λ6 =




0 0 1
0 0 0
1 0 0


 , λ7 =




0 0 −i
0 0 0
i 0 0


 ,

λ8 =
1√
3




1 0 0
0 1 0
0 0 −2


 . (10.13)

We have normalized all of them such that they satisfy the relation

tr(λaλb) = 2δab . (10.14)

It is customary to choose the generators in the fundamental representation
in such a way that they satisfy the relation

tr(TaTb) =
1

2
δab . (10.15)

For example, for the group SU(2), this normalization tells us that the genera-
tors in the 2-dimensional representation are given by τa/2, where the τa’s are
the Pauli matrices. Similarly, for the group SU(3), if we denote the represen-
tation of the generators by ta, we can write

t(f)
a = λa/2 , (10.16)

where the superscript is the first letter of the word ‘fundamental’, which is the
representation described by this relation. This means that the 3 × 3 unitary
matrices of unit determinant can be written in the form

exp

(
−iλa

2
θa

)
(10.17)

using the matrices defined in Eq. (10.13).

2 Exercise 10.3 The λ-matrices shown in Eq. (10.13), taken together
with the unit matrix, can be used as a basis for writing any 3 × 3
matrix. Writing an arbitrary matrix A as a linear combination of
these nine basis matrices, show that

λa
αβλ

a
α′β′ +

2

3
δαβδα′β′ = 2δαβ′δβα′ . (10.18)
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One general property of the group becomes obvious during the exercise of
constructing the representation of the generators. Notice that in Eq. (10.13),
there are two diagonal generators, which have been given the names λ3 and
λ8. The situation is different from SU(2), where in any basis we can have
at most one diagonal generator. In SU(3), there are two generators which
commute with each other.

It is easy to see that we cannot have more than two diagonal generators
by changing the basis of the representation. A diagonal 3×3 matrix has three
elements, only two of which are independent because of the constraint of
tracelessness. Thus, there can be only two linearly independent 3×3 matrices
which are diagonal, hermitian and traceless at the same time. Equivalently,
we can say that in SU(3), we can choose two generators to commute with each
other. Introducing a terminology, we say that SU(3) group has rank 2. SU(2)
has rank 1, and SU(N) has rank N − 1.

10.3.3 Conjugate representation

There is, in fact, another inequivalent 3-dimensional representation of SU(3).
This can be seen as follows.

Consider two arbitrary elements G1 and G2 of the abstract group. Their
product is also an element of the group, and let us call it G1G2. A representa-
tion is a mapping from the group elements to any collection of matrices that
preserves the group multiplication property. In other words, if the elements
G1 and G2 are represented by the matrices RG1 and RG2 and the product by
RG1G2 , matrix multiplication should obey the result

RG1RG2 = RG1G2 . (10.19)

Clearly, Eq. (10.19) implies the relation

R∗
G1
R∗

G2
= R∗

G1G2
. (10.20)

Thus, if we associate a different set of matrices R to the abstract group ele-
ments by the rule

RG = R∗
G (10.21)

for all elements G, the matrices R would also constitute a representation of
the group. This representation would have the same dimension as R, and
can be called the conjugate representation of R for obvious reasons. We will
denote the fundamental representation of SU(3) by 3, and the conjugate of
the fundamental by 3∗.

In the 3-representation, any group element G is represented by a matrix
of the form given in Eq. (10.17), i.e.,

RG = exp

(
−iλa

2
θG

a

)
(10.22)
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for a set of real parameters θG
a . Thus,

R∗
G = exp

(
i
λ∗a
2
θG

a

)
. (10.23)

Comparing these two equations, we find that the generators in the 3∗-
representation are given by −λ∗a/2.

These comments about conjugate representations apply to any represen-
tation of any group. It is also obvious, from the discussion above, that if the
generators are represented by the matrices ta in the representation R, they
will be represented by the matrices −t∗a in the representation R.

In some cases, however, the distinction between the representations R and
R vanishes. Suppose, for a certain representation, we find that that there is
a constant unitary matrix ǫ such that

−t∗a = ǫtaǫ
−1 (10.24)

for all generators. In other words, we find that the matrices −t∗a are related
to the matrices ta by a similarity transformation. This would mean that they
are essentially the same set of operators written in two different bases, and
they can be called equivalent. In this case, the representation can be called
self-conjugate, or simply real. Obviously this happens if all generators are
represented by matrices which are purely imaginary, in which case Eq. (10.24)
is satisfied by taking ǫ as the unit matrix. But this is not a necessity. For
example, in Eq. (8.78, p 221), we found that a relation such as Eq. (10.24) can
be satisfied for the 2-dimensional representation of the group SU(2), whose
generators are not all imaginary. In fact, all representations of SU(2) obey
such a relation, so that all its representations are real. For this reason, SU(2)
is sometimes called a real group.

For SU(3), all representations are not real. In fact, for the matrices λa

given in Eq. (10.13), it is impossible to find a matrix ǫ that would satisfy a
relation of the form of Eq. (10.24), so that the fundamental representation is
indeed complex, i.e., 3 and 3∗ are inequivalent. However, all representations
are not complex either. We will see that there are some real representations
of SU(3), and as a matter of fact for any group.

10.3.4 Examples of other representations

All groups have a 1-dimensional representation, or a singlet representation. If
we associate each element of the group with the number 1, or the 1×1 matrix
whose only element is 1, group multiplication property of Eq. (10.19) will be
automatically satisfied. The generators in this representation are given by

t(s)a = 0 ∀a . (10.25)

Obviously the generators do not have any real part and therefore this repre-
sentation is real.
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All continuous groups must have at least another real representation. This
is defined through the relation

(
t(ad)
a

)
bc

= −ifabc . (10.26)

On the left hand side, we have written a particular matrix element of the
matrix t

(ad)
a . On the right hand side, we have the structure constants of the

group which were defined in Eq. (3.19, p 44). The equation defines what is
called the adjoint representation, and the superscript on the left hand side
bears a shortened version of the name. Clearly, the dimension of the repre-
sentation is the number of values that the indices b and c can take, which is
equal to the number of generators of the group.

2 Exercise 10.4 Follow the steps indicated below to prove that Eq.
(10.26) defines a representation.

a) In order to qualify as a representation, the matrix forms of
the generators must satisfy the algebra, Eq. (3.19, p 44). By
evaluating an arbitrary matrix element of both sides, show that
this equation is equivalent to the following relation among the
structure constants:

fabpfcpq + fbcpfapq + fcapfbpq = 0 . (10.27)

b) Because of the associative property of group composition, the
generators must satisfy the identity

»

ta,
h

tb, tc
i

–

+

»

tb,
h

tc, ta
i

–

+

»

tc,
h

ta, tb
i

–

= 0 . (10.28)

Show that this implies that the structure constants must sat-
isfy Eq. (10.27), which completes the proof that we were after.
[Note : Eq. (10.28) is an example of Jacobi identity, which is any relation
that depends on associativity properties only, irrespective of the commutative
properties of the quantities involved.]

There are, of course, many other representations: infinitely many. To
get a taste of some of these, let us start by considering what the fundamental
representation does. The matrices in this representation act on states to create
new states. The states in this representation should then be column matrices
with three entries. We can denote them by the symbol Ψi. The action of the
group element G on such a state creates a state Ψ′, whose elements are given
by

Ψ′i =
(
RG

)i

j
Ψj , (10.29)

where RG is the matrix associated with the element G in the fundamental
representation. If we think of Ψj as components of a “vector”, we can follow
the discussion of §3.5.3 to convince us that any tensorial combination of state
vectors with a well-defined symmetry property must also have an associated
set of matrices that will form a representation of the group elements. Thus,
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for example, we will have a representation that inflicts group transformations
on symmetric rank-2 tensors, another representation that does the same on
antisymmetric rank-2 tensors, and so on. Sometimes, in order not to make
the sentences too complicated, we will use the states interchangeably with the
matrices while talking about a representation and would use phrases like ‘the
representation of rank-2 tensors’.

There is one tricky point. Unlike the rotation group discussed in §3.5.3,
groups like SU(3) have conjugate representations which are inequivalent. The
easiest way to accommodate this fact in the tensorial notation is to treat states
in the complex conjugate representation by a lower index. For example, while
Ψi can represent states in the 3 representation of SU(3), Ψi can represent the
states in 3∗.

Obviously this opens up new possibilities for representations. Earlier, we
talked about a representation of rank-2 symmetric tensors. Clearly, it is not
enough to say this. There can be rank-2 symmetric tensors with upper indices,
and likewise with lower indices. Same for antisymmetric tensors. Moreover,
there can be rank-2 tensors with one upper and one lower index. Of course,
no question of symmetrization or antisymmetrization arises for such tensors
since the two indices are of different types.

10.3.5 Young tableaux

There is a neat graphical way of talking of representations of any SU(N) group,
which is quite helpful in performing some mathematical operations with them.
These are called Young tableaux . The word “tableaux” (pronounced tāblô,
with ‘ā’ as in bār and ‘ô’ as in rôle) is the plural of “table” in French. The
graphics involve tabular structures, as we will see.

a) Tableaux for tensors

The basic idea consists of using a box to stand for each index in the states.
For example, the Young tableaux corresponding to the fundamental repre-
sentation will consist of just one box, since this representation acts on states
with one index. For any other representation, there will be more boxes. If
any two of the indices are symmetric, we put the corresponding boxes in the
same row. If the indices are antisymmetric, the boxes are in the same col-
umn. For example, the tableaux corresponding to the rank-2 symmetric and
antisymmetric tensor representations would be

22 and 2
2
. (10.30)

For higher rank tensors, we will have more boxes. We will always arrange
them such that the number of boxes in any given row is not smaller than the
number in any of the lower rows.

So far, what we have said about Young tableaux applies for all SU(N). For
SU(3), the antisymmetric rank-2 tensor has a special significance. Whenever
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we are dealing with a system where the indices can take N possible values,
we can define a tensor with N indices that is completely antisymmetric in
the indices. This tensor is called the Levi-Civita tensor. For SU(3), this is a
rank-3 tensor which we will write as ǫijk. For any rank-2 tensor with upper
indices, we can define the combinations

ti ≡ ǫijkT
jk . (10.31)

For symmetric rank-2 tensors, this contraction would vanish and would there-
fore be useless. But the contraction says something useful about an antisym-
metric rank-2 tensor, viz., that it is equivalent to a vector with lower indices.
Since the conjugate of the fundamental representation acts on vectors with
lower indices, it implies that this representation is equivalent to that of the
rank-2 antisymmetric tensors in SU(3). Thus, one lower index translates,
for SU(3) Young tableaux, into two boxes in a column. Said otherwise, the
tableaux with two boxes in a column corresponds to the representation whose
states carry one lower index, i.e., the 3∗.

Indeed, what would happen if we had three boxes in a column? It would
signify a rank-3 antisymmetric tensor. And for SU(3), there is only one rank-3
antisymmetric tensor apart from an overall numerical factor, and it is none
other than the Levi-Civita tensor. And this tensor is also invariant, as has
been hinted in Ex. 10.5. Thus, a column with three boxes represents an invari-
ant. Effectively, it is therefore like a scalar, which is an object with no indices
at all. So three boxes in a column is equivalent to no box at all, which implies
that any Young tableaux for SU(3) can have at most two rows of boxes. For
SU(N), the generalization is obvious: there can be N − 1 rows at most.

For SU(3) then, a Young tableaux is a collection of boxes in two rows,
where the number of boxes in the upper row is larger or equal to that in the
lower row. For SU(N), the generalization is obvious.

2 Exercise 10.5 A rank-3 tensor Tijk transform as

T ′
lmn = UliUmjUnkTijk (10.32)

under the action of the group elements Uij. Show that, if we consider
Tijk = εijk, then T ′

lmn = εlmn, signifying that the Levi-Civita tensor is
invariant under group transformations. [Hint : A similar result, for the
tensors of the Lorentz group, has been proved in Eq. (D.17, p 730). The difference
for the present case is that the determinant of the group elements is equal to 1.]

b) Dimension from tableaux

Given a tensor of a certain rank with given symmetry properties, we can
find its dimensionality, i.e., the number of independent components, by using
combinatorial mathematics. One can also obtain the same answer from the
associated Young tableaux. The formula is of the form

d =

∏
j,k Aj,k∏
j,k Bj,k

, (10.33)
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where the products run over all boxes: each box is characterized by
the number j of the row it appears in, and its place k in that row.
For an SU(N) tableaux, the factor in the numerator will be given by

Figure 10.3: Pictorial meaning
of Eq. (10.35). In the example
shown, the value of Bj,k is 5.

Aj,k = N + k − j . (10.34)

On the other hand, the factor contributed to
the denominator is given by

Bj,k = nj + n′
k − j − k + 1 , (10.35)

where the total number of boxes in row j is
nj, and that in column k is n′

k. This number
for any given box can be obtained pictorially
for any box by drawing an L-shaped line that
starts vertically below the box, comes up to

the center of the box, and then continues straight to the right, out of the
tableaux. The number Bj,k is equal to the number of boxes that this L-shaped
line goes through, as illustrated in Fig. 10.3.

2 Exercise 10.6 Try applying this formula to the Young tableaux given
in Eq. (10.30) and check your results by using combinatorial tech-
niques on the choice of tensor indices.

2 Exercise 10.7 For a tableaux of three vertical boxes, apply the formula
and show that in SU(3), the dimensionality of the representation is
indeed 1.

2 Exercise 10.8 How does the Young tableaux of SU(2) look? Describe
the tableaux for the 2j + 1 dimensional representation of SU(2).

c) Kronecker products from tableaux

The biggest advantage of Young tableaux is in evaluating Kronecker products
of any two representations. The general recipe for finding such products in
SU(N) is as follows.

1. Draw the two tableaux corresponding to the two representations whose
Kronecker product is being sought. It is convenient if the one with more
boxes is drawn to the left.

2. Mark all boxes in the first row of the right tableaux by the letter a, all
in the second row by the letter b etc. (With some experience, this step
may seem unnecessary.)

3. Take one box at a time from the right tableaux and attach it to the
tableaux on the left. While attaching any box, remember two things:

a) After attaching, the collection of boxes should look like a Young
tableaux. In other words, no row should be longer than a row above
it.
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b) Two boxes carrying the same letter cannot sit in the same vertical
line.

4. If the resulting tableaux has a column of N boxes, disregard it and treat
the rest as the tableaux.

5. In general, one will be able to form multiple tableaux by following the
rules above. Each such solution will represent an irreducible represen-
tation in the Kronecker product.

6. Use Eq. (10.33) to obtain the dimensionalities of each irreducible repre-
sentation present in the product.

Let us try some examples of SU(3) Kronecker products. Consider the
product 3 × 3. Each 3 is a single box. The box from the right member can
attach to the right or to the bottom of the box from the left member. Thus
we obtain

2 ×2 = 22 + 2
2
. (10.36)

Evaluation of the dimensions yield the following rule for SU(3):3× 3 = 6 + 3∗ . (10.37)

Take another example. This time, we take the Kronecker product of the
fundamental representation of SU(3) and its conjugate. Following the pre-
scription outlined above, we obtain

2
2
×2 = 22

2
+ 2

2
2

= 22
2

+ • . (10.38)

Notice that in the process, we obtained one tableaux with three boxes in a
column. For SU(3), such combinations can be crossed out. Since nothing
remained after that, we represent the remaining “tableaux” with zero boxes
as a dot. This dot then represents a singlet, and we obtain the product3∗ × 3 = 8 + 1 . (10.39)

It might be useful to verify this Kronecker product rule from tensorial manip-
ulations. States in the representation 3∗ carry one lower index, whereas those
in 3 carry one upper index. Let us denote them by ψi and φi respectively.
The product states would carry one upper and one lower indices, and there
will be nine such states. Of them, we can single out the combination ψiφ

i,
which is invariant under SU(3) transformations. The rest transform as an 8,
or octet.

From this discussion, it is clear that whenever we will take the Kronecker
product of a certain representation and its conjugate in any SU(N), we will
have a singlet in which all indices will be contracted. This means that, given
the Young tableaux of a representation, the tableaux for the conjugate repre-
sentation must be such that all columns of the one can fit with the columns
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Figure 10.4: How to find the Young tableaux of the conjugate of a representation.
The example is in SU(6).

of the other to produce columns of N boxes, which reduce to no boxes or the
singlet representation. In other words, if the Young tableaux corresponding
to a certain representation contains c columns of lengths n1, · · · , nc, the con-
jugate representation should have a Young tableaux whose columns will have
the lengths N − nc, · · · , N − n1. This is illustrated in Fig. 10.4.

2 Exercise 10.9 Find the dimension of the representations of SU(3)
which have the following Young tableaux:

222, 222
2

, 2222
22

. (10.40)

In each case, draw the Young tableaux of the conjugate representation
and verify that it has the same dimension as the original one.

2 Exercise 10.10 Verify the following product rules for SU(3) represen-
tation by using Young tableaux:6× 3 = 10+ 8 , (10.41)8× 8 = 27+ 10+ 10∗ + 8+ 8+ 1 . (10.42)

2 Exercise 10.11 Find the dimensions of the original tableaux and its
conjugate shown in Fig. 10.4 and show that they are the same, as it
should be for the complex conjugate representation.

10.3.6 Decompositions in a subgroup

An SU(3) must have an SU(2) subgroup. This can be seen very easily.
SU(3), by definition, is the group of unitary 3× 3 matrices of determinant

1. The group elements include matrices of the following type:

U2 =


 U2

0
0

0 0 1


 (10.43)

where U2 is a 2× 2 matrix with determinant unity. It is easy to see that such
elements form a group by themselves. They therefore constitute a subgroup
of SU(3). We now take a shorthand notation and denote the matrix of Eq.
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(10.43) by U2 itself, getting rid of the zeros on the side and the 1 in the
lowest diagonal element which are common for all elements in this subgroup.
Formally, we can say that we map the matrices of Eq. (10.43) to the 2 × 2
matrices U2, which will be a one-to-one mapping. It shows that the subgroup
is SU(2). The generators for this SU(2) can be taken, in terms of the matrices
given in Eq. (10.13), as λ1/2, λ2/2 and λ3/2.

But this is not a maximal subgroup of SU(3). The statement means that
there is a subgroup of SU(3) which is smaller than SU(3) itself but bigger
than SU(2), in the sense that it contains all elements of SU(2) and more, but
does not contain all elements of SU(3). To see this, consider 3 × 3 unitary
matrices of the form

U2X , (10.44)

where

X = exp(iθλ8/2) (10.45)

for arbitrary real numbers θ. The set of matrices denoted by X form a group
by themselves, which depends only on one parameter θ and is a U(1) group.
Moreover, for any value of θ, the matrix X will commute with the matrix U2,
because Eq. (10.13) shows that the upper 2× 2 block of the diagonal matrix
λ8 is in fact a multiple of the unit matrix. Using this information, it is easy
to convince oneself that matrices of the form U2X do indeed form a group.
Certainly SU(2) is a subgroup of it, obtained by taking only the elements with
θ = 0 or X = 1. Since X spans a U(1) group, the group of elements of the
form given in Eq. (10.44) is denoted by

SU(3) ⊃ SU(2)×U(1) . (10.46)

This is a maximal continuous subgroup of SU(3).
Subgroups are important because sometimes physical interpretation of a

certain result is more easily understood by considering a subgroup rather than
the entire group. The reason is that, as shown in §3.5.4, the states forming
an irreducible representation of a group G break up, in general, into smaller
irreducible representations of its subgroup G′, and it is easier to interpret these
smaller units.

In the present case, the decomposition of SU(3) representations under its
SU(2)×U(1) subgroup is easily obtained from the embedding of the subgroup
shown in Eq. (10.43). The 3 × 3 matrices form the fundamental, or 3, rep-
resentation of SU(3). We can think of the states as three-element column
vectors on which the group elements act. The subgroup SU(2) can be identi-
fied with the isospin group, and can be assumed to consist of matrices of the
form given in Eq. (10.43). Thus, elements of this SU(2) mix only the first two
entries of the column vector, leaving the third one undisturbed. This means
that under this subgroup, the 3 representation of SU(3) breaks into a doublet,
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represented by the two upper elements of the column vector, and a singlet,
which is the lowest element. The U(1) quantum number of each entry is pro-
portional to the corresponding element of the diagonal matrix λ8. Looking at
the explicit form of λ8 in Eq. (10.13), we find that the U(1) quantum number
is equal for the two states in the SU(2) doublet. It should be, because U(1)
commutes with SU(2) and so the states in any SU(2) representation should
have the same U(1) property. So finally we can write3 à (2, 1

3
) + (1,−2

3
) . (10.47)

Note that the U(1) quantum numbers taken in this equation are proportional,
but not equal, to the diagonal elements of λ8. It needs to be said that this is
just a matter of convention. In fact, all U(1) quantum numbers are defined
only up to some arbitrary multiplicative factor, as noted in §5.1.1. We have
chosen the factor in a way that the U(1) quantum number agrees with the
value of hypercharge defined in Eq. (10.9), as will be clear from our upcoming
discussion in §10.4.

Once the decomposition of the fundamental representation is obtained, it
is easy to write down how the 3∗-representation decomposes. It is the com-
plex conjugate of the 3-representation, so we just need to take the complex
conjugate of Eq. (10.47). As we already know, all SU(2) representations are
essentially real so that their complex conjugates are the same as the rep-
resentations themselves. As for the U(1) part, complex conjugation yields
something with the opposite charge. Thus3∗

à (2,−1

3
) + (1, 2

3
) . (10.48)

For another representation, the decomposition is trivial to obtain. This is
the singlet representation. A singlet is an invariant of the group, i.e., if it is
acted upon by any element of the group, it remains unchanged. It then follows
that it must be invariant under the action of any of its subgroup. Thus the
SU(3) invariant should be a singlet of SU(2) and should have the U(1) charge
equal to zero: 1 à (1, 0) . (10.49)

Since other representations can be obtained from the fundamental one,
their decompositions can also be obtained the same way. For example, imagine
taking the product 3×3∗. Already from Eq. (10.39), we know the irreducible
representations of SU(3) that appear in the product, viz., an octet and a
singlet. But how do these irreducible representations of SU(3) transform
under the subgroup SU(2) × U(1)? This can be worked out easily using the
decompositions of the 3 and 3∗ representations given in Eqs. (10.47) and
(10.48). From the viewpoint of the subgroup, the product 3 × 3∗ looks like
the following:

[
(2, 1

3
) + (1,−2

3
)
]
×
[
(2,−1

3
) + (1, 2

3
)
]
. (10.50)
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This contains four products, and each can be evaluated easily. For the product
of the SU(2) parts of the representation, we use the familiar angular momen-
tum addition rules, since angular momentum and isospin are identical in their
mathematical structures. And for the U(1) part, the quantum numbers should
just add. Thus,

(2, 1

3
)× (2,−1

3
) = (3, 0) + (1, 0) , (10.51)

since two isodoublets can make either an isotriplet or an isosinglet. Proceeding
similarly, we find the following irreducible representations of SU(2)×U(1) in
the product of 3× 3∗ of SU(3):3× 3∗

à (3, 0) + (1, 0) + (2, 1) + (2,−1) + (1, 0) . (10.52)

Comparing it with Eq. (10.39) and using Eq. (10.49), we obtain8 à (3, 0) + (1, 0) + (2, 1) + (2,−1) . (10.53)

2 Exercise 10.12 Applying similar techniques, obtain the following de-
compositions of SU(3) irreducible representations under the SU(2) ×
U(1) subgroup: 6 à (3, 2

3
) + (2,−1

3
) + (1,−4

3
) (10.54)10 à (4, 1) + (3, 0) + (2,−1) + (1,−2) . (10.55)

10.4 Mesons from three flavors of quarks

Let us now see what we got in Eq. (10.53). We find that an octet of SU(3)
contains a triplet, a singlet and two doublets of the SU(2) subgroup. The
quantum numbers of these states in the direction orthogonal to the SU(2) are
also given in Eq. (10.53).

Now imagine that this SU(2) subgroup is isospin. We have mentioned
before that all particles in an isospin multiplet have the same value of hy-
percharge. This means that the hypercharge generator commutes with all
isospin generators. Once we take the SU(2) subgroup as isospin, the U(1)
generator which commutes with it must be taken as the hypercharge. Thus,
e.g., Eq. (10.53) would imply that in the SU(3) octet, we have an isotriplet
and an isosinglet, both of which have zero hypercharge, and two isodoublets
with hypercharges +1 and −1.

But this is exactly what we see in Fig. 10.1 (p 256), for example. The
isotriplet pion has zero hypercharge. The kaons appear in two isodoublets,
with hypercharges +1 and −1. And the η-particle is an isosinglet with hy-
percharge zero. In summary, we can say that the JP = 0− mesons shown in
Fig. 10.1 (p 256) form an octet of SU(3). The same applies to the JP = 1−

mesons shown in Fig. 10.2 (p 257). Nucleons are members of an octet of
baryons, as we will describe shortly.
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ud

s

Figure 10.5: Isospin and hypercharge of quarks.

We mentioned in §10.3 that all representations of a group can be con-
structed from the fundamental representation by taking Kronecker products.
The octet representation, mathematically, is not fundamental. So, when Gell-
Mann and Neeman saw these octet representations of SU(3), it was almost
inevitable to conjecture that these hadrons must be made up of something
more fundamental, something which belongs to the fundamental representa-
tion of SU(3). The fundamental representation is of course 3-dimensional,
and so it was hypothesized that there are three objects which transform like
a triplet of SU(3). This was proposed by Gell-Mann and by Zweig indepen-
dently, in 1964. These objects were called quarks by Gell-Mann and aces by
Zweig, and the first name stuck.

The three states in the fundamental representations are three different
types, or flavors, of quarks that we have introduced earlier, viz.,

Ψ ≡



u
d
s


 ∼ 3 . (10.56)

The representation is written at the right end of this equation. This is the
representation in the flavor SU(3) group. In Fig. 10.5, we show these three
quarks in an I3 versus Y plot that was used earlier to represent mesons in
Fig. 10.1 (p 256) and Fig. 10.2 (p 257).

Obviously, the antiquarks transform as an antitriplet, i.e., as the represen-
tation 3∗:

Ψ̂ ≡



û

d̂
ŝ


 ∼ 3∗ . (10.57)
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Consider now what happens if we have a quark and an antiquark in a
system. The quark transforms like 3, and the antiquark like 3∗ of the flavor
SU(3). There can be nine states like this, and they would transform like3 × 3∗ of the flavor SU(3). These nine states would not form an irreducible
representation. From Eq. (10.39), notice that the product 3× 3∗ transforms
like an octet plus a singlet. Therefore, of the nine states obtained, eight will
transform like an octet, and the other will be an SU(3) singlet.

This, of course, is the description of what happens in the flavor sector. The
physical characteristics of these states will also depend on the space and spin
configurations of the quark and the antiquark. For example, if the space-spin
configuration is a 1S0 state, i.e., the relative angular momentum L and the
combined spin S are both zero, we obtain mesons with spin J = 0. The flavor
octet with these characteristics is the one encountered in Fig. 10.1 (p 256). The
flavor contents of the particles at the boundaries of this octet have been given
earlier, in Eqs. (8.82), (10.1) and (10.2). At the center, we have the particles
π

0, the flavor part of whose wavefunction was given in Eq. (8.83, p 221). The
other state at the center, η, is given by

|η〉 =
1√
6

(
ûu+ d̂d− 2ŝs

)
. (10.58)

One might wonder why we have put the factor of 2 in front of the strange
quark component in the wavefunction of η. This can be understood in two
ways. First, note that the flavor part of the wavefunction of all mesons in
the octet can be written in the form Ψ̂⊤λiΨ, where Ψ and Ψ̂ have been
given in Eqs. (10.56) and (10.57), and λi is some linear combination of the
matrices shown in Eq. (10.13). For example, π

+ can be written, apart from
a normalization constant, as Ψ̂⊤(λ1 + iλ2)Ψ. Similarly, π

0 can be written as
Ψ̂⊤λ3Ψ, and η as Ψ̂⊤λ8Ψ. This explains the factor of 2 in Eq. (10.58).

In the second way of understanding the factor of 2, we recall that, in
addition to this octet, we should also have an SU(3) singlet meson. This is
called η′. Obviously, the flavor part of the wavefunction of this particle would
be

|η′〉 =
1√
3

(
ûu+ d̂d+ ŝs

)
, (10.59)

since this is the combination that transforms as an SU(3) singlet. The state η
must be orthogonal to this state, as well as to the state π

0 given in Eq. (8.83,
p 221). This justifies the form given in Eq. (10.58).

As discussed in §8.7.3, one can contemplate other possibilities for the
space-spin parts of the wavefunctions. If the space-spin part has a 3S1 config-
uration, we get the octet of mesons shown in Fig. 10.2 (p 257) that includes the
ρ mesons. The isosinglet particle in this octet has been denoted by ω8. The
flavor parts of the wavefunctions of the ρ’s and the ω are exactly the same
as those for the pions and the η. The flavor wavefunctions of the K∗’s are
also exactly the same as those for the K-mesons. In addition to the octet,
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there will also be an SU(3)-singlet state, which can be denoted by ω1, whose
flavor wavefunction will be that given in Eq. (10.59). There are thus two
isosinglet states: one is an SU(3) singlet, and the other belongs to the SU(3)
octet. We will see later in §10.7 that the physical isosinglet particles are linear
superpositions of these two states.

One aspect of the properties of mesons is easily explained with the quark
model. Mesons are quark-antiquark systems. From our discussion in §6.7, we
know that any fermion-antifermion system has an overall parity of (−1)L+1,
where L is the orbital angular momentum between the fermion and the an-
tifermion. We have discussed the space-spin configurations of the quark-
antiquark pair in both octets of mesons, and found that in both cases L = 0.
Thus these states have negative parity. The spin-0 mesons of Fig. 10.1 (p 256)

have negative parity and are thus pseudoscalar, whereas the spin-1 mesons of
Fig. 10.2 (p 257) also have negative parity are thus pseudovectors.

10.5 Baryons from three flavors of quarks

With two quarks, one can form a sextet and an antitriplet of SU(3), as given in
Eq. (10.37). If we now bring in a third quark, the irreducible representations
will be contained in 6 × 3 and 3∗ × 3. Using the results of Eqs. (10.41) and
(10.39), we can thus write3× 3× 3 = 10 + 8 + 8 + 1 . (10.60)

Among these, the 10 is completely symmetric in the three indices. The sin-
glet, or 1, must be a column of three boxes, which means that the indices
are completely antisymmetric in this representation. The octets have mixed
symmetries. One can take the two octets in a way that one of them is sym-
metric in the first two indices, and the other antisymmetric in the same two
indices. The situation is reminiscent of the isospin part of the wavefunctions
of 3H and 3He that appeared in Eq. (8.60, p 217).

Of course, this is only the flavor part. The wavefunction must be com-
pletely antisymmetric in the three quarks when we take the symmetry prop-
erties from other characteristics into account, something that will be done in
§10.11. For the purpose of this section, it is enough to keep an eye on the
symmetry properties of the flavor wavefunctions with respect to the inter-
change of the first two particles. As we said, we have a 10 and an 8 which are
symmetric under this interchange, and an 8 and a 1 which are antisymmetric.

The amazing thing is that we observe baryons that correspond only to
the 10 and the 8, representations which are symmetric under the interchange
of the first two quarks. The octet contains the nucleons, spin- 1

2 and posi-

tive parity particles. Other JP = 1
2

+
particles that complete the octet are

the isotriplet Σ (Sigma), the isosinglet Λ (Lambda), and the isodoublet con-
sisting of Ξ0 and Ξ−, which are usually called cascade particles. All these
particles have been shown in Fig. 10.6. The isotriplet and the isosinglet have
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I3

Y

pn

Σ− Σ0,Λ Σ+

Ξ0Ξ−

p uud 938
n udd 939
Λ (ud− du)s 1116
Σ+ uus 1189
Σ0 (ud+ du)s 1193
Σ− dds 1197
Ξ0 uss 1315
Ξ− dss 1321

Figure 10.6: The JP = 1
2

+
baryon octet. The numbers in the box are the approxi-

mate masses in MeV units.

strangeness S = −1. The nucleons are not strange, i.e., they have S = 0.
The cascades have S = −2. In the language of the quark model, nucleons do
not contain any strange quark: in fact, their quark structure has already been
given in §8.7.1 before we introduced the s-quark in this book. The Σ’s and
the Λ contain one s-quark, whereas the cascades contain two s-quarks. These
facts have been summarized in Fig. 10.6.

Let us now look at the 10 representation, or the decuplet, of SU(3). From
Eq. (10.55), we understand that it should contain an isoquartet, an isotriplet,
an isodoublet and an isosinglet. Using the hypercharge values of these isomul-
tiplets, we can also find out the electric charge of each component by using
Eq. (10.8). In the isoquartet, we find the charges to be +2, +1, 0 and −1.
These four particles are collectively called ∆, which we earlier encountered
in §8.7.3. The isotriplet is similar to the isotriplet of Σ encountered in the
baryon octet, and is called Σ∗. By the same token, the isodoublet is called
Ξ∗. At the time the quark model was proposed, all these particles were known
from experiments, and they fitted nicely into the decuplet. All these particles
have been shown in Fig. 10.7.

There was one apparent disagreement with experiments though. The de-
cuplet can be completed with the isosinglet Ω−, but no such particle was ex-
perimentally known at that time. So, based on the quark model, a prediction
of this particle was made. Considering the mass differences between differ-
ent isomultiplets in the decuplet, the mass of this particle was also roughly
predicted. And very soon, the particle was discovered, vindicating the quark
model and the underlying SU(3) symmetry.
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Ξ0Ξ−

Ω−

∆ qqq 1232
Σ∗ qqs 1385
Ξ∗ qss 1530
Ω sss 1672

Figure 10.7: The JP = 3
2

+
baryon decuplet. In the box to the right, q denotes either

u or d quark, and the numbers are the approximate masses in MeV units.

10.6 U-spin and V -spin

It is true that SU(3) contains an SU(2)×U(1) subgroup, as has been explained
in §10.3.6. In the discussion so far, we have always identified the SU(2) with
the group of isospin transformations, and U(1) as the group that is generated
by hypercharge.

But this is not a unique choice for the embedding. This can be easily
understood by visualizing a similar problem. The group of 3-dimensional
rotations has a subgroup which is the group of 2-dimensional rotations. How-
ever, there is no unique way of identifying this subgroup. If we denote an
orthogonal set of axes in the 3-dimensional space by x, y and z, the subgroup
of 2-dimensional rotations might correspond to the rotation in the x-y plane,
or in the y-z plane, or in the z-x plane, or, indeed, in any plane contained in
the 3-dimensional space.

In SU(3) also, there can be different embeddings of the SU(2) × U(1)
subgroup. The embedding of isospin and hypercharge is obtained by taking
the SU(2) generators to be λ1/2, λ2/2 and λ3/2 from the list of generators of
SU(3) presented in Eq. (10.13). With this choice, the diagonal generator of
SU(2) gives an eigenvalue of + 1

2 for the u-quark, − 1
2 for the d-quark and zero

for the s-quark, which are the correct eigenvalues for the third component of
isospin for these quarks.



276 Chapter 10. SU(3) quark model

We can find a different embedding by choosing the non-diagonal SU(2)
generators to be λ4/2 and λ5/2 in the fundamental representation. The SU(2)
subgroup corresponding to this choice is called U -spin, in analogy with I-spin
or isospin. The third or the diagonal generator of this U -spin group can be
obtained by using the usual commutation relations of SU(2). Denoting this
generator by λU

3 /2 in the fundamental representation, we can write

[
λ4/2, λ5/2

]
= iλU

3 /2 . (10.61)

The left hand side of this equation can be easily evaluated by using the ma-
trices given in Eq. (10.13), and we obtain

λU
3 =




0 0 0
0 1 0
0 0 −1


 . (10.62)

Certainly this was not one of the eight matrices given in Eq. (10.13), but it
is not outside the representation either. It can easily be expressed as a linear
combination of the two diagonal generators present in Eq. (10.13):

λU
3 =

√
3

2
λ8 −

1

2
λ3 . (10.63)

The generator λ8 commutes with all generators of the isospin SU(2). Simi-
larly, there should be a generator that commutes with all generators of U -spin.
It is easily seen that this generator is represented by the matrix

λU
8 =

1√
3



−2 0 0
0 1 0
0 0 1


 . (10.64)

We have put an overall factor so that the normalization condition of Eq.
(10.14) is obeyed by it. Also, it is obvious that this is no independent matrix,
but is rather a different linear combination of the diagonal matrices λ3 and
λ8:

λU
8 = − 1

2
λ8 −

√
3

2
λ3 , (10.65)

which can be easily checked from the matrices given earlier.
Since the lower 2×2 block of the matrix in Eq. (10.64) is just a multiple of

the unit matrix, and all U -spin generators have non-zero elements only within
this block, it is obvious that this matrix commutes with all generators of U -
spin. Thus, this generator bears the same relation to U -spin as hypercharge
does to I-spin.

The importance of isospin or I-spin lies in the fact that the members of
the same isomultiplet are nearly degenerate. This is not true for the members
of the same U -spin multiplet, as will be discussed in detail in §10.7. However,
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there is a different reason why U -spin is physically important. Looking at
the diagonal generator λU

8 given in Eq. (10.64), we see that it is equal to the
charge of the quarks apart from an overall factor:

Q = − 1√
3
λU

8 . (10.66)

In other words, the charge operator commutes with all three generators of U -
spin. All particles in the same U -spin multiplet should therefore have the same
charge. This is clearly seen in the fundamental representation of SU(3), where
the choice of λU

3 in Eq. (10.62) tells us that the d and the s quarks transform
like a U -spin doublet, and they indeed have the same charge. The u-quark
has a different charge, but it belongs to a different U -spin representation, viz.,
a singlet.

We can look for U -spin multiplets in the octet as well. For example, let
us look at the mesons in Fig. 10.1 (p 256). The π

+ and the K+ belong to a
U -spin doublet. So do the π

− and the K−. There are four neutral particles,
and they are distributed in a triplet and a singlet representation of U -spin.
Obviously, the states on the outer edge, K0 and K̂0, belong to the triplet.
The two states at the center have U3 = 0. One of them belongs to the U = 1
multiplet and the other has U = 0.

But it has to be realized that neither π
0 nor η is an eigenstate of U -spin.

The neutral pion or π
0 belongs to an isotriplet and therefore behaves like

the generator λ3. On the other hand, η, an isosinglet, behaves like λ8. A
superposition of these two states will have U = 1, U3 = 0. Let us call this
state π

0
U . Its relation to π

0 and η is exactly similar to the relation between
the generators in Eq. (10.63), i.e.,

∣∣π0
U

〉
=

√
3

2
|η〉 − 1

2

∣∣π0
〉
. (10.67)

The U -spin singlet state ηU , on the other hand, is defined through a relation
similar to Eq. (10.65):

|ηU 〉 = − 1

2
|η〉 −

√
3

2

∣∣π0
〉
. (10.68)

Similar relations would hold for the pseudovector meson or the baryon octet.
We can also similarly discuss another SU(2) embedding of SU(3) for which

the multiplets will be along the lines tilted at 60 degrees with the horizontal
axes in the figures for octets and decuplets. This could be called the V -spin,
but it is not very useful.

10.7 SU(3) breaking and mass relations

In Ch. 8, we remarked that isospin is not an exact symmetry of nature. Al-
though it is a symmetry of strong interactions, it is not respected by elec-
tromagnetic and weak interactions. For this reason, members of an isomulti-
plet are not exactly degenerate. However, the fractional differences between
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the masses of the members of an isomultiplet are very small, indicating that
isospin is respected to a very good accuracy.

We can ask the same question about the SU(3) symmetry: how good is it?
If it were exact, all hadrons within the same SU(3) multiplet would have been
degenerate in mass. In reality, this is far from being true. We have already
presented the masses of different hadrons, and there are huge differences in
the masses in any SU(3) multiplet, for mesons as well as for baryons.

As in the case of isospin, we can ask what causes these differences. Of
course the effects of electromagnetic and weak interactions do not respect
the SU(3) symmetry, so they can induce differences of the said sort. But
these effects would be small, nothing compared to what we see in an SU(3)
multiplet.

We commented in §8.9 that, even for isospin breaking, the dominant con-
tributions do not come from electromagnetic interactions. Rather, they come
from the mass difference between the u-quark and the d-quark. Let us take
this cue and investigate whether a heavy s-quark can be responsible for the
SU(3) breaking effects.

The mass terms for the three flavors of quarks in the Lagrangian are as
follows:

−Lm = muuu+mddd+msss , (10.69)

where u, d and s stand for the field operators of the three types of quarks. In
order to keep the discussion simple, we will ignore isospin breaking effects by
taking

mu = md ≡ m0 . (10.70)

Then the expression of Eq. (10.69) can be rewritten as

−Lm =
2m0 +ms

3

(
uu+ dd+ ss

)
− ms −m0

3

(
uu+ dd− 2ss

)
.

(10.71)

The masses that appear in this equation need not be the masses present in the
fundamental Lagrangian that describes quarks and their interactions. Because
of interactions, a quark can develop an effective mass in a hadron, which is
the relevant quantity here. Such effective masses are usually called constituent
masses in the context of quarks, and in this sense the Lagrangian shown in
Eq. (10.69) is an effective Lagrangian. The actual mass terms that appear in
the fundamental Lagrangian will be discussed in Ch. 18.

Using the notation Ψ introduced in Eq. (10.56), we can write it as

−Lm =
2m0 +ms

3
ΨΨ− ms −m0√

3
Ψλ8Ψ . (10.72)

Between the Ψ and the Ψ, we have the unit matrix in one term, and the
matrix λ8 in the other. Both these matrices commute with all generators
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of the isospin SU(2) group. Thus, these mass terms cannot produce any
difference for particles in the same isomultiplet, a fact that we have taken as
our starting point by taking the mu = md.

In order to obtain some non-trivial relations, consider the relation

λ8 = −1

2
λU

8 +

√
3

2
λU

3 , (10.73)

which can be obtained by inverting Eqs. (10.63) and (10.65). Using this, we
can write

−Lm =
2m0 +ms

3
ΨΨ +

ms −m0

2
Ψ
( 1√

3
λU

8 − λU
3

)
Ψ . (10.74)

The term ΨΨ is an SU(3) singlet, and therefore cannot be responsible for
any SU(3) breaking effect. The next term contains λU

8 . This commutes with
all generators of U -spin and therefore cannot inflict any difference between
members of the same U -spin multiplet. The last term contains λU

3 , which
is a representation of U3. This is the only term that can induce differences
among different members of a U -spin multiplet. Thus, if we consider the
action of the mass terms on the members of a U -spin multiplet, we can write
the mass terms symbolically as a − bU3, where a and b are constants for a
given multiplet. Now note that

〈U,U3 |a− bU3|U,U3〉 = a− bU3 , (10.75)

where on the right hand side we have the eigenvalue of the operator U3. It
shows that if we take the expectation value of the quark mass terms among
different members of an U -spin multiplet, the results will be equispaced for
increasing values of U3.

Let us apply this on some particles in the baryon octet. This octet contains
a U -spin triplet whose extreme members are the neutron (U3 = +1) and the
Ξ0 (U3 = −1), whereas the middle member is Σ0

U , which is a combination
of Σ0 and Λ that resembles the combination π

0
U given in Eq. (10.67) for the

pseudoscalar octet, i.e.,

∣∣Σ0
U

〉
=

√
3

2
|Λ〉 − 1

2

∣∣Σ0
〉
. (10.76)

The first thing to notice is that the Ξ0 is heavier than the neutron, as is
expected from Eq. (10.75) if b > 0, i.e.,

ms > m0 . (10.77)

Second, the equispacing rule implies

m(n) +m(Ξ0) = 2m(Σ0
U ) . (10.78)

On the left hand side, we have the masses of the neutron and the Ξ0. But
what is meant by m(Σ0

U ) in this formula? The mass of any physical particle
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is the expectation value of the Hamiltonian in an eigenstate of vanishing 3-
momentum. This definition of mass can be extended to states which are not
eigenstates of the Hamiltonian. Thus

m(Σ0
U ) =

〈
Σ0

U

∣∣H
∣∣Σ0

U

〉

=

〈√
3

2
Λ− 1

2
Σ0

∣∣∣∣H
∣∣∣∣
√

3

2
Λ− 1

2
Σ0

〉
, (10.79)

where the states are implied to have vanishing 3-momentum. The off-diagonal
matrix elements of the Hamiltonian would vanish in the eigenbasis, and the
diagonal elements would give the masses of the eigenstates. Putting the result
into Eq. (10.78), we obtain

m(n) +m(Ξ0) =
3

2
m(Λ) +

1

2
m(Σ0) . (10.80)

This is called the Gell-Mann–Okubo mass formula for the baryons. If we
use the experimentally measured mass values of the relevant hadrons, the left
hand side of this equation comes out to be 2270 MeV, whereas the right hand
side becomes 2254MeV. Thus, the formula is good to better than 1%.

Let us now consider the similar relation in the meson octet containing
the pion. The places occupied by n, Ξ0, Σ and Λ in Fig. 10.6 (p 274) are
occupied respectively by K0, K̂0, π

0 and η in Fig. 10.1 (p 256). The masses
of K0 and K̂0 must be equal to each other by CPT invariance, as discussed
in §7.5. So the resulting mass relation should involve only three different
masses. However, a straightforward replacement of the baryon masses by the
corresponding meson masses in Eq. (10.80) does not produce an acceptable
relation. It was subsequently proposed that for mesons, the squares of masses
should be used rather than mass. In other words, the analog of Eq. (10.80)
for mesons should be

2m2(K0) =
3

2
m2(η) +

1

2
m2(π0) , (10.81)

or

m2(η) =
4

3
m2(K0)− 1

3
m2(π0) . (10.82)

This is called the Gell-Mann–Okubo mass formula for the pseudoscalar
mesons. If we put in the experimentally known masses for the K0 and π

0 and
calculate the mass of the η from this relation, we obtain 569 MeV, whereas
the measured mass is 548 MeV for the η.

This raises two questions: first, why squared masses had to be used in
the relation, and second, although Eq. (10.82) is not dismally disobeyed by
experimental mass values, why is the agreement not as good as it was for the
baryons?

The first question can be answered only heuristically. For a fermion field,
the only parameter that appears in the free Lagrangian is the mass itself. In
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the Lagrangian of a free bosonic field, the parameter that appears is, in fact,
the square of the particle’s mass. This leads us to suspect that for baryons
(which are fermions), it should be the mass that would appear in the mass
formula, whereas for mesons (which are bosons), the square of mass would
appear.

As far as the second question is concerned, it is to be noted that there
is a big difference in the spectrum of the baryons and the mesons. There is
no baryon which is an SU(3) singlet. But for the mesons, the SU(3) singlet
state very much exists, as was mentioned in Eq. (10.59). The mass of the η′ is
940 MeV, about twice the mass of the η. This should not surprise us, because
the η′ belongs to a different SU(3) multiplet, and its mass would be unrelated
to the masses in the octet even if flavor SU(3) were an exact symmetry. It
might be possible that the physical η and η′ states are not the ones shown in
Eqs. (10.58) and (10.59). Rather, the η particle is predominantly the octet
state of Eq. (10.58) but has a slight admixture of the singlet state shown in
Eq. (10.59), whereas the physical η′ is predominantly the singlet with a slight
admixture of the octet. That would make the η-mass a little different from
the prediction of the Gell-Mann–Okubo mass formula, which is based on the
octet character of the η.

This point becomes quite important for the pseudovector octet of mesons
that was shown in Fig. 10.2 (p 257). The isosinglet state present in the octet
was denoted by ω8 there. The analog of Eq. (10.82) for this SU(3) multiplet
would be

m2(ω8) =
4

3
m2(K∗0)− 1

3
m2(ρ0) . (10.83)

Putting in the experimental values m(K∗) = 892 MeV and m(ρ) = 770 MeV,
we obtain

m(ω8) = 929 MeV (10.84)

from the Gell-Mann–Okubo formula given above. But there is no isosinglet
meson with JP = 1− with such mass. The nearest ones are a particle called
ω (omega) with mass 783 MeV, and a particle called φ with mass 1018 MeV.
Let us then assume that these two particles are superpositions of the octet
state ω8 described above, and an SU(3) singlet state ω1. The expectation
value of the Hamiltonian in the state ω8 is the value obtained from the Gell-
Mann–Okubo formula and quoted in Eq. (10.84). Thus, in the ω1-ω8 basis,
the Hamiltonian will have the form

(
a b
b 929

)
(10.85)

in units of MeV. The values of a and b can be determined by imposing the
condition that the eigenvalues of this matrix should correspond to the masses
of the particles ω and φ. The solution is

a = 872, b = 114 . (10.86)



282 Chapter 10. SU(3) quark model

One can also find the matrix that diagonalizes the Hamiltonian of Eq. (10.85)
and obtain that the eigenstates ω and φ are given by

ω = ω1 cos θ + ω8 sin θ ,

φ = −ω1 sin θ + ω8 cos θ , (10.87)

with

θ =
1

2
tan−1 2b

929− a = 38◦ . (10.88)

There is thus a huge mixing between the SU(3) octet and singlet states. Be-
cause of this, one often contemplates this singlet along with the entire octet
and call the collection of nine particles a nonet .

It turns out that the value of the mixing encountered in Eq. (10.88) is
tantalizingly close to a very important value. Since the octet and the singlet
combinations are given by the right hand sides of Eqs. (10.58) and (10.59),
the combination φ defined in Eq. (10.87) would be given by

φ =

(
− sin θ√

3
+

cos θ√
6

)(
ûu+ d̂d

)
−
(

sin θ√
3

+
2 cos θ√

6

)
ŝs . (10.89)

For sin θ =
√

1/3 or θ ≈ 35◦, we find that the meson φ is given by

φ = ŝs , (10.90)

whereas the meson ω does not contain any ŝs:

ω =
1√
2

(
ûu+ d̂d

)
. (10.91)

This set of affairs is termed ideal mixing. As we said earlier, the real octet-
singlet mixing is very close to ideal mixing. There is no convincing theory of
why it is so.

10.8 Electromagnetic properties in SU(3)

10.8.1 Fundamental interaction

The SU(3) flavor symmetry implies interesting relations between electromag-
netic properties of different members of a multiplet, which we now discuss.

All electromagnetic properties arise through the interaction involving pho-
tons in the fundamental Lagrangian. Quarks are fermions, and for any fermion
field ψ the interaction term with the photon is of the form −eQψγµψAµ, as
discussed in Ch. 5. Thus, for the three flavors of quarks, the interaction term
with the photon in the fundamental Lagrangian has the form

Lem−int = −e
(2

3
uγλu− 1

3
dγλd− 1

3
sγλs

)
Aλ . (10.92)
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Using the notation for the SU(3) triplet introduced in Eq. (10.56), we can
write it as

Lem−int =
1√
3
eΨγλλU

8 ΨAλ , (10.93)

where the matrix λU
8 was introduced in Eq. (10.64). It is the generator of

SU(3) that commutes with all U -spin generators.
Clearly, the electromagnetic interaction is a U -spin singlet, and therefore,

in the limit of unbroken SU(3), all members of a U -spin multiplet should
have the same electromagnetic properties. This is obviously true for electric
charges: all members of a U -spin multiplet have the same charge. It should
be true for other electromagnetic properties as well, and we show some con-
sequences of this property below.

10.8.2 Baryon magnetic moments

a) SU(3) relations

Magnetic moment is, of course, an electromagnetic property. The pseu-
doscalar mesons cannot have magnetic moment because they do not have
spin, but the baryons can. By the argument given earlier, magnetic moment
should be the same for all states in a given U -spin multiplet. Denoting the
magnetic moments by the customary symbol µ, we can then write down the
following relations in the baryon octet:

µp = µΣ+ ,

µn = µΞ0 = µΣ0
U
,

µΣ− = µΞ− . (10.94)

Notice that in the middle relation for the uncharged baryons, the quantity µΣ0
U

appears, which should interpreted as
〈
Σ0

U

∣∣O
∣∣Σ0

U

〉
, where O is the magnetic

moment operator and Σ0
U is of course the combination shown in Eq. (10.76),

the uncharged baryon state which transforms like the neutral member of a
U -spin triplet.

Moreover, since the electric charge is part of the SU(3) group generators,
it should be traceless in any representation. For the triplet representation,
this is clearly true for the charges of the three flavors of quarks. A similar
relation should hold for the magnetic moments of all particles in the baryon
octet. Thus, in the limit of exact SU(3), we get

µp + µn + µΣ+ + µΣ0 + µΣ− + µΛ + µΞ0 + µΞ− = 0. (10.95)

A further relation between the magnetic moments can be obtained by
taking the form of λU

8 given in Eq. (10.65) and substituting it into Eq. (10.93).
This enables us to write the electromagnetic current into two parts. The part
that contains λ8 is an isosinglet, and produces the same effect on all members
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of an isomultiplet. The other part contains λ3 and should therefore produce a
contribution to the electromagnetic properties which should be equally spaced
among different members of an isomultiplet. For the isotriplet Σ, we thus
obtain

2µΣ0 = µΣ+ + µΣ− . (10.96)

Then Eqs. (10.94), (10.95) and (10.96) give six relations among the eight
magnetic moments. The quantity µΣ0

U
appearing in Eq. (10.94) can be in-

terpreted in terms of the magnetic moments of physical particles by noting
that Σ0 and Λ have the SU(3) transformation properties of λ3 and λ8. On
the other hand, Σ0

U , defined in Eq. (10.76), transforms like λU
3 . We can de-

fine an orthogonal combination ΛU which transforms like λU
8 and is therefore

a U -spin singlet. The states in these two different basis are related by the
equations

Σ0 = −1

2
Σ0

U −
√

3

2
ΛU ,

Λ =

√
3

2
Σ0

U −
1

2
ΛU . (10.97)

Consider now taking the matrix element of the magnetic moment operator
between Σ0 states on both sides. Note that

〈
Σ0

U

∣∣O
∣∣ΛU

〉
= 0 , (10.98)

since the U -spin scalar operator O cannot connect between two states belong-
ing to different U -spin multiplets. Thus we obtain

µΣ0 ≡
〈
Σ0
∣∣O
∣∣Σ0

〉
=

1

4
µΣ0

U
+

3

4
µΛU

,

µΛ ≡ 〈Λ |O|Λ〉 =
3

4
µΣ0

U
+

1

4
µΛU

. (10.99)

Solution of these two equations shows that we should use

µΣ0
U

=
1

2

(
3µΛ − µΣ0

)
(10.100)

in Eq. (10.94).
We can now take the magnetic moments of the proton and the neutron to

be independent quantities and express all other magnetic moments in terms
of these two. Experimentally measured values of these two quantities are

µp = 2.79µN , µn = − 1.91µN , (10.101)

where µN is the nuclear magneton which is related to the nucleon mass mN

by the standard formula

µN =
e

2mN
. (10.102)
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Table 10.1: Magnetic moments of baryons in the octet. All numerical values are in
the unit of nuclear magneton, e/2mN , where mN is the nucleon mass.

Quantity
Measured SU(3) value Mass

value Relation Numerical corrected

µp 2.79 (input)
µn −1.91 (input)
µΣ+ 2.46 µp 2.79 2.20
µΣ0 not known − 1

2µn 0.95 0.75
µΣ− −1.16 −(µp + µn) −0.88 −0.69
µΛ −0.61 1

2µn −0.95 −0.80
µΞ0 −1.25 µn −1.91 −1.36
µΞ− −0.65 −(µp + µn) −0.88 − 0.63

Taking these inputs, we calculate the SU(3) prediction of all other magnetic
moments and show them in Table 10.1 under the column heading of “SU(3)
relation”.

Comparing with the measured values, we find that the SU(3) predictions
are not very good really. In fact, they are not supposed to be. Such relations
for magnetic moments are true in the limit of exact SU(3) symmetry where
the masses of all particles are equal because they belong to the same SU(3)
multiplet. In reality, the masses of the baryons are not very close, as has been
discussed in §10.7. It is therefore expected that these relations should not
be valid to a high degree of accuracy. The magnetic moment of a particle
is inversely proportional to its mass, so the SU(3) relations are expected to
overestimate the absolute values of magnetic moments of heavier particles.
If we use the real mass instead of a SU(3) invariant mass, the relations get
modified, as also shown in Table 10.1.

There is another relevant quantity which can be evaluated in this context.
In analogy with the quantities appearing in Eq. (10.99), we can evaluate the
transition magnetic moment between the Σ0 and the Λ. Using Eq. (10.98)
and the expressions for the Σ0 and the Λ from Eq. (10.97), we find

〈
Λ
∣∣O
∣∣Σ0

〉
=

√
3

4

(
µΛU
− µΣ0

U

)
. (10.103)

Using Eq. (10.99), this can also be written as

〈
Λ
∣∣O
∣∣Σ0

〉
=

√
3

2
(µΣ0 − µΛ) = −

√
3

2
µn , (10.104)

where in the last step we have used the SU(3) expression of the magnetic
moments of the Σ0 and the Λ which have been summarized in Table 10.1.
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b) Quark model predictions

The relations given so far in this section depend only on the fact that the
baryons form an octet of SU(3): they do not depend on the inherent quark
structure. With the quark structure, we can do a bit more.

The baryon wavefunction can be obtained in terms of the quarks. The
exercise is similar to what was done earlier in §8.6 for 3He and 3H nuclei.
Those nuclei contain three nucleons. The baryons contain three quarks. Thus,
apart from trivial changes in notation, the wavefunction of the proton and the
neutron can be written in terms of quarks by using the formulas of §8.6. If
we assume that the spatial part of the wavefunction is symmetric and the
spin-flavor part is antisymmetric, the wavefunction for the proton in spin-up
state can be written as

|pN〉 =
1√
6

(
uHdNuN− dNuHuN + dNuNuH

− uNdNuH− uHuNdN + uNuHdN
)
, (10.105)

which is basically Eq. (8.66, p 218) with appropriate changes in notation. The
magnetic moment of the proton in this state would then be given by

〈pN |O| pN〉 =
1

6

[
〈uHdNuN |O|uHdNuN〉+ 〈dNuHuN |O| dNuHuN〉

+ 〈dNuNuH |O| dNuNuH〉+ 〈uNdNuH |O|uNdNuH〉

+ 〈uHuNdN |O|uHuNdN〉+ 〈uNuHdN |O|uNuHdN〉
]
.

(10.106)

The cross terms will vanish. Now, in each term, we see that the spins of the
two up quarks are opposite, so their contributions cancel, and we are left only
with the contribution from the down quark. Since the down quark spin is up
in each case, we obtain

〈pN |O| pN〉 = µd , (10.107)

where µd is the magnetic moment of the down quark. Since the magnetic
moment of the proton is defined to be the expectation value of the magnetic
moment operator in the spin-up state, we can then write

µp = µd . (10.108)

A similar exercise will give

µn = µu . (10.109)

If we assume that the masses of the u and the d quarks are roughly equal so
that their magnetic moments are proportional to their charges:

µu =
2

3
µ0, µd = −1

3
µ0, (10.110)
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then we obtain the relation

µp

µn
= − 1

2
. (10.111)

This is a disastrous relation when we compare it with the experimentally
measured values of these quantities, presented in Eq. (10.101).

At this point, it would be interesting to check what result might be ob-
tained if we assume that the spin-flavor parts of the nucleon wavefunctions
are not antisymmetric as given in Eq. (10.105), but are symmetric instead.
For overall symmetry, the spin-flavor wavefunction of the proton in spin-up
state is given by

|pN〉 =
1

3
√

2

(
2uNuNdH + 2uNdHuN + 2dHuNuN

− uNuHdN− uNdNuH− dNuNuH
− uHuNdN− uHdNuN− dNuNuH

)
. (10.112)

This gives

〈pN |O| pN〉 =
1

18

(
12(2µu − µd) + 6µd

)
, (10.113)

or

µp =
4

3
µu −

1

3
µd . (10.114)

In the corresponding formula for the neutron, the roles of the u and the d
quarks should be interchanged:

µn =
4

3
µd −

1

3
µu . (10.115)

If we now use Eq. (10.110), we obtain

µp

µn
= − 3

2
, (10.116)

which is in very good agreement with the experimental values presented in
Eq. (10.101).

It therefore seems, from these considerations, that the wavefunctions of the
members of the baryon octet are symmetric in spin-flavor. Indeed, this has
to be trivially true for the ∆’s of the decuplet as well, which have spin- 3

2 and
isospin- 3

2 , and therefore must be symmetric individually in the spin part and
the isospin part of the wavefunction. This issue will be discussed in §10.11.

2 Exercise 10.13 a) Using SU(3) alone, express the magnetic mo-
ments of the baryon decuplet members in terms of that of the
∆−.
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b) Use the quark model to find µ∆− in terms of the magnetic mo-
ments of the u and d quarks. Hence express µ∆− in terms of
the magnetic moments of the proton and the neutron.

c) For which member of the decuplet is the magnetic moment eas-
iest to measure?

2 Exercise 10.14 a) Using the quark model, find the magnetic dipole
transition moment connecting ∆+ to the proton.

b) Using
D

Λ
˛

˛

˛O
˛

˛

˛Σ0
E

from Eq. (10.104), find the ratio of the mag-

netic dipole transition rates Γ(∆+ → pγ)/Γ(Σ0 → Λγ). Take the
phase space differences into account in the calculation.

c) Compare the result with experimental data.

10.8.3 Electromagnetic mass differences

Particles in the same isospin multiplet have nearly the same mass. The small
mass differences within a multiplet can be ascribed to electromagnetic in-
teractions, which break isospin symmetry. Once the electromagnetic effects
between the quarks are included, the neutron and the proton, for example,
are expected to have different masses. However, in an SU(3) multiplet, the
corrections to all particles with the same charge are expected to be equal,
since electromagnetic interactions depend on electric charge.

Let us consider the consequence of this expectation on the baryon octet.
The octet contains hadrons with three different charges: +1, 0 and −1. If
the electromagnetic contributions to the masses of these differently charged
baryons are denoted by δ+, δ0 and δ− respectively, we can write

mn = mN + δ0 , mp = mN + δ+ ,

mΣ− = mΣ + δ− , mΣ+ = mΣ + δ+ ,

mΞ− = mΞ + δ− , mΞ0 = mΞ + δ0 , (10.117)

where mN , mΣ and mΞ are the isospin-obeying contributions to the masses
that come from strong interactions between quarks. We can eliminate the
electromagnetic contributions from these equations to write

mn −mp +mΣ+ −mΣ− +mΞ− −mΞ0 = 0 . (10.118)

The central values of the experimentally measured masses show that

mn −mp = 1.3 MeV ,

mΣ+ −mΣ− = −8.0 MeV ,

mΞ− −mΞ0 = 6.6 MeV , (10.119)

so that the combination on the left hand side of Eq. (10.118) comes out to
be −0.1 MeV, in excellent agreement where the individual masses are around
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1000 MeV. If we consider the error bars on the experimental values, experi-
mental data is certainly consistent with Eq. (10.118).

It should be noted that, while writing Eq. (10.117), we have not put down
the expressions for the masses of the Σ0 and the Λ. They could not have been
included in a relation like that in Eq. (10.118). Moreover, the electromagnetic
mass corrections are not linear in the electromagnetic interactions, so there
cannot be any linearity relation like Eq. (10.96) that we had used for relating
magnetic moments of different baryons.

10.9 Decays of hadrons

We now discuss decays of the mesons appearing in the JP = 0− and JP = 1−

octets, as well as baryons in the octet and decuplet.

10.9.1 Decays of members of pseudoscalar meson octet

As far as strong interactions are concerned, the mesons in the JP = 0− octet
cannot decay. Strong decays would only yield hadronic final states. The
neutral pion, π

0, is the lightest hadron, and therefore cannot decay into any
other hadrons. We have discussed before in §6.8 that π

0 decays into two
photons:

π
0 −→ γγ . (10.120)

The photons in the final state indicate that this decay must be electromag-
netic. In fact, the π

0 contains quark-antiquark pairs of the same flavor. They
are antiparticles of each other, and they undergo pair annihilation to give two
photons. The lifetime is of order 10−16 s.

The charged pion, π
+, is the lightest hadron carrying electric charge. Since

electric charge is conserved, it cannot possibly decay into π
0 or to photons.

It can only decay to leptons, and the decay has to be governed by weak
interactions. The dominant decay mode is

π
+ −→ µ

+
νµ . (10.121)

It is also possible to have e+νe in the final state. Although energetically
favourable, this mode is very suppressed, for reasons which will be discussed
in §17.5.

The kaons cannot decay strongly because they are the lightest strange par-
ticles. As mentioned in §10.1, strong as well as electromagnetic interactions
conserve strangeness. Thus kaons can decay only via weak interactions. The
decay products may be purely leptonic as for the case of charged pions, or
semileptonic, i.e., containing both leptons and hadrons, or purely hadronic.
For example, K+ can have the leptonic decay mode of µ

+
νµ, or the semilep-

tonic mode of π
0
µ

+
νµ, or the hadronic mode of π

+
π

0.
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This leaves us with the isoscalar η. Like π
0, it contains quarks and anti-

quarks of the same flavor, so pair annihilation into two photons is possible.
In fact, this is one of the major decay modes of the η, and

B(η → γγ) ≡ Γ(η → γγ)

Γ(η → anything)
= 39.31% . (10.122)

The symbol Γ(· · ·) stands for the rate of process given in the parentheses, and
B, as defined here, is called the branching ratio of a given channel.

What about decays of η into pions? Since η has a mass of 548 MeV which
is more than three but less than four pion masses, at most three pions are al-
lowed by the phase space. Decay into two pions breaks parity, and is therefore
forbidden through strong as well as electromagnetic interactions. Moreover,
η cannot decay into three pions through strong interactions. This can best be
seen through G-parity. When we introduced G-parity in §8.5, we discussed
that pions have negativeG-parity. On the other hand, η has a C-eigenvalue +1
since it can decay into two photons. It is an isosinglet, so the isospin rotation
appearing in the definition of G-parity leaves it unchanged. The conclusion is
that the G-parity of η is +1, and therefore it cannot decay strongly into three
pions. Electromagnetic interactions, however, break isospin and consequently
G-parity, so decays of this kind can occur through electromagnetic interac-
tions. The branching ratios are somewhat smaller than the two-photon mode
because of reduced phase space:

B(η → 3π
0) = 32.57% , (10.123a)

B(η → π
+

π
−

π
0) = 22.74% . (10.123b)

Note that the branching ratio of the two-photon mode is roughly comparable
to that of any of the three-pion modes. The reason is that both amplitudes are
second order in electromagnetic interactions. The two-photon mode clearly
needs two electromagnetic vertices with quarks. The three-pion modes also
need a virtual photon exchange since, as argued, strong interactions alone
cannot induce these processes. A virtual photon will have to connect to quarks
at both ends, and so the amplitudes for these processes will also be second
order in e.

2 Exercise 10.15 � Show that the decay η → 2π must violate parity.
Moreover, show that the decay conserves charge conjugation symme-
try, so that it is also CP violating.

2 Exercise 10.16 Use only isospin argument to show that η → 3π is
forbidden in strong interactions. [Hint : The isosinglet combination of
three isotriplets is completely antisymmetric.]

2 Exercise 10.17 The decay η → π
0 + γ is forbidden. Why?

2 Exercise 10.18 Consider a meson ψ which is an SU(3) singlet, so
that U = V = 0, and that is is odd under C with JP = 1−.

a) Show that the decay ψ → π
0ρ0 is allowed by C and also by

G-parity and so occurs strongly.
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b) Use charge conjugation symmetry as well as I-spin, U-spin and
V -spin symmetries to show that the amplitudes of the decays of
ψ into π

+ρ−, π
0ρ0, π

−ρ+, K+K⋆−, K−K⋆+, K0
bK⋆0 and bK0K⋆0

should all be equal in magnitude.

c) Verify the validity of the above result from data on the decay
of the meson ψ = bcc which has a mass of 3100MeV. Comment
on the phase spaces in the different channels.

10.9.2 Decays of members of baryon octet

The proton is the lightest baryon, and therefore is stable because baryon
number is absolutely conserved. Decay of the neutron must involve a proton in
the final state because of baryon number conservation, but the mass difference
of the neutron and the proton is only about 1.3 MeV, which is not enough to
accommodate even one pion. Thus, hadronic decay modes of the neutron are
not available. The neutron can of course decay through weak interactions:

n→ p+ e+ ν̂e . (10.124)

This is the basic process underlying all nuclear beta decay.
The isosinglet Λ is the lightest strange baryon. It cannot decay strongly

because of a combination of baryon number conservation and strangeness:
there is simply no combination of hadrons which has baryon number 1 and
strangeness −1, and is lighter than the Λ. The same argument applies for the
Σ+ and the Σ−. The decay of these particles involves a change of strangeness,
and therefore cannot be mediated by strong or electromagnetic interactions.
They decay through weak interactions, almost exclusively to Nπ, i.e., a nu-
cleon and a pion. The cascades cannot decay strongly or electromagnetically
for exactly the same reason. They decay almost exclusively into Λπ, mediated
be weak interactions.

The Σ0 is somewhat exceptional. It has the same flavor content as the Λ,
and is heavier than the latter. Therefore it can decay into Λ with the emission
of a photon:

B(Σ0 → Λ + γ) = 100% . (10.125)

Electromagnetic decays obviously occur much faster than weak decays. The
lifetime of Σ0 is of order 10−20 s, whereas Σ+, Σ−, the cascades and the Λ,
which decay by weak interactions, have lifetimes of order 10−10 s. For details,
see Table B.3 (p 720).

The neutron is a special case. Although it decays weakly, its lifetime
is nowhere near that of, say, Λ. A free neutron has a very long lifetime of
887 s. Its decay rate must therefore be much smaller than that of other weakly
decaying baryons in the octet. But this is not caused by any symmetry of
any sort. The point is that the neutron is only very slightly heavier than the
combined mass of its decay products. Thus it gets very little phase space.
For other baryons like the Λ, the phase space factor is enormous compared to
that of the neutron. This is what suppresses neutron decay.
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2 Exercise 10.19 To obtain an idea of the phase space suppression for
neutron decay, suppose that the neutron can decay to the proton and
a negatively charged hypothetical meson whose mass is the same as
that of the electron. Assuming that the matrix element for this decay
is the same as that for the decay Λ → pπ−, calculate the ratio of the
decay rates by using the masses of the particles involved.

10.9.3 Decays of members of baryon decuplet

The members of the baryon decuplet come in four different isospin multiplets.
The largest multiplet has I = 3

2 , and the particles in this multiplet are called
∆. All these particles decay strongly:

∆→ Nπ , (10.126)

where N denotes the nucleon. Thus, for example, ∆++ decays to pπ+,
whereas ∆− decays to nπ

−. For the other two ∆ particles, two different
decay channels are possible: ∆+ decays to pπ0 and nπ

+, and ∆0 decays
to pπ− and nπ

0. The branching ratios of the two channels are determined
by the isospin Clebsch–Gordan co-efficients, barring small corrections coming
from neutron-proton mass difference and π

+-π0 mass difference, which are
isospin-breaking effects.

2 Exercise 10.20 Using the Clebsch–Gordan co-efficients given in Ap-
pendixE, find the ratio of the amplitudes of the decays ∆+ → pπ0

and ∆+ → nπ
+ and check your result against the statement of Ex. 8.8

(p 223).

Members of the I = 1 multiplet, Σ∗, decay to Λπ and Σπ. These are
strong decays as well. Decays of Ξ∗ are also strong decays, almost exclusively
to Ξπ .

For all these particles, the lifetimes are very small, of the order of 10−20 s,
as expected for strong decays of particles with masses around 1 GeV. However,
the remaining particle in the decuplet, the Ω−, is much longer lived, with a
lifetime of 0.821× 10−10 s. The reason is that this particle carries strangeness
S = −3, and there is no combination of lighter hadrons which has the same
strangeness and the same electric charge. Therefore, it decays through weak
interactions, to ΛK− and Ξπ , violating strangeness by 1 unit.

10.9.4 Decays of members of vector meson nonet

All these particles can decay through strong interactions. The ρ-mesons de-
cay almost exclusively to two pions. The K∗-mesons carry strangeness, and
therefore cannot decay to pions only; rather, they decay to Kπ. The only
remaining octet member is ω8. As mentioned earlier in §10.7, this state mixes
with the SU(3) singlet state ω1 and the resulting eigenstates are ω with mass
783 MeVand φ with mass 1020 MeV. Both these states have negative G-parity
and therefore cannot decay into two pions. The dominant decay mode of ω
is into π

+
π

−
π

0. As illustrated in §8.4.3, the decay mode to three neutral
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pions is forbidden by isospin symmetry. Decay to two pions is possible, but
only electromagnetically, because it breaks isospin symmetry as well. Elec-
tromagnetic decay to π

0γ is also possible.
The φ-meson can also decay to states containing pions and rho particles,

but the more dominant channels involve two kaons. This is a peculiar property
of mesonic decays. If the decaying particle has a quark-antiquark pair of
the same flavor, the dominant decay products would contain the quark and
the antiquark in two different particles. In other words, processes where a
certain flavored quark and its own antiquark of the initial state undergo pair
annihilation are suppressed. This is called the Okubo–Zweig–Iizuka (OZI)
rule. After we develop the theory of strong interactions further, a qualitative
explanation of the rule will be given in Ch. 20 in connection with decays of
heavier mesons. Right now, it is only important to recognize that we are
seeing an example of the application of the rule. The φ-meson, as mentioned
in §10.7, contains almost purely the combination sŝ. If the decay products
contain no particle carrying strangeness, the sŝ in φ has to pair annihilate into
virtual gluons or photons, and new quarks and antiquarks should be created
from them to produce the final state particles. This is what is suppressed by
the OZI rule. The dominant final states are K+K−, or a pair of neutral kaons.
Among the non-strange modes which are OZI suppressed, ρπ or three-pion
modes are preferred.

2 Exercise 10.21 The spin of the ρ-meson is 1. The ρ0 is composed
of ubu and dbd, like the π

0. Using the formulas derived in connection
with positronium states, find the charge conjugation eigenvalue of ρ0.
Hence show that the ρ-meson cannot decay into three neutral pions
via strong interactions.

2 Exercise 10.22 Find the G-parity of the ρ-mesons and hence (or oth-
erwise) show that the none of the members of the isomultiplet of
ρ-mesons can decay into any three-pion state via strong interactions.

2 Exercise 10.23 Use G-parity arguments to show that the φ cannot
decay to two pions via strong interaction.

10.10 Summary of conservation laws

In §5.1.3, we said that each kind of particle can come with only one number
conservation law. Thus, with three quarks, we can at most three different
‘charges’, and we can take them to be Nu, Nd and Ns, which were used in
§10.2. In practice, we do not use the conservation laws in this form. Rather,
we make linear combinations of these three quantities and give them names.
These are the names that appear in Eqs. (10.4), (10.5) and (10.6).

To be more precise, these three equations give only the contributions of
the three flavors of quarks to the electric charge, I3 and baryon number.
When we include contributions from all elementary particles, Eq. (10.5) still
remains the same, i.e., the only elementary particles that carry the property
isospin are the u and the d quarks. Baryon number comes only from quarks.
There are other flavors of quarks apart from the u, the d and the s, and they
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contribute to the baryon number equally. As regards electric charge, there are
contributions from particles which are not quarks, like the electrons. Once we
consider all particles, electric charge is indeed conserved. Its conservation is
related to a U(1) gauge symmetry, as we saw in §5.1. Baryon number is also
absolutely conserved, so far as direct evidences are concerned. However, it is
not connected to any gauge symmetry so far as we know.

Strong and electromagnetic interactions obey all these symmetries that
contain, in their currents, terms involving only one kind of particle at a time.

10.11 Color

In §10.8.2, while calculating magnetic moments of the proton and the neutron,
we noticed that their wavefunctions need to be symmetric under spin and
flavor interchanges in order that the quark model calculations produce the
correct ratio between the magnetic moments. Let us analyze this situation a
bit further, including the baryons in the decuplet.

10.11.1 Symmetry of baryon states

Notice that the proton wavefunction given in Eq. (10.112) does not have any
particular symmetry property if we interchange only the spin orientations of
two of the quarks. They also do not maintain their forms if only the flavors
of two quarks are interchanged. The symmetry property is manifest only
when both spin and flavor tags of two quarks are changed simultaneously. We
constructed such wavefunctions in §8.6 and §10.8.2 by taking combinations
which have definite symmetry properties under the interchange of particles 1
and 2, and then making appropriate linear combinations of them to obtain
the results like in Eqs. (8.61) and (10.112). This is a rather round-about way,
and can be avoided if one can treat spin and flavor together.

This can be done by considering all spin and flavor variations together in
a multiplet of some group. Unlike Eq. (10.56) which contains the three flavors
of quarks in a multiplet, we will now take a multiplet whose members contain
all these three flavors in both spin-up and spin-down states, i.e., something
like

Ψ ≡




uN
dN
sN
uH
dH
sH



∼ 6 . (10.127)

Since this is a 6-dimensional representation, it can be the fundamental repre-
sentation of an SU(6) group. This is called the spin-flavor SU(6) group.

Each element of the fundamental representation belongs to a triplet of the
flavor SU(3) and to a doublet of the spin SU(2). This fact is summarized by
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saying that 6 à (3, 2) (10.128)

under the embedding

SU(6) ⊃ SU(3)⊗ SU(2) . (10.129)

Earlier, in Eq. (10.46) for example, we used the symbol ‘×’ in the notation for subgroups.
Here, in Eq. (10.129), we are using a different notation, an encircled cross. This difference in
notations indicates an important difference in the nature of embeddings of the subgroups. In the
embedding discussed in Eq. (10.46), only two of the elements of the fundamental representation
of SU(3) transform as a doublet under the subgroup SU(2). The other element is neutral
under SU(2). This is not the case in Eq. (10.129). Here, every element of the fundamental
representation of SU(6) transforms like a triplet, and there are two such triplets. Similarly,
every element of Ψ of Eq. (10.127) transforms like a doublet of SU(2), and there are three such
doublets. None of the elements is a singlet either under SU(3) or under SU(2).

Quarks thus transform like a 6 under the spin-flavor SU(6) group. It will
be easy to see how a baryon might transform under the same group. A baryon
contains three quarks, so it must transform like a 6× 6× 6. This Kronecker
product can be performed by using Young tableaux. Since 6 is just one box
in SU(6), we have the product of three boxes. By calculating the product, we
obtain

2 ×2 ×2 = 222+ 22
2

+ 22
2

+ 2
2
2

, (10.130)

or 6× 6× 6 = 56 + 70 + 70 + 20 . (10.131)

The 56-dimensional representation is the one whose Young tableaux appears
first on the right hand side of Eq. (10.130). It shows that it is a representation
of rank-3 tensors which are completely symmetric in its indices. In other
words, states appearing in this representation would be completely symmetric
under the interchange of SU(6) indices. Since SU(6) indices contain flavor and
spin, these states are spin-flavor symmetric.

How do these states transform under the subgroup SU(3) ⊗ SU(2)? We
can use the methods described in §10.3.6 to obtain56 à (10, 4) + (8, 2) . (10.132)

The first one is a 4-dimensional representation of SU(2), i.e., represents spin-
3
2 particles. And they come in a decuplet of SU(3). These are exactly the
particles shown in Fig. 10.7 (p 275). The other representation contains an SU(3)
octet of spin- 1

2 particles, i.e., the particles shown in Fig. 10.6 (p 274). Thus the56 of SU(6) contains all the baryons in the octet and the decuplet. And
remember that this representation is completely symmetric with respect to
interchanges.
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2 Exercise 10.24 Verify the Kronecker product rule of Eq. (10.131) in
SU(6), and find the dimensions of various representations given in
Eq. (10.130).

2 Exercise 10.25 Consider the particles ∆++, ∆− and Ω−, each of which
contains three quarks of the same flavor. Without getting into SU(6),
argue that the spin-flavor wavefunction must be symmetric for these
particles.

10.11.2 Generalized Pauli principle

Obviously, this creates a problem with the generalized Pauli principle. In
the lowest lying baryons, the quarks should not have any relative orbital
angular momentum. Thus, they should be symmetric with respect to spatial
interchange. We just saw that they are symmetric in spin-flavor as well.
Taken together, we can conclude that the space, spin and flavor parts of their
wavefunctions are symmetric with respect to the interchange of the quarks.
But baryons are fermions, and the generalized Pauli principle demands that
their wavefunction should be antisymmetric under the interchange of quarks!

To avoid the impasse, it was proposed that quarks carry another kind
of characteristics as well, apart from the ones already mentioned. This new
property came to be known as color . In a sense, the name is unfortunate,
because this new property or characteristic that we are talking about has
nothing to do with the physiological response to electromagnetic radiation of
different wavelengths in the optical range — a sensation that is termed ‘color’
in usual parlance. However, the name was suggested in this case by analogy
with some property of optical color, as we will comment on presently.

Since all other parts of the wavefunctions of the baryons in the octet and
the decuplet seem to be symmetric under quark exchanges, the generalized
Pauli principle can be salvaged if the color parts of their wavefunctions are
antisymmetric. If three quarks will have to be antisymmetric in color, it is
simplest to think that there are three different colors. Let us denote these
colors by α, β etc. Then, for example, the wavefunction of ∆− in the Sz = 3

2
state can be written in the form

εαβγd
α
N
dβ

Nd
γ
N , (10.133)

where ε denotes the completely antisymmetric tensor, or the Levi-Civita ten-
sor, in the color indices. For other baryons, the flavor content or the spin
content might be different, but as far as the color indices are concerned, it
will be the same story: three different color indices contracted by the Levi-
Civita tensor of color.

In the end, then, there is no free color index in Eq. (10.133). Said another
way, the baryon is not a colored object. This is where the optical analogy
comes in. Light of three primary colors — red, green and blue — when
mixed in equal amounts, produces the sensation of white color on our eyes.
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In analogy, the different quark colors are also called red, green and blue, and
their superposition in a baryon produces a colorless object.

Mesons contain a quark and an antiquark. They are also colorless. The
color of the quark is exactly counterbalanced by that of the antiquark. Car-
rying the analogy with optical color, we can say that the antiquarks carry
complementary colors. A red quark, along with a blue-green (or cyan) an-
tiquark, can form a colorless object. Similarly, the complementary colors of
green and blue are magenta and yellow respectively.

Thus the idea of color saves Pauli exclusion principle for quarks. But
this should not be taken to mean that color is only a trick designed to solve
that problem. In fact, the entire mystery of strong interactions lies in the
color properties of objects. Just like the electric charge plays a fundamental
role in electromagnetic interactions, color plays a fundamental role in strong
interactions. This led to the theory of strong interactions called quantum
chromodynamics. After some infrastructural work of Ch. 11, this theory will
be discussed in Ch. 12.



Chapter 11

Non-abelian gauge theories

The idea of gauge invariance was introduced in Ch. 5, where it was shown
that the interactions of QED, or quantum electrodynamics, arise out of the
requirement of the symmetry of the Lagrangian under a local U(1) transfor-
mation. One can ask whether the same idea can be extended to other groups.
Yang and Mills showed that it can be done, and we discuss the general struc-
ture of the resulting theories in this chapter. In some of the later chapters,
we will see that this idea is crucial in understanding the dynamics of strong
and weak interactions.

11.1 Local SU(N) invariance

As an example, let us consider SU(N) transformations on a set of objects.
The objects, taken all together, must form some representation R of SU(N),
otherwise we are going to get new objects outside the set while performing
the SU(N) transformations. Let us denote these objects by

Ψ =




ψ1

ψ2

...
ψdR


 , (11.1)

where dR is the dimensionality of the representationR. Let us further suppose
that each element of Ψ is a Dirac field, and that each of them has the same
mass m. Then the free Lagrangian containing these N fields is given by

L0 =
∑

k

(
ψkiγ

µ∂µψk −mψkψk

)
. (11.2)

With the help of the notation introduced in Eq. (11.1), we can write this
Lagrangian in a compact form as follows:

L0 = Ψiγµ∂µΨ−mΨΨ . (11.3)

298
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Since each Dirac field consists of four components, the object Ψ has really
4dR number of components. But for most of the arguments contained in this
chapter, it is not really necessary to remember the different components of
each ψk. Only when something like a Dirac matrix appears in an expression,
as it does in Eq. (11.3), we need to realize that the matrix appears with each
of the dR fields written down in Eq. (11.1).

Under an SU(N) transformation, Ψ will change as

Ψ −→ Ψ′ = UΨ , (11.4)

where U is a matrix that represents a group element in the representation R.
Let us see how the Lagrangian of Eq. (11.3) behaves under this transformation.
The transformed Lagrangian would be

L ′
0 = Ψ

′
iγµ∂µΨ′ −mΨ

′
Ψ′

= (UΨ)†γ0iγ
µ∂µUΨ−m(UΨ)†γ0UΨ . . (11.5)

As we said, matrices like γ0 can be attached to each element of Ψ, so we can
write

(UΨ)†γ0 = Ψ†γ0U
† = ΨU † . (11.6)

The mass term of L ′
0 can then be written as

−mΨU †UΨ , (11.7)

which is the same as the mass term in the original Lagrangian, since

U †U = 1 . (11.8)

For the derivative term, with the same argument, we obtain

ΨiγµU †∂µUΨ . (11.9)

The derivative acts on everything to its right. If U is independent of the
position, it can be taken outside the derivative, and we can apply Eq. (11.8)
once again to conclude that this term is also the same as the derivative term
in Eq. (11.3). This means that the Lagrangian of Eq. (11.3) has a global
SU(N) invariance.

However, the previous discussion also shows that the Lagrangian of Eq.
(11.3) does not have a local SU(N) invariance. If the elements of the matrix
U are functions of spacetime, then we would obtain

L ′
0 −L0 = ΨiγµU †(∂µU)Ψ , (11.10)

where the parentheses limit the range of applicability of the derivative. Ear-
lier in §3.4.1, we showed that an SU(N) group contains N2 − 1 independent
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parameters, so the derivative of U would contain the derivatives of all these
parameters.

If we really want a local invariance, we will have to change the Lagrangian.
We mimic what we did in §5.1.2 and write the new Lagrangian in terms of a
covariant derivative as

L = iΨγµDµΨ−mΨΨ , (11.11)

where

Dµ = ∂µ + igTaA
a
µ . (11.12)

Here, g is a constant, like the constant e that appears in Eq. (5.8, p 114).
The Ta’s denote generators of the group SU(N) in the representation R to
which the components of Ψ belong. These are the only items on the right
hand side of Eq. (11.12) that carry the properties of Ψ, and are analogous
to the quantity Q of Eq. (5.8, p 114). And finally, Aa

µ’s are a new set of
fields, analogous the photon field that appeared in the corresponding equation
for electrodynamics. The number of such fields is equal to the number of
generators, i.e., equal to the number of independent parameters necessary to
denote the group elements. These fields, for a general gauge group, are called
gauge fields . Alternatively, the quanta of the gauge fields are called gauge
bosons, since obviously these particles have the same spin as the photon, and
are therefore bosons. For specific gauge groups, specific names are used, e.g.,
we used the name photon for the gauge field of electromagnetic U(1) gauge
symmetry.

For the sake of convenience, let us define the object

Aµ ≡ TaA
a
µ , (11.13)

which is a collection of four matrices corresponding to different possible values
for the Lorentz index, each matrix having the same size as any of the Ta’s.
Thus,

Dµ = ∂µ + igAµ . (11.14)

We now ask the question, would the Lagrangian of Eq. (11.11) be invariant
under the transformation of Eq. (11.4), even if the matrix U is a function of
spacetime? Obviously, the mass term would be invariant just as it was with
constant U . The other term would be invariant only if, under the transfor-
mation,

(DµΨ)′ = UDµΨ . (11.15)

This means that

∂µΨ′ + igA′
µΨ′ = U(∂µΨ + igAµΨ) . (11.16)
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Using the transformation property of Ψ from Eq. (11.4), this can be rewritten
as

(∂µU)Ψ + igA′
µUΨ = igUAµΨ . (11.17)

Since this equality has to be satisfied for arbitrary Ψ, we obtain the condition

A′
µ = UAµU

−1 +
i

g
(∂µU)U−1 , (11.18)

or equivalently,

A′
µ = UAµU

−1 − i

g
U(∂µU

−1) , (11.19)

which shows how Aµ has to transform, along with the transformation of Ψ
defined in Eq. (11.4), in order that the Lagrangian of Eq. (11.11) remains
invariant under the combined transformation of Ψ and Aµ.

2 Exercise 11.1 Show the equivalence of Eqs. (11.18) and (11.19) by
verifying that, for a matrix U whose elements depend on xµ,

∂µU
−1 = −U−1(∂µU)U−1 . (11.20)

2 Exercise 11.2 Use U = exp(−ieQθ) as would be appropriate for a U(1)
symmetry and verify that the transformation rule for Aµ in this case
is the same as that obtained in §5.1.

11.2 Gauge fields

11.2.1 Transformation properties of gauge fields

We started with an arbitrary representation Ψ of SU(N). The transformation
on Ψ was given in Eq. (11.4), where U is a matrix in the representation R.
Then we used the Lagrangian of Eq. (11.11) which contains the gauge fields.
If we claim that this Lagrangian has to be gauge invariant, that should fix
how the gauge fields should behave under the gauge transformation.

In a sense, this transformation has been given in Eq. (11.18). But looking
at it, one feels a little uneasy. Transformation of the gauge fields should not
depend on the representation of Ψ that we started with. In fact, the same
gauge fields should be able to work with all representations, otherwise the
program of localizing the symmetry becomes meaningless. But the transfor-
mation rule in Eq. (11.18) contains the matrices U which belong to a particular
representation.

This is true, but it should be noted that Eq. (11.18) expresses the trans-
formation rule for the matrix Aµ, which was defined in Eq. (11.13). These
matrices obviously depend on the representation of the generators used in the
definition. So, there is no wonder in the fact that the transformation rule for
these matrices depends on the representation.
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Let us try to strip the transformation rule, Eq. (11.18), of the represen-
tation matrices and find out how the gauge fields themselves behave under a
gauge transformation. For this, we use Eq. (11.13) into Eq. (11.18) and write

TaA
a
µ
′ = UTaU

−1Aa
µ +

i

g
(∂µU)U−1 . (11.21)

Let us now recall that the matrix U can be written in terms of the generators
in the form

U = exp(−igTbθ
b) , (11.22)

where θb’s are the parameters of the transformation. Thus,

∂µU = (−igTb∂µθ
b)U , (11.23)

so that the last term on the right hand side of Eq. (11.21) is Ta∂µθ
a, which

resembles the gauge transformation term for the U(1) gauge field that was
shown in Eq. (5.10, p 114). The first term on the right hand side of Eq. (11.21)
has no analogy for the U(1) case, for reasons that will be clear soon. For small
θa’s, we can expand U to first order in these parameters. Then

UTaU
−1 = (1 − igTbθ

b)Ta(1 + igTcθ
c) +O

(
θ2
)

= Ta + ig[Ta, Tb]θ
b +O

(
θ2
)

= Ta − gfabcTcθ
b +O

(
θ2
)
, (11.24)

where the quantities denoted by fabc are defined by

[Ta, Tb] = ifabcTc , (11.25)

i.e., they are the structure constants of the group. Putting the results of Eqs.
(11.23) and (11.24) into Eq. (11.21) and changing the dummy variables at
places, we obtain

TaA
a
µ
′ = TaA

a
µ + gfbcaTaθ

bAc
µ + Ta∂µθ

a , (11.26)

by using the antisymmetry of the structure constants in their first two indices,
and neglecting higher order terms in the parameters θa. This means that the
gauge transformation rule for the gauge fields is given by

Aa
µ
′ = Aa

µ + gfbcaθ
bAc

µ + ∂µθ
a . (11.27)

The structure constants appear in the algebra of the group, Eq. (11.25), and
are properties of the group itself. Thus the transformation law of Eq. (11.27)
is free from any reference of the representation of the field Ψ that we started
with.

It is clear that we are not doing something completely different from the
U(1) case. It would be more reasonable to say that we are performing an
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extension to that theory. If the gauge group were abelian, all structure con-
stants would vanish, and Eq. (11.27) would look like Eq. (5.10, p 114) which
showed how the photon field behaves under gauge transformations. The new
features appear through the structure constants, and hence are relevant only
for non-abelian gauge groups. Because of this reason, the field theories we
are describing here are called non-abelian gauge theories . Alternatively, they
are called Yang–Mills theories, after the names of the two persons who first
described such theories.

Turning back to Eq. (11.27), we find that when a gauge transformation is
performed, the gauge fields mix with one another through the term containing
the structure constants. The nature of this transformation can be understood
by considering global transformations, for which the term ∂µθ

a vanishes. Us-
ing the definition of the adjoint representation given in Eq. (10.26, p 262), we
can write

Aa
µ
′ = Aa

µ − ig
(
t
(ad)
b

)
ac
θbAc

µ . (11.28)

Compare it now with the gauge transformation of any other multiplet, for
example the one given in Eq. (11.4). Using infinitesimal parameters and
putting in the indices explicitly, the rule can be written as

Ψ′
i = Ψi − ig(Tb)ijθ

bΨj . (11.29)

This equation is valid for any multiplet Ψ transforming according to any
representation. When some multiplet transforms according to the adjoint
representation, the matrix indices i, j appearing in this equation become the
same as the indices for the group parameters, and then we get exactly Eq.
(11.28). This proves that the gauge fields transform according to the adjoint
representation of the gauge group.

While talking about U(1) gauge groups, we commented that there is a multiplicative arbitrariness
in the definition of the gauge coupling constant. Here, g is the gauge coupling constant, and
it appears everywhere multiplied by some generator of the gauge group. So it seems that there
is a multiplicative arbitrariness in the definition of the gauge coupling constant and the gauge
group generators as well. Strictly speaking, this is correct. But it is also true that in practice,
this arbitrariness is defunct for a non-abelian group, because the generators have a ‘natural’
normalization. This comes about from the so-called ladder operators that can be formed as
combinations of group generators, which can change the eigenvalues of a commuting set of
operators for a state. As a familiar example, we can go back to the rotation group, where the
states can be taken as eigenstates of J2 and Jz. The ladder operator Jx + iJy, acting on such
an eigenstate, changes it to a state with an increased eigenvalue of Jz. The amount of change
in the eigenvalue is the same no matter which state Jx + iJy operates on, and this sets up a
natural scale. It would be silly not to take this change as some sort of a unit, and everyone
does that. Even when the group is not the rotation group but some sort of internal group, the
same comments apply. This sets up the normalization of the generators, and effectively it fixes
the normalization of the gauge coupling constant as well.

11.2.2 Field-strength tensor

The gauge fields, we recall, were introduced to establish local invariance to the
free Lagrangian of Ψ. Once they are introduced, we should allow also other
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terms in the Lagrangian which may not contain Ψ but involve the gauge fields.
Here again, we can take a clue from the U(1) case, where there was a term
which contained only the photon field and nothing else. These involved the
rank-2 tensor Fµν , called the field-strength tensor . For gauge fields as well,
there might be such pure gauge terms, and in order to construct them, we
should first find the field strength tensor for the non-abelian case.

In Eq. (4.16, p 65), we defined the field-strength tensor for the abelian case.
This equation cannot be used directly, because it involves partial derivatives.
We need to find a definition in terms of the covariant derivative. For this, we
note that the covariant derivative of the abelian case satisfies the equation

[Dµ, Dν ]f = ieQFµνf (11.30)

for any function f .

2 Exercise 11.3 Check and verify Eq. (11.30), with Dµ defined in Eq.
(5.8, p 114).

Let us try to extend this to the case of non-abelian theories and write

[Dµ, Dν ]f = igT aF a
µνf . (11.31)

Note that

DµDνf = (∂µ + igTbA
b
µ)(∂ν + igTcA

c
ν)f

= ∂µ∂νf + igTbA
b
µ∂νf + igTc∂µ(Ac

νf)− g2TbTcA
b
µA

c
νf . (11.32)

Subtracting the expression for DνDµf which can be obtained merely by in-
terchanging the Lorentz indices in the formula above, we obtain

igT aF a
µνf = igTa(∂µA

a
ν)f − igTa(∂νA

a
µ)f − g2[Tb, Tc]A

b
µA

c
µf , (11.33)

which shows that

F a
µν = ∂µA

a
ν − ∂νA

a
µ − gfbcaA

b
µA

c
ν . (11.34)

Obviously, there is a new feature appearing in this definition in the form of
a quadratic term in the gauge fields, which was not there for abelian gauge
theories because of the vanishing of the structure constants.

11.2.3 Pure gauge Lagrangian

Let us now check how the field-strength tensor behaves under a gauge trans-
formation. It is easy to see it through the combination

Fµν = T aF a
µν , (11.35)

a matrix defined in analogy with the matrix associated with the gauge fields
that was defined in Eq. (11.13). We can write it as

Fµν = ∂µAν − ∂νAµ + ig[Aµ,Aν ] . (11.36)
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If we perform a gauge transformation on it, the result will be denoted by F′
µν ,

which can be obtained by replacing all A on the right hand side by A′, which
is the gauge transform of A. Using Eq. (11.18) for A, it is straightforward to
obtain the result

F′
µν = UFµνU

−1 . (11.37)

Thus, the field-strength tensor transforms homogeneously, unlike the gauge
fields which have an inhomogeneous term in their transformation rule, as
shown by the last term of Eq. (11.18).

2 Exercise 11.4 Verify Eq. (11.37).

The transformation law of Eq. (11.37) also shows that the quantity

Tr
(

F†
µνFµν

)
≡ Tr(T †

aTb) F
a†
µνF

µν
b (11.38)

is gauge invariant, and is therefore a good candidate for the Lagrangian of
the gauge fields. The trace of the product of two generators depends on the
representation of the generators. However, in §11.2.4 we show that in any
representation the generators can be made to satisfy a relation of the sort

Tr(T †
aTb) = Cδab (11.39)

where C is a non-negative number which determines the normalization of the
generators in the representation. Putting this in, we can write the Lagrangian
for the gauge fields as

Lgauge = −1

4
F a†

µνF
µν
a , (11.40)

where the numerical co-efficient has been adjusted by invoking the analogy
with an abelian gauge field theory. This is called the pure gauge Lagrangian
because it contains no other field except the gauge fields.

It should be noted that the pure gauge Lagrangian cannot contain any
non-derivative term except the non-derivative terms in F a

µν . Using the gauge
fields Aa

µ directly, we cannot produce any term that is gauge invariant, because
of the inhomogeneous term in the transformation law of the gauge fields. In
particular, a term like Aa

µA
µ
a , though Lorentz invariant, is not gauge invariant.

Therefore, in a gauge invariant theory, the non-abelian gauge fields must be
massless, just like their abelian counterparts.

There is another convention of defining the gauge field and the field strength tensor that is
used in many texts. The gauge fields defined in this convention is the combination gAµ of our
convention. In order to distinguish it from our convention, let us use a different typeface and
write Aµ = gAµ. One then defines the field-strength tensor as

Fa
µν = ∂µA

a
ν − ∂νA

a
µ − fbcaA

b
µA

c
ν , (11.41)

which turns out to be g times the object that we defined in Eq. (11.34). In this convention, the
pure gauge Lagrangian is therefore given by

Lgauge = − 1

4g2
Fa†

µνF
µν
a . (11.42)
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We will not use this convention. It is mentioned here only to make the reader conscious of the
fact that some texts do indeed use it, and it should be remembered while comparing formulas
derived here with those derived in this other convention.

2 Exercise 11.5 Add the pure gauge Lagrangian of Eq. (11.40) to the
terms involving fermion fields given in Eq. (11.11). Using the in-
finitesimal changes in the fermion and gauge fields given earlier in
the text, show that the Noether currents for gauge transformations
are given by

Jµ
a = ΨγµTaΨ + fabcF

µν
b Ac†

ν . (11.43)

[Note : The last term in the current shows that the gauge fields themselves carry
the gauge charge.]

2 Exercise 11.6 Show that the Euler–Lagrange equation for the gauge
fields is given by

∂µF
µν
a = Jν

a . (11.44)

Using the form of the Noether current from Eq. (11.43), show that
this equation can also be written in the form

DµF
µν
a = jν

a , (11.45)

where jν
a is the part of Jν

a that involves all fields other than the gauge
fields, and Dµ is the gauge-covariant derivative.

11.2.4 Mathematical interlude

In §10.3.1, we argued that the generators of any SU(N) group can be taken
to be traceless hermitian matrices. With hermitian generators, the structure
constants would be real numbers, and they will also be completely antisym-
metric in the three indices, as we will show a little later. Thus, we can be
somewhat nonchalant about the particular order of the gauge indices in the
definition of the field strength tensor, e.g., we can write fabc in place of fbca

in Eq. (11.34). Similarly, one could do away with the dagger signs in Eqs.
(11.39) and (11.40) if one uses hermitian generators, which also implies that
Aa

µ are hermitian fields.
Despite these notational simplifications, we will adhere to a more general

notation in what follows. The primary reason for this is that, in some cases,
it is convenient to use non-hermitian generators, as will be seen in Ch. 12,
Ch. 16 and Ch. 19.

It is worthwhile to note that the generators can always be chosen so that
they satisfy Eq. (11.39). As a first step, note that in any representation,

Tr(T †
aTa) =

∑

i,j

∣∣∣(Ta)ij

∣∣∣
2

(no sum on a) . (11.46)

This is the sum of the absolute square of all elements of the matrix Ta, and
therefore can be zero if and only if each element of Ta is zero. All Ta vanish
only in the singlet representation of the group, and in this representation Eq.
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(11.39) will be trivially satisfied with C = 0. In any other representation,
suppose we start with a set of generators called T ′

a which satisfy the relation

Tr(T ′†
a T

′
b) = αab (11.47)

for some set of numbers αab. Obviously, αab will be real for a = b. We can
now make linear combinations

T1 =

√
C

α11
T ′

1 ,

T2 =

√
C

α11(α11α22 − |α12|2)

(
α12T

′
1 − α11T

′
2

)
, (11.48)

and so on, so that the unprimed generators satisfy Eq. (11.39). This is the
Gram-Schmidt orthogonalization algorithm that can be applied to any vector
space. The resulting objects are orthogonal, which means that the inner
product of two different objects is always zero. In this case where we are
dealing with matrices which form the representation of generators of a group,
the inner product is defined by the left hand side of Eq. (11.39).

2 Exercise 11.7 Show that, with the definition given in Eq. (11.47),
α11 ≥ 0, α11α22 ≥ |α12|2 etc., so that the numerical co-efficients ap-
pearing on the right-hand sides of Eq. (11.48) are all real.

2 Exercise 11.8 The inner product of two members A and B of a vector
space is a number (complex in general), which can be denoted by
〈A,B〉. The definition must satisfy the following conditions:

a) 〈A,B〉 = 〈B,A〉∗. This implies that 〈A,A〉 is real.

b) 〈A,A〉 = 0 if and only if A is a null vector, i.e., if A+ C = C for
any vector C.

c) If α and β are two numbers, 〈C,αA+ βB〉 = α〈C,A〉 + β〈C,B〉.
d) The triangle inequality is satisfied, i.e., |〈A,B〉| ≤ |〈A,C〉| +

|〈C,B〉|.

Show that all these conditions are satisfied if we define the left hand
side of Eq. (11.39) as the inner product of Ta and Tb. (Property ‘b’
has already been proved in the text.)

In order to discuss group invariance properties with possible non-hermitian
generators, we will introduce the notation

Ta ≡ T †
a . (11.49)

The summation convention on repeated indices would work irrespective of the
presence or absence of a bar on the index. Thus, for example, Ta Ta will be
equivalent to T †

aTa, with an implied sum over the generators.
Taking the hermitian conjugates of both sides of Eq. (11.25), we obtain

fa b c = f∗
abc . (11.50)
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As for the symmetry properties of the structure constants, we have already
mentioned the antisymmetry with respect to the first two indices. For inter-
changes involving the third index, we can multiply both sides of Eq. (11.25)
by T †

d , i.e., Td , from the left and take traces of both sides. Using Eq. (11.39),
we obtain

iCfabd = Tr
(
Td TaTb

)
− Tr

(
Td TbTa

)
. (11.51)

Replacing b and d , and therefore d by b , in this equation, we obtain

iCfad b = Tr
(
TbTaTd

)
− Tr

(
TbTdTa

)
. (11.52)

Using the cyclic property of the traces, we can now conclude that fabd =
−fad b . The properties of the structure constants under interchange of indices
are therefore as follows:

fabc = −fbac = fbc a = −fc ba . (11.53)

Evidently, if we choose hermitian generators for which the indices a and a are
the same, these relations tell us that the structure constants will be completely
antisymmetric in the indices.

We want to point out here that the orthogonalization process, shown in
Eq. (11.48), does not really determine the normalization constant C. It only
assumes that C is positive, which can be easily inferred from Eq. (11.46). But
the value of C can be adjusted by scaling the generators. We will normalize
the generators such that, for any SU(N),

C(f) =
1

2
(11.54)

in the fundamental representation, which has been indicated by the paren-
thesized superscript on the left hand side. This agrees with the choice of the
fundamental representation of SU(3) generators given in Eq. (10.16, p 259),
and of the usual representation of SU(2) generators in terms of the Pauli
matrices.

Once this is fixed, the normalizations for all other representations are fixed
because all other representations can be built up from the fundamental, as ex-
plained in §10.3. For the adjoint representation of SU(N), this normalization
implies

C(ad) = N , (11.55)

which will be proved presently.

2 Exercise 11.9 Verify Eq. (11.55) for SU(2), where the structure con-
stants constitute the Levi-Civita symbol.

2 Exercise 11.10 With the help of the interchange properties summa-
rized in Eq. (11.53), show that the Jacobi identity, shown in Eq.
(10.28, p 262), can be written as

fabefcde + facefdbe + fadefbce = 0 . (11.56)
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Another important quantity, related to the normalization of the gener-
ators, is the so-called Casimir invariant of rank-2, denoted by C

(R)
2 for a

representation R. To motivate it, note that the combination T †
aTa commutes

with any of the generators. The reason is that

[T †
aTa, Tb] = [Ta Ta, Tb] = Ta [Ta, Tb] + [Ta , Tb]Ta

= ifabcTa Tc + ifa bcTcTa , (11.57)

Since the index a is summed over, we can change the dummy and write the first
term as ifa bcTaTc as well, obtaining ifa bc(TaTc+TcTa). Since the combination
of the generators in the parentheses is symmetric under the exchange of the
indices a and c, whereas according to Eq. (11.53), fa bc is antisymmetric under
the same exchange, the result vanishes.

If Ta denotes generators in an irreducible representation, this implies,
through Schur’s lemma, that the combination T †

aTa must be a multiple of
the unit matrix:

T †
aTa = C21 , (11.58)

which defines the Casimir invariant C2 for the irreducible representation.
It is easy to see that the value of C2 will depend on the normalization

of the generators. This can be established by contracting both sides of Eq.
(11.39) by δab. On the right hand side, the combination δabδab will be equal
to the number of generators of the group, which is the dimensionality of
the adjoint representation, d(ad). On the left hand side, we will obtain the
Casimir invariant multiplied by the trace of the unit matrix, and this trace is
the dimensionality of the representation of the generators. We can write this
as

C
(R)
2 d(R) = C(R)d(ad) . (11.59)

For the fundamental representation, the value of C2 can be obtained
through a generalization of Eq. (10.18, p 259). For the SU(N) group with the
normalization of the generators fixed through Eq. (11.54), the generalization
is given by

δilδjk =
1

N
δijδkl + 2

(
t†a

)
ij

(
ta

)
kl
, (11.60)

where ta’s stand for generators in the fundamental representation, and the
indices i, j, k, l run from 1 to N . Contracting this identity by δjk, one obtains

Nδil =
1

N
δil + 2

(
t†ata

)
il
, (11.61)

which shows that

C
(f)
2 =

N2 − 1

2N
. (11.62)
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With the help of this equation, we can now find the normalization and the
Casimir invariant for any other representation through Eq. (11.59). For ex-
ample, putting d(ad) = N2 − 1, we find

C
(ad)
2 = N . (11.63)

Also, Eq. (11.59) shows that C should equal C2 for the adjoint representation,
which verifies Eq. (11.55). Once again, we emphasize that the values of the
normalization constant and Casimir invariant of any representation depends
on the the normalization constant C(f) of the fundamental representation
generators, and are fixed once C(f) is chosen.

2 Exercise 11.11 � Show that, in any representation

TaTbTa =

„

C2 − 1

2
C

(ad)
2

«

Tb . (11.64)

2 Exercise 11.12 Prove Eq. (11.60). How will this equation be modified
if we do not commit to the convention of Eq. (11.54)?

11.2.5 Free gauge Lagrangian

The pure gauge Lagrangian has been shown in Eq. (11.40). It contains F a
µν

and its conjugate. The form of F a
µν was given in Eq. (11.34). From it, it

follows that

F a†
µν = ∂µA

a†
ν − ∂νA

a†
µ − gf∗

bcaA
b†
µ A

c†
ν . (11.65)

Note that if we use non-hermitian generators, the gauge fields are also non-
hermitian, and the structure constants can be complex.

The free Lagrangian of the non-abelian gauge field is the collection of terms
which are quadratic terms in these fields. These are:

Lfree = −1

4
(∂µA

a
ν − ∂νA

a
µ)†(∂µAν

a − ∂νAµ
a) . (11.66)

For each value of the gauge index ‘a’, the terms present here are exactly
similar to the terms in the Lagrangian for the free photon field. Therefore,
for any gauge field, the Feynman rules coming from the quadratic terms are
the same as those for the photon field. For example, we need to introduce a
gauge-fixing term in order to obtain the propagator, and we choose it to be

Lfix = − 1

2ξ
(∂µA

µ
a)†(∂νA

ν
a) . (11.67)

Once this is done, it is trivial to see that the propagator for any of the gauge
bosons is of the form given in Eq. (4.148, p 92), and we can use the ’t Hooft–
Feynman gauge to write it in the form given in Eq. (4.149, p 92). As for
physical or on-shell gauge bosons, we will be able to define a polarization
vector which will satisfy the properties shown for the photon in Eq. (4.24,
p 67) through Eq. (4.33, p 68). The Feynman rules for external gauge boson
lines will be exactly the same as those given in Table 4.1 (p 91).
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11.3 Self-interaction of gauge bosons

The difference between abelian and non-abelian gauge fields lies in the term
containing the structure constant in the expression for the field strength ten-
sor. Note that this term is quadratic in the gauge fields. Thus, in the La-
grangian which is quadratic in the field strength tensor, there will be cubic
as well as quartic terms in the gauge fields. These constitute interaction ver-
tices involving gauge bosons only, a feature that was absent in abelian gauge
theories. Let us discuss these vertices now.

As a prelude to this discussion, note that the last term of Eq. (11.65),
the one involving the structure constant, can be written in a slightly different
manner which will be helpful for us. Using the notation advocated in Eq.
(11.49) and the relation in Eq. (11.50), we can write

f∗
bcaA

b†
µ A

c†
ν = fb c aA

b
µA

c
ν = fbcaA

b
µA

c
ν , (11.68)

the last step following by renaming the dummy indices. Thus

F a†
µν = ∂µA

a
ν − ∂νA

a
µ − gfbcaA

b
µA

c
ν . (11.69)

11.3.1 Quartic vertices of gauge bosons

We first discuss vertices involving four gauge bosons, because they do not
contain any derivatives and are consequently somewhat simpler than the cubic
vertices. From Eqs. (11.34) and (11.69), we can easily identify the quartic
interaction present in Eq. (11.40). With slight changes in the names of the
dummy indices, we write it as

Lquartic = −1

4
g2fa′b′e fc′d′e gαγgβδ A

α
a′A

β
b′A

γ
c′A

δ
d′ . (11.70)

The Feynman rule obtained from this Lagrangian term has been given in
Fig. 11.1, where we have used the shorthand notation

Eαβγδ ≡ gαγgβδ − gαδgβγ . (11.71)

Remember that in our notation, the gauge fields can be complex, so it is im-
portant to distinguish between incoming and outgoing gauge bosons, which is
the same as distinguishing between a particular gauge boson and its antipar-
ticle. If hermitian generators and real gauge fields are used, this distinction
need not be maintained.

Let us discuss how the single term of Eq. (11.70) gives rise to so many dif-
ferent terms in the Feynman rule for the vertex. It all depends on the different
possibilities of assigning the particles in the vertex to the field operators in the
Lagrangian. First, suppose that the gauge bosons carrying the gauge indices
(a, b, c, d) in Fig. 11.1 have been created by the field operators in Eq. (11.70)
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Aa
µ Ab

ν

Ac
λAd

ρ

Feynman rule:

−ig2
[
fabe fcdeEµνλρ

+face fdbeEµλρν

+fade fbceEµρνλ

]

Figure 11.1: Feynman rule for quartic interactions of gauge bosons. The tensor E
with four indices has been defined in Eq. (11.71).

which carry the gauge indices (a′, b′, c′, d′) respectively. This possibility gives
an amplitude

−1

4
g2fabe fcdegµλgνρ . (11.72)

It is easy to see that if (a, b, c, d) correspond to (b′, a′, d′, c′), the result would
be the same since the structure constants are antisymmetric in the first two
indices. Also, if the first pair is exchanged with the last pair, the result
remains unchanged. So there are four contributions like that shown in Eq.
(11.72), and they add up to give a contribution four times as large as the
expression written in Eq. (11.72). Other correspondences between the set
(a, b, c, d) and the gauge indices appearing in Eq. (11.70) provide other terms
in the Feynman rule given in Fig. 11.1.

2 Exercise 11.13 Check the other terms of Fig. 11.1.

11.3.2 Cubic vertices of gauge bosons

We now look at the cubic terms present from Eq. (11.40). We first pick up
such terms from Eqs. (11.34) and (11.69):

Lcubic =
1

4
g

[
fbca (∂µA

a
ν − ∂νA

a
µ) + fbca(∂µA

a
ν − ∂νA

a
µ )

]
Aµ

bA
ν
c . (11.73)

Changing some dummy indices and using the antisymmetry of the structure
constants in the first two indices, we can write it as

Lcubic = gfb′c′a ′(∂αA
a′

β )Aα
b′A

β
c′ . (11.74)

As in the case of the quartic coupling, the Feynman rule for the cubic coupling
will contain various terms, depending on the six possible ways that the field
operators present in the cubic term can be associated with the three gauge
bosons present at the vertex. There is an additional complication here, viz.,
that the interaction contains a derivative. In §4.10.3, we have discussed that
one has to specify the momentum in order to define the Feynman rule for
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Aa
µ(p) Ab

ν(q)

Ac
λ(r) Feynman rule:

gfabc

[
pαEαµνλ + qαEανλµ + rαEαλµν

]

Figure 11.2: Feynman rule for cubic interactions of gauge bosons. The momentum
associated with each leg is given in the parentheses. The tensor E with four indices has
been defined in Eq. (11.71).

such interactions. For the sake of definiteness, we take all momenta to be
incoming, as indicated by the arrows in Fig. 11.2. In that case, as explained
in §4.10.3, the derivative will give a factor of −ip if p is the momentum of the
associated particle.

Let us now go through the different ways that the three gauge bosons can
be annihilated via the interaction of Eq. (11.74). For example, we have

(a, b, c)← (a′, b′, c′) : gfbca (−ipν)gµλ ,

(a, b, c)← (c′, b′, a′) : gfbac (−irν)gµλ ,

(a, b, c)← (b′, a′, c′) : gfacb (−iqµ)gνλ , (11.75)

and so on. Combining all six terms like these ones, we obtain the Feynman rule
for the cubic vertex shown in Fig. 11.2 after using the symmetry properties
of the structure constants given in Eq. (11.53). More explicitly, the Feynman
rule for the cubic interaction can be written as

gfabc

[
(pν − rν)gµλ + (rµ − qµ)gνλ + (qλ − pλ)gµν

]
. (11.76)

In §6.10, we talked about Furry’s theorem, which basically says that the 3-point function in-
volving three photon fields should vanish. For gauge bosons in a non-abelian gauge theory, we
find cubic couplings in the Lagrangian, signifying the existence of 3-point functions right at the
tree level. There is no conflict between these two statements, and no need for concluding that
the charge conjugation invariance, pivotal in the proof of Furry’s theorem, does not apply to
non-abelian gauge theories. The important thing to notice is that the structure constants of
the group appear in the coupling of Eq. (11.76). So, if the three legs of the vertex pertain to
the same gauge boson, the vertex will still vanish, as was the case for the 3-point function of
the photon.

11.4 Fadeev–Popov ghosts

The gauge-fixing term introduced in Eq. (11.67) is not enough to obtain con-
sistent quantization of a non-abelian gauge theory. For reasons that we do
not elaborate here, we have to add some unphysical fields which cannot be
created or annihilated in any experiment, but are essential for the consistency
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cb(k) ca(k)

Feynman rule:

−δab

k2

cb(p
′)

Ac
µ

ca(p)

Feynman rule:

−gpµfbca

Figure 11.3: Feynman rules involving ghosts. Momenta on different legs are shown
in parentheses.

of the quantum theory. These are called Fadeev–Popov ghost fields , which do
not appear as the outer leg of any Feynman diagram: they can only appear
as internal lines. They contribute a term to the Lagrangian which is of the
form

Lghost = −ic†aMabcb , (11.77)

where the ca’s are called ghosts and the c†a’s antighosts , and the index a goes
over all the generators. In other words, the ghosts transform like the adjoint
representation of the gauge group. They are scalar fields which obey the Pauli
exclusion principle: so in this sense they are weird objects. But, as we said,
they are not real particles that can be produced or annihilated in a physical
process.

We have not explained what Mab is in Eq. (11.77). Its form depends on
the gauge-fixing condition. The general prescription can be given by taking
the gauge-fixing condition to be of the form

fa(Aµ) = 0 , (11.78)

where the functional form can involve all gauge fields Aa
µ. Now, suppose we

make an infinitesimal gauge transformation that changes Aa
µ to A′a

µ , as given
in Eq. (11.27). This will change the content of the gauge-fixing functions, and
let us write

δfa(Aµ) = Mabθb , (11.79)

where the θb’s are the parameters in the gauge transformation.
For the covariant gauge condition of Eq. (11.67), we have

fa(Aµ) = ∂µA
µ
a . (11.80)

Using Eq. (11.27), we then obtain

δfa(Aµ) = ∂µ(δAµ
a ) = ∂µ

(
gfbcaθ

bAc
µ + ∂µθ

a
)
. (11.81)
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Thus the Fadeev–Popov ghost Lagrangian becomes

Lghost = −ic†a
(
gfbca∂

µAc
µ + ∂µ∂µδab

)
cb

= −ic†a∂µ∂µδabcb + igfbca(∂µc†a)Ac
µcb , (11.82)

where in the last step, we have added a total derivative term which should
not affect the action. From this Lagrangian, we can find out the propagator
of the ghost fields, as well as their interaction vertex with the gauge fields.
The Feynman rules have been shown in Fig. 11.3.

In passing, we want to make two comments about ghosts. First, the ghost
number is conserved, which means that a ghost line cannot begin or end within
a diagram. In conjunction with the comment made earlier that ghosts appear
only as internal lines, this statement means that ghosts can only make closed
loops within a diagram.

The second comment is about ghosts in abelian theories. In Ch. 5, we have
always worked with the gauge condition given in Eq. (4.21, p 66), which means
that the function set to zero at the classical level is the same as that shown
in Eq. (11.80). As seen from Fig. 11.3, the only interaction vertex involving
ghosts is proportional to the structure constants of the group, which means
that they vanish in an abelian theory. Thus, for the gauge-fixing term used
throughout Ch. 5, ghosts have no interaction with anything in an abelian
theory. This is the reason we have never discussed them while talking about
the abelian gauge theory of QED. In principle, one can take other gauge-fixing
terms as well. If we take a gauge-fixing term that contains higher powers of
the abelian gauge field, the ghosts will have interaction vertices with the gauge
fields, and their effects will have to be taken into account while performing
loop calculations.

2 Exercise 11.14 Consider an abelian gauge theory with a gauge-fixing
term

f(Aµ) = ∂µA
µ + AµA

µ . (11.83)

Find the ghost Lagrangian for this choice.

11.5 Interaction of gauge bosons with other
particles

In a gauge theory, the gauge bosons fields must be there. In addition, there
might be other fields. Such fields need not be spin-1 fields like the gauge
fields. They can be spin-0 or spin- 1

2 . They will have to appear in multiplets
that would transform like a representation of the gauge group. The gauge
interactions of these fields would be determined by their representation under
the gauge group.

In fact, in §11.1, we started with a multiplet like this. It was a multiplet
of spin- 1

2 fields. The gauge fields were introduced in Eq. (11.11) through the
gauge covariant derivative defined in Eq. (11.12). The covariant derivative has
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Ψi

Aa
µ

Ψj

Feynman rule:

−igγµ(Ta)ji

Figure 11.4: Gauge boson vertex with fermions.

two terms. One of them is the ordinary derivative, and this term contributes
to the free Lagrangian of the fermion fields. The other term, containing the
gauge fields, give the interaction of gauge fields with fermions. This term is

Lint = −gΨγµTaΨAa
µ . (11.84)

More explicitly, if we announce the components of the multiplet Ψ, we should
write

Lint = −g(Ψ)jγ
µ(Ta)ji(Ψ)iA

a
µ . (11.85)

From this, we can write the Feynman rule for the interaction of fermions with
gauge bosons, as has been done in Fig. 11.4.

For gauge interactions of scalars, we will follow the same algorithm. In
the free Lagrangian of a multiplet Φ of scalar fields, if we replace the ordinary
derivatives by covariant derivatives, we obtain

L = (DµΦ)†(DµΦ)−M2Φ†Φ . (11.86)

Once again, using the expression for Dµ from Eq. (11.12), we can extract the
interaction terms that appear in this Lagrangian:

Lint = ig(∂µΦ)†(TaA
µ
aΦ)− ig(TaA

a
µΦ)†(∂µΦ)

+g2(TaA
a
µΦ)†(TbA

µ
b Φ) . (11.87)

This includes vertices with one as well as two gauge bosons. Putting in the
indices for the components of the multiplet explicitly, we can write

Lint = ig(∂µΦ†
j)(Ta)jiA

µ
aΦi − igΦ†

j(Ta)jiA
a
µ(∂µΦi)

+g2gλρΦ†
j(Ta′Tb′)jiΦiA

λ
a′A

ρ
b′ . (11.88)

The Feynman rules for these vertices have been given in Fig. 11.5. Note that
two terms appear in the quartic vertex, coming from the ways that the gauge
indices a′ and b′ present in the interaction Lagrangian can be equal to the
gauge indices a and b in the figure.
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Φ i(
p)

Aa
µ

Φ
j (p ′) Feynman rule:

−ig(p+ p′)µ(Ta)ji

Φi Ab
ν

Aa
µΦj

Feynman rule:

ig2gµν(TaTb + TbTa)ji

Figure 11.5: Gauge boson vertices with scalars. Momenta on different legs are shown
in parentheses.

It should be noted that gauge bosons can connect particles within the same
irreducible multiplet only. In other words, the two fermions that appear in
Fig. 11.4 or the two scalars that appear in Fig. 11.5 must belong to the same
multiplet of the gauge group. Of course, even if the two non-gauge particles
belong to the same multiplet, their vertex may not exist with a particular
gauge boson if the relevant matrix element of the generator(s) vanish. But if
the two particles do not belong to the same multiplet, the gauge interaction
vertex vanishes with all gauge bosons.



Chapter 12

Quantum chromodynamics

We introduced quark colors in Ch. 10 and mentioned that the idea is essential
for keeping the baryon wavefunctions completely antisymmetric in the quarks.
At the time this idea was introduced, probably no one thought that this idea
would become crucial in the understanding of the nature of strong interactions.
The modern theory of strong interactions is in fact based on the color property
of quarks, and the theory is called quantum chromodynamics in analogy with
quantum electrodynamics. And, following the same analogy, the acronym
QCD is used for this theory.

12.1 SU(3) of color

The basic idea of QCD is that there is a local symmetry involving quark col-
ors. In Ch. 11, we discussed how local symmetries give rise to interactions
mediated by gauge bosons. When the local symmetry involves color trans-
formations, the corresponding interactions mediated by the gauge bosons are
strong interactions.

To present the idea in more detail, let us recall that any quark comes in
three colors. With the optical analogy presented in §10.11.2, let us call these
three colors red, green and blue. For a given flavor of quark q, let us consider
these three colors to constitute the triplet representation of some group:

q ≡



qr
qg
qb


 ∼ 3 . (12.1)

Obviously, the gauge group must admit an irreducible triplet representation.
Among the unitary groups, only two groups have this property: SU(2) and
SU(3). For SU(2), the triplet is the adjoint representation, which is real. If
we identify the quarks in this representation, the quarks and the antiquarks
would behave the same way under color. In reality, we know that quarks
and antiquarks are not the same, but rather opposite so far as their electric
charges or their baryon numbers are concerned. So it makes no sense to

318
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assume that their color properties would be the same. If we need a complex
representation, we are forced to take the gauge group to be SU(3) in which
the three colors would then constitute the fundamental representation. This
is the gauge group of QCD.

In Ch. 10, we discussed an SU(3) symmetry involving quarks. Here we are discussing one.
Mathematically the two structures are the same, but it should be clearly understood that the
physical contexts are very different. In the SU(3) symmetry discussed in Ch. 10, the fundamental
multiplet consists of the up, the down and the strange quarks, which are three different quark
flavors. In the SU(3) that we introduced in this section,the fundamental multiplet consists of the
three possible colors of a single flavor of quark. For this reason, the former symmetry is called
the flavor SU(3) and denoted by SU(3)F , whereas the new one is called the color SU(3) and
denoted by SU(3)c. We will often omit the subscript, hoping that it should be understandable
from the context anyway.

Although both groups have the same structure, their status in the Lagrangian are not the
same. The flavor symmetry, SU(3)F , is an approximate symmetry which is realized only if we
ignore the mass differences between the u, the d and the s quarks. Even in the limit when we
ignore these details, the flavor symmetry is a global symmetry. On the other hand, the symmetry
SU(3)c is an exact symmetry of the Lagrangian. And it is a gauge symmetry, which means that
it governs the dynamics of the interactions.

From the discussion of §11.1, it is quite obvious how gauge symmetry
can be implemented in this case. Consider first an SU(3) transformation
on the quark colors. Recalling the generators of SU(3) in the fundamental
representation given in Eq. (10.16, p 259), we can write such a transformation
as

q(x)→ q′(x) = exp

(
−iλa

2
θa

)
q(x) , (12.2)

where the index a runs from 1 to 8. As described in Ch. 11, such a trans-
formation will be a symmetry of the free Dirac Lagrangian for quarks if the
transformation parameters θa do not depend on x. But if the symmetry is
made local, i.e., the θa’s depend on x, the same statement cannot be made.
In that case, we must introduce eight vector bosons, in the manner shown in
§11.1, in order to implement the symmetry. For the color SU(3) symmetry,
these eight gauge bosons are called gluons .

The interaction of these gluons with the quarks can easily be deduced
from the general formula given in §11.5. Note that there are two diagonal
generators in SU(3), e.g., λ3 and λ8 shown in Eq. (10.13, p 259). When the
corresponding gauge bosons interact with quarks, the color of the quark is not
changed. However, different colors are treated differently because the diagonal
elements are different. When any of the other six gauge bosons interact with
the quarks, the quark color changes. For example, consider λ1 and λ2 of Eq.
(10.13, p 259). Each of these two generators has two non-zero elements, in
the 12 and 21 positions. This means that the gauge boson associated with
these generators can change a red quark into a green quark and vice versa.
Similarly, the gauge boson associated with λ4 and λ5 can interchange red and
blue colors, whereas those associated with λ6 and λ7 can interchange green
and blue colors of quarks.
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Figure 12.1: Gluon exchange mediates strong interactions. The three solid lines on
each side are supposed to represent three quarks in a baryon like the nucleons or the
∆’s. The exchanged line represents a gluon. We do not attempt to show how strong
interactions are responsible in binding three quarks into a baryon. Only the interaction
between baryons has been shown.

The physical interpretation of the gluons becomes much more clear if,
instead of dealing with the hermitian generators that have been presented in
Eq. (10.13, p 259), we take the six off-diagonal generators as

λrg =
1√
2

(λ1 + iλ2) ,

λgb =
1√
2

(λ4 + iλ5) ,

λrb =
1√
2

(λ6 + iλ7) , (12.3)

and their hermitian conjugates which will be called λgr , λbg and λbr respec-
tively. Thus, e.g., we will have

λrg =




0
√

2 0
0 0 0
0 0 0


 . (12.4)

If we associate a gauge boson to this generator, this gluon will be able to do
only one thing: turn a red quark into a green quark. The hermitian conjugate
gauge boson will be able to do just the opposite: turn a green quark into a red
quark. Similarly, there will be other two pairs of gluons which will perform
other color changes. The gluons associated with the diagonal generators do
not change color, as we commented earlier.

Gluon exchanges between quarks would give rise to strong interactions,
in the same manner that photon exchanges between two charged particles
give rise to electromagnetic interactions. For example, consider the lowest or-
der electron–electron interaction diagrams that were shown in Fig. 5.3 (p 120).
Strong interaction between two hadrons would be mediated by similar-looking
diagrams. The only big difference is that hadrons are not elementary particles
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Figure 12.2: How gluon exchange between two nucleons can be seen as a meson
exchange.

like the electron. A baryon contains three quarks. A possible diagram which
induces interaction between two baryons has been shown in Fig. 12.1.

Of course, this is not a lone diagram. It is an example of what are called
spectator diagrams , where one considers interaction between two hadrons by
a gluon exchange between only one quark (or antiquark) in one hadron and
one in the other, while the other quarks and antiquarks do not really par-
ticipate in the process: they behave like spectators. Obviously, there can be
more than one spectator diagrams, because the virtual gluon can be emitted
from any of the quarks in one baryon and absorbed by any of the quarks in
the other baryon. Different gluons can induce different color changes for the
quarks. In addition, there will be infinitely many more non-spectator dia-
grams. These will include multiple gluon exchanges involving different quarks
in either baryon. In fact, there must be gluon exchanges between the three
quark lines that constitute each baryon, because the baryon is a bound state
formed because of strong interaction between quarks.

Earlier, in §8.8, we described the interactions between nucleons by the
exchange of mesons. Now we seem to preach that the interaction should
be described by exchange of gluons. There is no conflict between these two
descriptions. To see this, let us look at the diagram in Fig. 12.2. Needless
to say, topologically this diagram is equivalent to that of Fig. 12.1: we have
only added the arrows on one of the quark lines for the sake of clarity. As it
appears now, the exchange part of the diagram consists of a quark line going
one way and a quark line going the other. Alternatively, we can also say that
we have a quark-antiquark pair going one way. Since such a pair represents
a meson, it appears that a meson has been interchanged between the two
nucleons. The gluon exchange between the nucleon and this meson can be
absorbed in a definition of the nucleon-meson vertex. In the simplest diagram
with just a single gluon exchanged, the meson must have spin 1 because it
must carry the angular momentum of the gluon. However, there can be more
diagrams with more gluons exchanged, and then spinless mesons would also
be allowed. When the exchanged momentum is small, such processes will be



322 Chapter 12. Quantum chromodynamics

dominated by the meson with smallest mass, i.e., the pion. As the exchanged
momentum becomes larger, one needs to include mesons of higher and higher
mass in order to continue with such effective pictures.

In the more general case where the exchanged momentum is large, the
effective meson exchange picture does not work, and we must describe strong
interactions in terms of gluon exchanges. As already indicated, the Lagrangian
for gluon interactions is known through the general formalism of Yang-Mills
theories. We might be tempted to believe that the rest is trivial: just as we
had calculated the rates of different processes in QED, we should be able to
calculate strong interaction effects. But it is not so simple. The reason is
an obvious one: strong interactions are strong. In other words, the gauge
coupling constant, the quantity that was denoted by g in Ch. 11, is not small.
In the case of QED, the coupling constant e was small, and going to a higher
order in perturbation theory automatically guaranteed a smaller result. So, in
order to calculate any process with a given accuracy, diagrams up to a certain
order were necessary. But in QCD, that is not the case. So it makes no sense
to apply perturbation theory. This is the big problem.

12.2 Running parameters

But there is a solace: the coupling “constant” is not really a constant: it
changes with the momentum scale of the interaction. This phenomenon is
described, rather picturesquely, by the statement that the “coupling parame-
ters run”. It happens not just for the QCD coupling constant, but for other
parameters in a Lagrangian. We will demonstrate the phenomenon with the
example of the QED coupling constant.

12.2.1 Why parameters run

The essential reason for the running of parameters was encountered in §5.7,
while discussing higher order effects in QED. To be precise, we found that
the form factors that appear in the QED vertex function are functions of the
momentum transfer.

There is one aspect of this momentum dependence that was intentionally
not brought up in the earlier discussion. Let us look back at the expression for
the charge form factor, F1(q2), that was given in Eq. (5.158, p 147). Consider
the region of momentum integration in which the mass and the momentum
transfer can be neglected. In this region, the momentum integration that
appears in this formula is

∫
d4k

(k2)2
, (12.5)

apart from constant factors. The indefinite integral is proportional to ln(k2).
This form is valid for very large values of k2, ranging all the way to infinity.
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When we put the limits, the result clearly diverges at the upper end. This di-
vergence cannot be canceled from the contribution of the integral coming from
smaller values of the integration variable. This is called ultraviolet (or UV)
divergence. The one-loop contribution to the charge form factor is therefore
infinite.

Certainly, this cannot be the final result in a physical theory, since the
charge of a particle can be measured. To rectify this problem, we say that
once we add the quantum corrections in the form of loop diagrams, we need
to take into account corrections to the classical Lagrangian as well. In other
words, the complete vertex function is given by an expression of the form

Γλ(q2) = Qγλ + Γ
(loop)
λ (q2) + Γ

(CT)
λ , (12.6)

where the contribution Γ
(CT)
λ comes from the extra terms in the Lagrangian,

which are called counterterms . The counterterms are infinite, and cancel the
infinity coming from the loop contributions.

It should be noted that the divergence appears only in the F1 form factor.
So we can take

Γ
(CT)
λ = −F (loop)

1 (µ2)γλ , (12.7)

where µ in the parentheses indicates a mass scale. This counterterm contri-
bution can come from a counterterm Lagrangian of the form

L
(1)
CT = −(Z1 − 1)eQψγµψA

µ , (12.8)

where Z1 is related to F1(µ2). Adding this with the original interaction term,
which was of the same form but without the factor Z1 − 1 in front, we find
the total interaction term in the Lagrangian as

Lint = −Z1eQψγµψA
µ . (12.9)

The free terms are also not free from infinities. These can be evaluated by
considering diagrams with two external lines, called 2-point functions or self-
energy functions. In QED, there are two kinds of 2-point functions: one kind
where the external lines correspond to the charged fermion, and another kind
where the external lines correspond to photons. We will need counterterms for
both kinds. In fact, for the fermion self-energy, we will need two counterterms:
one for the derivative term and one for the mass term. After adding all these
counterterms, the QED Lagrangian, presented in Eq. (5.11, p 114), is modified
to

L = Z2

(
iψγµ∂µψ − (m+ δm)ψψ

)
− Z1eQψγ

µψAµ −
1

4
Z3FµνF

µν ,

(12.10)

apart from the gauge-fixing term which is not important for the present dis-
cussion. This expression can also be written as

L =
(
iψBγ

µ∂µψB −mBψBψB

)
− eBQψBγ

µψBABµ −
1

4
FBµνF

µν
B ,

(12.11)
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where the subscript ‘B’ has been added to denote the so-called bare fields

ψB =
√
Z2 ψ , Aµ

B =
√
Z3 A

µ , (12.12)

and the bare parameters

mB = m+ δm , eB =
Z1

Z2

√
Z3

e . (12.13)

Thus the Lagrangian with the counterterms looks exactly like the classical
Lagrangian which did not have the counterterms, but the definitions of the
fields and couplings have to be changed by a normalizing factor. This is why
the process is called renormalization.

This is a loaded statement. Usually when we change the normalization
of something, it is only for the sake of convenience of some sort. This is not
exactly the case here. It should be noted that the quantities called Z1, Z2 and
Z3 that appear in the bare Lagrangian of Eq. (12.10) are all infinite. Thus,
the bare fields and bare parameters are infinite. However, this is not a matter
of practical concern since the bare parameters are never seen. Interactions
are taking place, and anything that we observe is a result of interactions. The
infinities of the bare parameters are canceled by the infinities that appear in
loop corrections, and as a result we see finite results in all experiments.

Once the redefinitions are made and renormalization performed, one might wonder whether we
have changed the classical theory as well. The answer is negative, but is obscured by our choice
of units with ~ = 1. To clarify the point, let us, for a moment, use some more conventional
units where ~ is not used to set up the units. We can keep using c = 1, and take the basic units
to be L (for length) and ~ (in lieu of a mass unit). The action A has the dimensions of ~, and
the dynamics is governed by the dimensionless ratio Acl/~, where Acl is the classical action.

Let us now count how many powers of ~ will enter the expression of the amplitude of a
diagram. From each vertex, there will be a factor of 1/~. Since propagators come from the
inverses of the quadratic part of the Lagrangian, each propagator will contribute a factor ~. So,
if there are v vertices and n internal lines in a diagram, the power of ~ in the amplitude will be
n− v. If the diagram is planar, i.e., can be drawn on a plane without any crossing of the lines
where there is not interaction vertex, Euler’s topological formula reads

n− v = ℓ− 1 , (12.14)

where ℓ denotes the number of loops. This is the power of ~ that goes into Aeff/~, which means
that the power in Aeff is simply equal to the power of loops in the diagram. This means that loop
corrections always come multiplied by some power of ~ compared to the classical action. In the
classical limit ~ → 0, these corrections therefore vanish. For non-planar diagrams, n−v > ℓ−1,
so they vanish even faster in the classical limit.

In Ch. 5, we mentioned that the classical Lagrangian has a gauge symme-
try. In fact, we built the theory by banking on this symmetry. The symmetry
depends on the relative strengths of the interaction term and the free term
containing the derivative of the fermion field. This symmetry will be lost in
the modified Lagrangian unless

Z1 = Z2 . (12.15)
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(a) (b) (c)

Figure 12.3: Examples of diagrams that contribute to the 2-point function of the
photon in QED.

This relation must then be a consequence of the gauge symmetry, which can
be proved by using the Ward–Takahashi identity, which is a relation between
the vertex function and the fermion self-energy function. We do not derive
the identity here. Rather, we use Eq. (12.15) and find that it implies

eB =
e√
Z3

(12.16)

through Eq. (12.13). This is a very interesting result, and we are now going
to explore its consequences.

Recall how we defined the propagator of a free particle in §4.10: it was
the inverse of the quantity that appears, apart from the fields themselves,
in the quadratic part of the field Lagrangian written in momentum space.
The ‘quantity’ mentioned in the previous sentence can be called the 2-point
function. In fact, if we think of the simple line of Fig. 12.3a as a diagram
with two external legs, one coming in and one going out, and want to write
its amplitude following the same prescription that we adopt for vertices, this
is exactly what we are going to get. The propagator would be the inverse of
this 2-point function.

The first of these diagrams, the unadorned photon line, represents the 2-
point function in absence of interactions. Referring back to Eq. (4.146, p 92)
and disregarding the gauge-fixing term which is not important in the present
context, we find that this contribution to the 2-point function is given by

Π
(0)
λρ (q) = −(q2gλρ − qλqρ) , (12.17)

where the parenthesized superscript ‘0’ indicates that this is the contribution
from zero loops, i.e., tree diagrams.

Suppose now we want to add to it the contribution to the photon 2-point
function coming from the loop diagrams like those shown in Fig. 12.3b,c or
innumerable other diagrams which have not been shown. Loop diagrams will
give divergent results of the form

Π
(loop)
λρ (q) = (q2gλρ − qλqρ)×Π(loop)(q2) , (12.18)

where Π(loop)(q2) is a Lorentz invariant function of the 4-momentum. The
sum of the contributions in Eqs. (12.17) and (12.18) is infinite, and so, in
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order to cancel the infinity, we need to introduce a counterterm. Suppose we
introduce

Π
(CT)
λρ (q) = −(q2gλρ − qλqρ)×Π(loop)(−µ2) , (12.19)

then the total result, after adding this term, would be finite.

The reason for taking the argument of Π(loop) with a negative sign in Eq. (12.19) is the following.
For an on-shell charged particle emitting or absorbing a photon, the value of q2 must always be
negative. Thus, if we call the argument −µ2, we can take µ to be a positive real number. We
can then define

t ≡ lnµ , (12.20)

and rewrite functions of −µ2 as functions of t , which we will use soon.

2 Exercise 12.1 Verify the statement that if qµ is the momentum car-
ried by a gauge boson at a QED vertex with an incoming particle and
an outgoing particle both being on-shell, then q2 < 0.

Once we add the counterterm, the co-efficient of − 1
4F

µνFµν in the to-
tal Lagrangian changes. Originally, the co-efficient was 1. After adding the
counterterm, it becomes

Z3 = 1 + Π(loop)(−µ2) . (12.21)

We see that Z3 depends on µ. We now look back at Eq. (12.16). Since eB is
a parameter that appears in the full Lagrangian, it cannot depend on energy
transfer, or anything else for that matter. So the inevitable conclusion is that
e must also depend on µ.

To understand the physical significance of this statement, consider what
happens if a photon carries a momentum with q2 = −µ2. Contributions given
in Eqs. (12.18) and (12.19) cancel in this case. Thus, if we try to write the
Feynman amplitude of the interaction vertex, the loop-induced contribution
cancels with the counterterm, and only the tree-level contribution remains,
which is just eγµ. In other words, the parameter e in the Lagrangian is
the coupling of the fermion to the photon if the photon momentum satisfies
q2 = −µ2. This e depends on µ, which means the coupling depends on µ,
which characterizes the momentum transfer. In short, the coupling runs.

It must be noted that the running depends only on Z3, which represents
corrections to the 2-point function for the photon, i.e., to terms in the La-
grangian which are quadratic in the photon field. So the energy dependence
of e depends only on the photon line, i.e., is independent of which particle
the photon attaches to. In fact, this is the reason why the dependence can be
seen as the dependence of e, and not of Q. The universal coupling constant e
changes in a universal manner through the photon 2-point function, leaving
Q unchanged for any particle.
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12.2.2 Running of QED coupling

Let us continue with our argument for QED and quantify the running of the
QED coupling constant. The most dominant contribution to Π(loop) comes
from the one-loop graph of Fig. 12.3b. Let us denote the contribution of this
diagram by αΠ(1). Because of the two vertices, this contribution must have a
factor e2 in it. Then, squaring Eq. (12.16) and expanding in powers of α, we
can write

αB = α(t )
[
1−Π(1)(t )

]
+O

(
α3
)
. (12.22)

If we use a different counterterm to cancel the loop contribution at q2 =
−µ′2, the left hand side should remain the same, so that neglecting terms of
O
(
α3
)

we can write

α(t )
[
1−Π(1)(t )

]
= α(t ′)

[
1−Π(1)(t ′)

]
, (12.23)

or

α(t )− α(t ′) = α
[
Π(1)(t )−Π(1)(t ′)

]
. (12.24)

Taking t ′ very close to t , we obtain

dα

dt
= α

dΠ(1)

dt
. (12.25)

This shows how α changes because of momentum dependence of the photon
self-energy function. Note that on the right hand side of Eqs. (12.24) and
(12.25), we have not specified any momentum scale for α. The point is that
because Π(1) itself is O (α), the terms on the right hand side are already
O
(
α2
)
. Thus the factor of α present here can be either α(t ) or α(t ′) or

some sort of average of the two: the difference between these different choices
produces corrections O

(
α3
)

which we have neglected in writing the equation.
In order to proceed, we need to calculate Π(1). We will assume that the

momentum scale is much higher than the mass of the fermion in the loop, and
therefore neglect the mass altogether. Using the Feynman rules for QED we
obtain, for the diagram in Fig. 12.3b,

iΠ
(1)
λρ (q) = −(ie)2

∫
d4l

(2π)4
Tr

(
γλ
il/

l2
γρ
i(l/+ q/)

(l + q)2

)
, (12.26)

where we assume that the fermion in the loop is the electron. Applying Eq.
(G.2, p 756) to combine the factors in the denominator, we obtain

Π
(1)
λρ (q) = ie2

∫
d4l

(2π)4

∫ 1

0

dζ
Tr
(
γλl/γρ(l/+ q/)

)

[l2 + 2ζl · q + ζq2]
2 . (12.27)
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Redefining l+ ζq as the new loop integration variable, this expression can be
written as

Π
(1)
λρ (q) = ie2

∫
d4l

(2π)4

∫ 1

0

dζ
Tr
(
γλl/γρl/

)
− ζ(1 − ζ) Tr

(
γλq/γρq/

)

[l2 + ζ(1 − ζ)q2]
2 ,(12.28)

omitting terms odd in l in the integrand because they vanish on integration.
Evaluating the traces through Eq. (F.38, p 739) and reducing the terms involv-
ing l in the numerator to invariant integrals as shown in Eq. (G.10, p 758), we
obtain

Πλρ(q) = 4πiα

∫ 1

0

dζ
(

2gλρJ1 + 8ζ(1 − ζ)(gλρq
2 − qλqρ)J2

)
, (12.29)

where

J1 = −
∫

d4l

(2π)4
l2 + 2ζ(1− ζ)q2

[l2 + ζ(1− ζ)q2]2
,

J2 =

∫
d4l

(2π)4
1

[l2 + ζ(1 − ζ)q2]
2 . (12.30)

The technique for evaluating loop integrals like these have been described
in Appendix G. The integral J1 can be evaluated by employing dimensional
regularization, i.e., by turning the 4-dimensional momentum integration into
a D-dimensional one and taking the limit D → 4 in the end. Using Eq. (G.34,
p 762), we obtain that in D dimensions,

J1 = −i Γ(1 + D/2)Γ(1 − D/2) + 2Γ(D/2)Γ(2− D/2)

(4π)
D/2 Γ(D/2)Γ(2)

(
− ζ(1 − ζ)q2

)1−D/2
. (12.31)

Using the property of the gamma function, zΓ(z) = Γ(z + 1), we can write
Γ(2 − D/2) = (1 − D/2)Γ(1 − D/2). Then, taking the limit D → 4, we find that
the integral J1 vanishes.

This is good news, because if it hadn’t, we would have to put in a coun-
terterm proportional to AµAνgλρ to cancel its infinities, and we would have
required a mass term for the photon to absorb this infinity. Gauge invariance
protects us from having such a term. The remaining term has precisely the
form advocated in Eq. (12.18), with

Π(1)(q2) = 32πiα

∫ 1

0

dζ ζ(1 − ζ)J2 , (12.32)

where the q2-dependence is in J2. Eq. (12.25) then tells us that

dα

dt
= 32πiα2 d

dt

∫ 1

0

dζ ζ(1 − ζ)
∫

d4l

(2π)4
1

[l2 − ζ(1 − ζ)µ2]
2 , (12.33)
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Figure 12.4: Schematic view of virtual electron–positron pairs around a bare electron.
Note that the diagram is deceptive in the sense that it shows a finite size of the electrons
and positrons, which are point-like objects to the best of our knowledge.

where µ and t are related through Eq. (12.20). Using this relation, we can
write (d/dt ) as µ(d/dµ) on the right hand side and obtain

dα

dt
= 32πiα2µ

d

dµ

∫ 1

0

dζ ζ(1 − ζ)
∫

d4l

(2π)4
1

[l2 − ζ(1 − ζ)µ2]
2

= 128πiα2µ2

∫ 1

0

dζ [ζ(1− ζ)]2
∫

d4l

(2π)4
1

[l2 − ζ(1 − ζ)µ2]
3 . (12.34)

The momentum integral in this last equation is finite. We can use Eq. (G.35,
p 762) to write

dα

dt
=

4α2

π

∫ 1

0

dζ ζ(1 − ζ) =
2α2

3π
. (12.35)

This is the contribution to the evolution of the fine-structure constant coming
from the electron loop. There will be similar contributions coming from other
fermions in the loop. The notable feature is that, for any fermion, the contri-
bution is positive, since the self-energy function contains square of the electric
charge of the fermion. Thus, the fine-structure constant, or equivalently the
QED coupling constant, increases with energy.

Intuitively, it can be understood in the following way. Suppose there is a
bare electron at some point in space. There is an electric field around it, which,
in the language of quantum field theory, is a collection of virtual photons.
These virtual photons produce virtual electron–positron pairs at every instant,
which recombine within a small time to produce virtual photons. At any
given instant, there are some virtual photons and a cloud of virtual electron–
positron pairs. Among the members of any of these pairs, the positron will
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be attracted by the bare electron, whereas the electron will be repelled. The
situation would look schematically like the diagram in Fig. 12.4.

If we now probe this cloud with a projectile having a certain momentum,
the projectile will reach up to a smallest distance r given by the uncertainty
principle. It will then sense the charge that is contained within a sphere
whose radius is r. This sphere will contain more positrons from the cloud
than electrons, so the net cloud charge would be positive. We will observe
the total charge of the bare electron and the cloud. The more energetic the
projectile, the nearer it will go to the bare electron, and we will see more and
more of the bare charge. This is equivalent to the statement that the coupling
constant rises with energy.

12.2.3 Beta function

All parameters present in the Lagrangian of a quantum field theory can un-
dergo evolution with energy scale, as demonstrated for the case of QED. If we
denote the coupling constants generically by g, their variation with respect to
the scale µ can be expressed in the form

dg

dt
= β(g) , (12.36)

where g is the physical coupling constant at the scale µ, and t is defined
through Eq. (12.20).

The right hand side is a function which gives the nature of variation, and
is called the beta function. Obviously it depends on g, and we have shown
the functional dependence in the equation. In general, it can depend on other
parameters of the theory as well. For an SU(n) gauge theory, the one-loop
beta function for the gauge coupling constant is given by

β(g) = − g3

48π2

(
11C

(G)
2 − 4

∑

F

C
(F )
2 −

∑

S

C
(S)
2

)
(12.37)

if all couplings other than the gauge couplings are negligibly small.
The expression contains various Casimir invariants, which were defined

in Eq. (11.58, p 309). C
(G)
2 , for example, denotes the Casimir invariant for

the representation that the gauge bosons belong to, i.e., the adjoint represen-
tation. The last term contains C

(S)
2 , which is the Casimir invariant for the

representation of the gauge group that any complex scalar field might belong
to. If we have a real scalar field instead, the corresponding co-efficient should
be halved because a real scalar field contains half as many degrees of freedom
as a complex scalar field. The other term contains C

(F )
2 , which is the Casimir

invariant for the representation of the internal symmetry group that a Dirac
fermion belongs to. Obviously, there are sums over all scalars and fermions.

We recall that, in deriving Eq. (12.35), we neglected the mass of the
fermion in the loop. In other words, Eq. (12.35) is valid only when the scale
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(a1) (a2) (b)

(c) (d1) (d2)

Figure 12.5: One-loop self-energy diagrams for gauge bosons in a non-abelian gauge
theory. In the loop, we have (a) gauge bosons, (b) Fadeev–Popov ghosts, (c) fermions,
(d) scalars.

µ is much larger than the mass in the loop. The same restriction applies to
Eq. (12.37). At any given scale, one should use only those particles whose
masses satisfy the relation m≪ µ. In practice, one includes all masses which
satisfy the relation m < µ. If m > µ, the contribution is so small that it can
be neglected for all practical purposes.

In writing the co-efficient for the fermion term in Eq. (12.37), we have assumed that the entire
fermion field transforms like the same representation of the gauge group. This is not really
necessary for an arbitrary gauge theory. The internal symmetries commute with spacetime
symmetries, which means that by performing Lorentz transformations, one cannot change the
property of any field under an internal symmetry group. Therefore, all components of an
irreducible representation of the Lorentz group must transform the same way under an internal
symmetry group. A Dirac field, however, is not an irreducible representation. As mentioned
in §4.4.2, it contains two irreducible representations of the Lorentz group. In general, these
two irreducible parts can transform differently under an internal symmetry. This issue will be
discussed again in Ch. 16. Here, it is irrelevant because entire fermion fields indeed transform
like the same representation in QCD. Theories which have this property are called vector-like
theories. In the more general case, if the two irreducible parts of any Dirac field transform
differently under an internal symmetry, the theory is called a chiral theory . In this case, Eq.
(12.37) should be modified to

β(g) = − g3

48π2

 

11C
(G)
2 − 2

X

F

C
(FL)
2 − 2

X

F

C
(FR)
2 −

X

S

C
(S)
2

!

, (12.38)

where FL and FR refer to the two irreducible parts.

Looking at the definition of the Casimir invariant C2, it is not difficult
to guess why they appear in the evolution formula of Eq. (12.37). As de-
scribed in §12.2.1, only the self-energy of the gauge boson is responsible for
the running of the gauge coupling parameters. Consider now a non-abelian
gauge theory. The self-energy of a gauge boson obtains contributions from
the diagrams shown in Fig. 12.5. To be specific, let us look at Fig. 12.5c, with
fermions in the loop. Each of the two vertices has a factor of the generator, in
the representation appropriate for the fermions. Because of the closed loop,
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there is a trace over these two generators, which is exactly what the Casimir
invariant is. The same can be said about Fig. 12.5d1, with scalars in the
loop, except that this time the contribution will contain the Casimir invari-
ant of whatever representation the scalars transform like. The amplitude of
the diagram of Fig. 12.5d2, on the other hand, is proportional to the metric
tensor gλρ that comes from the quartic coupling. This merely helps cancel
some gauge-noninvariant contribution coming from Fig. 12.5d1. The same
thing can be said about the gauge boson loop in Fig. 12.5a2 that contains
a quartic coupling. It cancels some gauge-noninvariant contribution coming
from Fig. 12.5a1 and Fig. 12.5c. Since the gauge bosons and the Fadeev–Popov
ghosts running in the loop transform as the adjoint representation of the gauge
group, they give the Casimir invariant of the adjoint.

The beta function for a U(1) gauge theory can easily be guessed from Eq. (12.37) and the
analogy between U(1) and SU(N) gauge theories given in Ch. 11. There will be no contribution
coming from gauge bosons in the loop, because the trilinear gauge boson coupling does not
exist for a U(1) theory. There is no coupling to the ghosts as well, as mentioned in §11.4. The
beta function would therefore be given by

β(e) =
e3

48π2

 

4
X

F

Q2
F +

X

S

Q2
S

!

. (12.39)

For fermions, this is exactly the result that we got earlier in Eq. (12.35).

2 Exercise 12.2 The low energy value of the fine-structure constant α
is 1/137. Use the QED beta function to show that at a scale MZ =
91GeV, the value of α is roughly 1/128, assuming that it crosses the
thresholds of only the following fermions on the way:

• Charged leptons: e, µ, τ

• Neutrinos (how many? should you care?)
• The quarks u, d, s, c and b

[Note : Read the masses of these particles from Table B.2 (p 720) and TableB.5
(p 723). You need not be too fussy about very accurate values of the masses, since
the dependence is only logarithmic.]

2 Exercise 12.3 Take the Lagrangian of scalar QED from §5.5. Calcu-
late the contribution of one charged scalar to the evolution of electric
charge at the one-loop level. The answer is given in Eq. (12.39).

But the important point is that, even when we are above the thresholds
for all known quarks, the one-loop beta function of QCD is negative. This
means that, at higher and higher energies, the gauge coupling constant be-
comes smaller and smaller. And this will be the case no matter how much
we increase the energy scale, unless there exists a huge number of hitherto
unknown fermions and scalars which can offset the contribution coming from
the gauge bosons in the beta function and make it positive. Thus, at higher
and higher energies, quarks will be more and more free, a property termed
asymptotic freedom.

It can of course be said that, since the QCD coupling constant is large at
low energies, one should not trust a perturbative result such as the expression
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for the beta function in Eq. (12.37). True. But one can take its value at an
energy scale where it is already in the perturbative region, and see whether
the value goes down at even higher energies. Experimental results show that
this is exactly what happens. For example,

α3(mτ) = 0.327 ,

α3(mb) = 0.20 ,

α3(MZ) = 0.1184± 0.0007 , (12.40)

where MZ = 91 GeV, mb ≃ 4.18 GeV, mτ = 1.78 GeV. Note that in Eq.
(12.40) we have not given the values of the gauge coupling constant itself, but
of the strong interaction analog of the fine-structure constant, defined as

α3 =
g2
3

4π
, (12.41)

where g3 is the QCD coupling constant. The value of α3 has been quoted at
various scales, with the scales, i.e., the values of µ, appearing in the paren-
theses in Eq. (12.40). The values are determined in various ways, comparing
theoretical predictions with experimental measurements in τ-decay, jet pro-
duction in e+-e− collisions, and many other processes.

12.2.4 Running of the QCD coupling

As mentioned in Eq. (12.37), the one-loop beta function is proportional to
g3. Contributions to the beta function coming from higher loops depend on
higher powers of g. If g is small, one can neglect the higher order corrections
and write

dg

d(lnµ)
= −b3g3 . (12.42)

This equation can be easily integrated. In terms of the analog of fine-structure
constant, the result is

1

α3(µ2)
=

1

α3(µ1)
− 8πb3 ln

µ1

µ2
. (12.43)

In this form, the evolution equation for the coupling constant is valid for any
group as long as the coupling constant is small enough so that approximation
of Eq. (12.42) is valid. For QCD in particular, we can put C

(F )
2 = 1

2 in Eq.
(12.37) since the quarks are in the fundamental representation of SU(3)c.
Calling the number of quark flavors below a certain scale to be NF , we obtain

b3 =
1

48π2

(
33− 2NF

)
(12.44)

at that scale.
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2 Exercise 12.4 Use the value of α3 at the scale MZ given in Eq. (12.40)
and the values of MZ and mb given below that equation to calculate the
value of α3 at the scale mb. Show that the result given in Eq. (12.40)
is obtained approximately, confirming that α3 is small enough in this
range that the higher order corrections can be neglected. Remember
that for this problem NF = 5, corresponding to u, d, s, c and b quarks.

What is the lowest energy where we can use perturbative methods? The
results of Ex. 12.4 indicate that one can use perturbative methods even when
the value of µ is as low as the mass of the b quark. When the scale is near
the mass of the c quark, the method begins to be suspect, which can be seen
by using Eq. (12.43) to calculate α3(mτ) from α3(mb), and comparing the
result with the experimental value. Exactly where the line is to be drawn
depends on the accuracy sought. A benchmark value for this borderline can
be set as follows. Suppose we start from the value of α3 at some high energy,
and pretend that the evolution equation is exactly of the form given in Eq.
(12.42) at all scales. In other words, we neglect all higher order terms in the
beta function, even though they might well be comparable to the O

(
g3
)

term
when g is not very small. The solution of the evolution equation would then
be given by Eq. (12.43). With this solution, if we start with the value of α3

at some scale µ1, we can find a value for µ2 where the coupling constant will
become infinite. This value of µ2 is called the QCD scale parameter , and
usually denoted by ΛQCD. In other words, putting in 1/α3(µ2) = 0, the QCD
coupling constant at any scale µ is given by

1

α3(µ)
= 8πb3 ln

µ

ΛQCD
, (12.45)

which can be taken as a definition of ΛQCD. Equivalently, we can say that
the value of α3 at a scale µ is given by

α3(µ) =
12π

(
33− 2NF

)
ln

µ2

Λ2
QCD

. (12.46)

Needless to say, the coupling constant will not really diverge at the scale
ΛQCD as Eq. (12.46) might suggest. The reason is that Eq. (12.42) will not
be a good equation to describe the real running once the coupling constant
g becomes sufficiently large: higher order terms in g will be as important
in describing the evolution of the coupling constant. Still, ΛQCD gives a
benchmark value, in the sense that for energy scales much larger than it, the
coupling constant can be safely assumed to be small.

The value of the QCD scale parameter can now be estimated, using the
value of α3 at the scale mτ given in Eq. (12.40). Although the charm quark
is slightly lighter than the tau lepton, let us assume, for a rough estimate,
that there are only three flavors of quarks lighter than the tau, so that we can
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write

α3(mτ) =
12π

27 ln
m2

τ

Λ2
QCD

. (12.47)

Putting in the value of mτ and the value of α3(mτ) given in Eq. (12.40),
one obtains ΛQCD ≈ 210 MeV. However, considering that the charm quark
mass threshold has not been taken into account, and that there is a huge
uncertainty in the definition of mc, one usually takes ΛQCD somewhere in the
range of 100 to 200 MeV.

12.3 QCD Lagrangian

Suppose we have only the QCD gauge symmetry and no other internal sym-
metry in the Lagrangian. What is the most general form of the Lagrangian
in this case?

As far as the particle content is concerned, there are of course the gauge
bosons, which are absolutely necessary for building up the gauge symmetry.
For QCD, these gauge bosons are the gluons. Then there are some quark
fields. We will denote different flavors of quark fields by qA, where A is a
flavor index. Each flavor comes in three colors, and the fields corresponding
to the three colors form a triplet of the gauge group SU(3)c. Then the most
general renormalizable Lagrangian consistent with the gauge symmetry is:

LQCD = −1

4
Ga†

µνG
µν
a +

∑

A

qA

(
iγµDµ −mA

)
qA , (12.48)

where Dµ is the covariant derivative defined in the way shown in Ch. 11, and
Ga

µν is the notation specifically for the SU(3)c field-strength tensors. The color
indices on the quark fields have been kept implicit. Of course we can add free
Lagrangians of other fields which are singlets of the color gauge group, e.g.,
the leptons. But they, being singlets of the gauge group, would not have any
gauge interaction.

There are three kinds of interaction vertices in the QCD Lagrangian. There
are interactions between gluons, and these interactions can have a cubic or a
quartic vertex, as discussed for general gauge theories in §11.3. The gluons also
interact with the quarks through their presence in the covariant derivative.
This interaction term is

Lint = −g3
∑

A

qAγµ(
1

2
λa)qAG

µ
a , (12.49)

where Gµ
a denotes the gluon fields, and the matrices 1

2λa (with a = 1, 2, · · · 8)
are the generators of SU(3) in the fundamental representation that the quarks
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belong to. If we make the color indices explicit and hide the flavor indices for
the sake of clarity, we can write the interaction term as

Lint = −g3
∑

q

qαγµ

(1

2
λa

)
αβ
qβG

µ
a , (12.50)

where α, β are color indices.
The explicit form for the λ-matrices can be found in Eq. (10.13, p 259),

where they were introduced to represent some different physical transforma-
tions, viz., transformations among different flavors of quarks. Here, they do
nothing to the flavors, but rather inflict changes in quark colors. But the
mathematical structure is the same, which is why the same matrices can be
used.

There is one aspect of the Lagrangian that requires some clarification.
Since all quark flavors transform the same way under the gauge group, it
seems that the mass term could have a more general form like

∑

A,B

mABqAqB . (12.51)

On closer scrutiny, it seems unnecessarily cumbersome. Even if we are faced
with such ‘more general’ mass terms, we can always make linear combinations
of the fields so that the mass terms are diagonal in the redefined fields. Such
linear transformations would not affect the covariant derivative term of the
quark fields in the Lagrangian, since those terms have the same co-efficient
for all quark fields. In other words, in the flavor space the co-efficient of the
covariant derivative term is like a unit matrix, which remains unaffected in a
similarity transformation involving the fields.

The diagonal form of the mass terms means that the QCD Lagrangian
does not have any term that changes quark flavor. Of course quark color can
change through gauge interactions, as explained in §12.1, but flavor cannot
change through strong interactions. Flavor numbers like Nu or Nd, discussed
in earlier chapters, are conserved so far as only strong interaction effects are
concerned. Later in Ch. 17, we will see that they can be violated by weak
interactions.

12.4 Perturbative QCD

The discussion of §12.2 makes it clear that at very high energies, i.e., high
compared to ΛQCD, we can use perturbative techniques to describe strong
interactions. In this section, we discuss QCD calculations in the perturbative
region.

No one has seen any free quark or gluon. Physical states, as far as we know,
are hadrons, which are color singlets. So, in order to compare with physical
observables, one needs to calculate rates of processes involving hadrons in the
initial as well final state. But to get there, we first need to analyze the basic
processes involving quarks and gluons.
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12.4.1 Cross-sections involving quarks and gluons

In Ch. 5, we have calculated cross-sections of various processes mediated by
the QED interaction. Discussions of QCD mediated cross-sections are similar
in the perturbative domain, and we need not go through the same amount of
detail again. We only give a few examples to show how the results of QCD
calculations differ from their QED counterparts.

A few comments about the notations used. First of all, since free quarks
and gluons are not available, it is useless to talk about the CM frame, or
any other frame, of the incoming particles. It is therefore best to present
the differential cross-sections in the invariant form given in §4.13.2. We will
use the symbol q as a generic quark, and numbered subscripts to distinguish
between different flavors of quarks. We will neglect the quark masses, so that
the formula for invariant differential cross-section given in Eq. (4.215, p 108)
reduces to the following:

dσ

dt
=

1

16πs2

∣∣∣M
∣∣∣
2

. (12.52)

Since QCD does not distinguish between different flavors, the formulas derived
below would apply for any flavor as long as its mass can be neglected with
respect to the center of mass energy. We present the calculations by assuming
that the gauge group is SU(N). The results for QCD can be obtained by
putting N = 3 at the end.

a) q1q̂1 → q2q̂2 and q1q2 → q1q2

The QED analog of q1q̂1 → q2q̂2 is the process e−e+ → µ
−

µ
+, discussed in

§5.4.2. Recalling the expression for
∣∣∣M
∣∣∣
2

from Eq. (5.93, p 133) and using Eq.

(12.52), we can write

dσ

dt
(e−e+ → µ

−
µ

+) =
πα2

s2
(1 + cos2 θ) =

2πα2

s2

t2 + u2

s2
, (12.53)

neglecting the masses of the fermions. The differential cross-section of
eµ → eµ would also be governed by the diagram of Fig. 5.6 (p 132), except
that the outgoing µ

+ line should now be treated as the incoming µ
− line,

whereas the incoming e+ line should be treated as an outgoing e− line. With
these modifications, the photon propagator will have a denominator of the
Mandelstam variable t rather than s, so that the corresponding result for this
process can be obtained by interchanging t and s in the part coming from the
matrix element:

dσ

dt
(eµ→ eµ) =

2πα2

s2

s2 + u2

t2
. (12.54)

When we consider the QCD version of this latter process, i.e., the process
q1q2 → q1q2 mediated by gluons, the diagrams remain the same as those
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given in Fig. 5.3 (p 120), except that now the fermion lines represent quarks
and the gauge boson line represents gluons. In the amplitude, the propagators
and external line factors remain the same as in its QED analog. As a result,
kinematical dependence on the Mandelstam variables have the same structure.
The only differences occur in the vertex factors. First of all, the QCD coupling
constant g3 appears instead of e. This means that in the final result, α3

would appear in place of its QED analog, the fine-structure constant α. The
other difference is that for QCD, each vertex would involve the generators
of SU(3) in the fundamental representation, since the quarks belong to this
representation. In the amplitude for the process, this factor would be

(Ta )β1α1(Ta)β2α2 , (12.55)

if the initial and final colors for the quark qA (for A = 1, 2) are αA and βA.
Note that the repeated indices on the generators imply a summation, which
means that any gluon would contribute to the process as long the relevant
matrix element of the generator is non-zero.

When we square the amplitude, we need to multiply the quantity appear-
ing in Eq. (12.55) by its complex conjugate. Note that

[
(Ta)βα

]∗
= (T †

a )αβ = (Ta )αβ , (12.56)

using a notation of barred gauge indices that we had introduced in §11.2.4.
In the expression for the matrix element squared, we obtain a factor

(Ta )β1α1(Ta)β2α2(Tb)α1β1(Tb )α2β2 = Tr
(
Ta Tb

)
Tr
(
TaTb

)

= [C(f)]2 δabδab , (12.57)

using the normalization formula introduced in Eq. (11.39, p 305). The normal-
ization of the fundamental representation was specified in Eq. (11.54, p 308).
The combination δabδab equals δaa, with a sum on the index a. It therefore
merely counts the number of generators, which is N2 − 1. And finally, when
we put the matrix element in the calculation for the cross-section, we need to
average over the initial color states, which gives a factor of 1/N2. Combin-
ing these factors and borrowing the momentum-dependent factors from Eq.
(12.54), we can write the differential cross-section:

dσ

dt
(q1q2 → q1q2) =

π(N2 − 1)α2
3

2N2s2

s2 + u2

t2
. (12.58)

The analogous formula for the process q1q̂1 → q2q̂2 can be obtained by
interchanging s and t, as discussed earlier. Thus,

dσ

dt
(q1q̂1 → q2q̂2) =

π(N2 − 1)α2
3

2N2s2

t2 + u2

s2
. (12.59)
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b) qq → qq and qq̂ → qq̂

If the two quarks in the initial state have the same flavor, we should look
for the QCD analog of electron–electron scattering, described in §5.3.1. The
difference, compared with q1q2 elastic scattering, is that now there is an extra
diagram, which is obtained by interchanging the two quarks in the initial
state. The contribution to the cross-section coming from the square of this
extra term can be easily obtained by interchanging the Mandelstam variables
t and u in the formula of Eq. (12.58).

But, because of this extra diagram that adds to the amplitude, there will
now be an interference term as well. The momentum dependence of this
term would be exactly similar to the interference term that appears in Eq.
(5.40, p 122), i.e., of the form s2/tu. But the color factor, coming from the
generators, needs to be calculated separately. Suppose we label the colors in
a way such that the color factor from one of the diagrams is given by Eq.
(12.55). In the other diagram, since the initial quarks are interchanged, the
corresponding factor would be

(Tb )β1α2(Tb)β2α1 . (12.60)

Thus the interference term will contain the factor

(Ta )β1α1(Ta)β2α2(Tb)α2β1(Tb )α1β2 + c.c. = 2 Tr
(
Ta Tb TaTb

)
. (12.61)

To evaluate the trace, note that

Tb TaTb = Tb TbTa − Tb [Tb, Ta] = C2Ta − ifbacTb Tc , (12.62)

where the Casimir invariant C2 must be evaluated in the representation that
the generators Ta belong to. Now, using the symmetry properties of the
structure constants given in Eq. (11.53, p 308), we can write

fbacTb Tc = −fc ab Tb Tc = −fbacTcTb , (12.63)

where in the last step we have just renamed the dummy indices c→ b , b→ c .
Adding the two equal contributions and dividing by 2, we can write

fbacTb Tc =
1

2
fbac

[
Tb , Tc

]
=
i

2
fbacfb cdTd . (12.64)

Further, using the definition of the adjoint representation from Eq. (10.26,
p 262) and the definition of the Casimir invariant, it is easy to show that

fbacfb cd = −
(
T

(ad)
b

)
ca

(
T

(ad)

b

)
dc

= −
(
T

(ad)

b
T

(ad)
b

)
da

= −C(ad)
2 δda .

(12.65)

Thus, for any representation R,

(
Tb TaTb

)(R)

=
(
C

(R)
2 − 1

2
C

(ad)
2

)
T (R)

a , (12.66)
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and so

Tr
(
Ta Tb TaTb

)(R)

=
(
C

(R)
2 − 1

2
C

(ad)
2

)
C

(R)
2 Tr1 , (12.67)

where the factor Tr1 gives the dimension of the representation, denoted by
d(R) earlier in Eq. (11.59, p 309).

Since the quarks are in the fundamental representation, we can borrow the
result of Eqs. (11.63) and (11.62) to write

Tr
(
Ta Tb TaTb

)(f)

=
(N2 − 1

2N
− N

2

)N2 − 1

2
= −N

2 − 1

4N
. (12.68)

So, in the end, we obtain the differential cross-section in the form

dσ

dt
(qq → qq) =

π(N2 − 1)α2
3

2N2s2

(
s2 + u2

t2
+

s2 + t2

u2
− 2

N

s2

tu

)
. (12.69)

For the process qq̂ → qq̂, the differential cross-section can be written easily,
using crossing symmetry arguments:

dσ

dΩ
(qq̂ → qq̂) =

π(N2 − 1)α2
3

2N2s2

(
s2 + u2

t
2 +

u2 + t2

s2
− 2

N

u2

st

)
. (12.70)

c) qg→ qg, qq̂ → gg and gg→ qq̂

Consider qg→ qg first. This can be called quark-gluon scattering, and is the
QCD analog of Compton scattering, which was discussed in §5.3.3. Obviously,
contributions to this process come from the diagrams of Fig. 5.5 (p 127), where
the fermion lines are now to be thought of as quark lines, and the gauge boson
lines as gluon lines. If the initial and final colors of the quarks are denoted by
α and β and the two gluons correspond to the generators Ta and Tb, we see
that the generators appearing in the amplitude of any one of these diagrams
should have the form

(Tb )βγ(Ta)γα , (12.71)

where the index γ represents the color of the intermediate quark line. The
square of the amplitude will then contain the factor

(TaTa )γδ(TbTb )δγ = [C
(f)
2 ]2 Tr1 =

(N2 − 1)2

4N
. (12.72)

We should also remember that, for the QCD process at hand, we should
average over N possible quark colors and N2−1 possible gluons. If we redress
the expression obtained in Eq. (5.75, p 129) with these modifications, we arrive
at the formula

dσ

dt
= −π(N2 − 1)α2

3

2N2s2

s2 + u2

su
. (12.73)
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q

q

Figure 12.6: Quark-gluon scattering at the second order in perturbation theory.
There are two other diagrams, which are exactly like those presented in Fig. 5.5 (p 127).
This diagram, involving cubic couplings of gauge bosons, has no analog in QED.

But this is not the correct answer. The reason is that, unlike the processes
discussed so far in this section, there is a qualitative difference for this one
between QED and QCD. Because of the presence of a trilinear gauge boson
coupling, there is an extra diagram at this order, which has been shown in
Fig. 12.6. Clearly, the denominator coming from the gluon propagator of this
diagram would be t, and the coupling factors would be

(Tc)βαfabc , (12.74)

where Tc represents a generator in the fundamental representation. The factor
coming from it in the amplitude square can be determined in the way shown
for earlier examples, and turns out to be 1

2N(N2 − 1). After putting in the
momentum factors, one obtains the differential cross-section as

dσ

dt
(qg→ qg) =

πα2
3

s2

[
− (N2 − 1)

2N2

s2 + u2

su
+

u2 + s2

t
2

]
. (12.75)

Here, the term with su in the denominator is the same as that in Eq. (12.73).
The other term is the square of the amplitude coming from Fig. 12.6. Note
that there is no interference term. As commented in §5.3.3, the interference
between the two diagrams of Fig. 5.5 (p 127) vanishes in the limit that the
fermion mass is neglected. The same is true about the interference terms
involving the new diagram, Fig. 12.6.

2 Exercise 12.5 Write the amplitude from Fig. 12.6 and verify that its
square gives the 1/t2 term in the differential cross-section.

2 Exercise 12.6 Show that, for the QCD Compton process, the two di-
agrams of Fig. 5.5 (p 127) are not gauge invariant in the sense of Eq.
(5.67, p 128). When the diagram of Fig. 12.6 is added, show that the
amplitude is indeed gauge invariant.

Once this is done, it is easy to write the expressions for differential cross-
section for some other processes using crossing symmetry. Take first qq̂ → gg.
This can be obtained by interchanging s and t in the matrix element squared,
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(A)
p1

p2

p′1

p′2

(B)
p1

p′1

p2

p′2

(C)
p1

p′2

p′1

p2

(D)

Figure 12.7: Tree-level diagrams for gluon–gluon elastic scattering. The momenta
of the external legs are indicated. The primed momenta should be considered outgoing,
and the unprimed ones incoming.

and adding an overall minus sign since one fermion has changed sides. In
addition, the initial state averaging factor is different: it is 1/N2 for this case,
instead of 1/N(N2 − 1) that we used for qg→ qg. So we can write

dσ

dt
(qq̂ → gg) =

π(N2 − 1)α2
3

Ns2

[
(N2 − 1)

2N2

t2 + u2

tu
− u2 + t2

s2

]
. (12.76)

Crossing symmetry can be used, either on Eq. (12.75) or on Eq. (12.76), to
obtain

dσ

dt
(gg→ qq̂) =

πNα2
3

(N2 − 1)s2

[
(N2 − 1)

2N2

t2 + u2

tu
− u2 + t2

s2

]
. (12.77)

d) Gluon–gluon elastic scattering

In QED, photons do not have any self-interaction. So photon-photon scatter-
ing can occur only at loop level, mediated by charged particles in the loop.
In contrast, non-abelian theories have cubic and quartic interactions among
gauge bosons. So gluons can scatter off gluons at the tree level. The diagrams
are shown in Fig. 12.7.

2 Exercise 12.7 Draw a one-loop diagram for photon-photon scattering
in QED, and estimate the powers of α that will appear in the cross-
section. How many powers of α3 will appear in the expression for the
gluon–gluon scattering cross-section?

We denote the process as

g(p1) + g(p2)→ g(p′1) + g(p′2) . (12.78)

The amplitude can be written in the form

M = ǫµ1 ǫ
ν
2ǫ

′λ
1 ǫ

′ρ
2 Mµνλρ , (12.79)

where ǫ1, for example, denotes the polarization vector of the gluon with mo-
mentum p1. Each diagram gives a contribution to M µνµ′ν′

. For example the
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contribution of Fig. 12.7A comes directly from the quartic coupling given in
Fig. 11.1 (p 312), and is given by

iM
(A)
µνλρ = −ig2

3

[
fabcfa′b′cEµνλρ + faa′cfbb′cEµλνρ + fab′cfba′cEµρνλ

]
,

(12.80)

where Eαβγδ was defined in Eq. (11.71, p 311), and a, b are the gauge indices
of the initial state gluons which will be averaged over, whereas a′, b′ are the
gauge indices of the final state gluons which will be summed over.

For the other diagrams, we need to use the cubic couplings and the prop-
agators for gluons. For the latter, we use the ’t Hooft–Feynman gauge. This
gives

M
(B)
µνλρ =

2g2
3

s
fabcfa′b′c

[
2p2µp

′
2λgνρ − 2p2µp

′
1ρgνλ + p2µ(p′1 − p′2)νgλρ

−2p1νp
′
2λgµρ + 2p1νp

′
1ρgµλ − p1ν(p′1 − p′2)µgλρ

+(p1 − p2)ρp
′
2λgµν − (p1 − p2)λp

′
1ρgµν +

1

2
(u− t)gµνgλρ

]
.

(12.81)

The amplitudes M
(C)
µνλρ and M

(D)
µνλρ can be obtained by making suitable inter-

changes. For example, to obtain M
(C)
µνλρ, change p2 ↔ −p′1 and ν ↔ λ in the

expression for M
(B)
µνλρ.

2 Exercise 12.8 Write M (C)
µνλρ and M (D)

µνλρ. Hence, show that the total
amplitude satisfies the gauge invariance conditions

pµ
1Mµνλρ = 0 , (12.82)

and similar ones involving contractions with other momenta. [Note :

The combinations of pairs of structure constants of the group that appear in the
amplitude are not independent: they are related through the Jacobi identity, Eq.
(11.56, p 308).]

2 Exercise 12.9 Had we used a general Rξ-gauge instead of the ’t Hooft–
Feynman gauge, the propagator would have contained extra terms.
Show that these terms do not contribute to the amplitude.

In the square of the matrix element, there will be squares of each of these
terms, and there will be the interference terms. As an example, we present
some details of the square of M (A), summed over final polarization states and
averaged over the initial ones. Using the polarization sum given in Eq. (4.36,
p 68), we can write

∑

pol

|MA|2 =
g4
3

4(N2 − 1)2

×
[
fabcfa′b′cEµνλρ + faa′cfbb′cEµλνρ + fab′cfba′cEµρνλ

]

×
[
fa b e fa ′b ′eE

µνλρ + fa a ′e fb b ′eE
µλνρ + fa b ′e fb a ′eE

µρνλ
]
,

(12.83)
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Figure 12.8: Schematic diagram for two-jet production in e+e− collision.

where the overall factor of 1
4 comes from averaging over the physical polariza-

tions of the initial state, and 1/(N2−1)2 comes from averaging of color states
of initial gluons. Notice that we have used the formula for complex conjugate
of the structure constants given in Eq. (11.50, p 307). From the definition of
the quantity Eµνλρ, it is easy to obtain their contractions:

EµνλρE
µνλρ = 24 ,

EµνλρE
µλνρ = 12 , (12.84)

and so on. Finally, the factors of structure constants can be arranged in the
form of some Casimir invariants, e.g.,

fabcfa′b′c fa a ′e fb b ′e = fabcfb′ca ′fa a ′e fb ′e b

=
(
t(ad)
a

)
bc

(
t
(ad)
b′

)
ca ′

(
t
(ad)
a

)
a ′e

(
t
(ad)

b ′

)
e b

= Tr
(
t(ad)
a t

(ad)
b′ t

(ad)
a t

(ad)

b ′

)
. (12.85)

As proposed, this is a Casimir invariant, whose value was calculated in Eq.
(12.66). Similarly the other terms can be calculated, and the final result is:

dσ

dt
(gg→ gg) =

4πN2α2
3

(N2 − 1)s2

(
3− ut

s2
− su

t2
− st

u2

)
. (12.86)

One remarkable feature of this calculation is that the interference terms all
vanish, which can be seen easily from the final expression, which does not
have any term with denominators like st.

12.4.2 Jet production

Suppose we consider hadron production in e+e− scattering. At very high
energies, a large number of hadrons can be produced. In general, if a final state
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Figure 12.9: Pictures of two-jet and three-jet events. The tracks are shown in the
middle part of the pictures. The histogram-like drawings on the outer circles show
the amount of energy deposited in the corresponding part of the electromagnetic and
hadronic calorimeters. [From the OPAL collaboration website at http://www.hep.phy.
cam.ac.uk/opal].

consists of many particles, the particles are likely to be distributed over varied
directions. However, if quarks are the fundamental particles that constitute
hadrons, at the basic level the interaction that takes place is of the form
e+e− → qq̂ for some quark flavor. In the CM frame, the quark-antiquark pair
will be produced back to back. Subsequently, hadrons will be formed out of
these quarks, a process that is often called hadronization. This phenomenon
of formation of hadrons out of quarks (and also secondary gluons) is governed
by strong interaction only. If the original e+e− beams have a high CM energy,
hadronization will not be very prompt because the QCD coupling constant is
not very large at those energies. By the time hadronization starts efficiently,
the quark and the antiquark produced directly from e+e− both move some
distance, defining the direction of the final momenta. Hadronization then
takes place around these two directions. So the hadrons will appear in two
narrow cones whose axes will be back to back, as shown schematically in
Fig. 12.8. A collection of hadrons within such a small solid angle is collectively
called a jet . And so two such back-to-back jets will be seen. Production of
two-jet events, instead of hadrons spread over large solid angles, is a signature
of the quark substructure of hadrons.

Sometimes, either from the quark or from the antiquark produced in the
basic level process, a gluon can be emitted. In such cases, hadrons will be
formed along and around the gluon line as well, and one would observe three-
jet events. Such processes would be rarer than two-jet events, because cer-
tainly the basic level process involves an extra power of the QCD coupling
constant, which is not large at high energies. Fig. 12.9 shows pictures of real
two-jet and three-jet events.
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g

Figure 12.10: Lowest order Feynman diagrams for e+e− → qbqg. Remember our
arrow convention: the outgoing arrow on the line marked e+ really means an incoming
positron. The final state particles are responsible for three-jet events.

A quantitative test of these statements would involve measurement of the
angle that the jet axes make with the line of the original e+e− beams. For
two-jet events, a quark-antiquark pair is produced at the basic level. It is an
electromagnetic process mediated by a virtual photon, and is similar to the
muon pair production that we discussed in §5.4.2. The angular distribution
of the quark should have exactly the same nature as that of the muon shown
in Eq. (5.94, p 133), i.e., neglecting quark masses, we should have

dσ

dΩ
∝ (1 + cos2 θ) . (12.87)

Experimental data agree quite well with this expectation.
Three-jet events occur from the basic process e+e− → qq̂g. Lowest order

Feynman diagrams for this process have been shown in Fig. 12.10. The part
of the diagrams that involves the quark, the antiquark and the gluon can be
written as γ∗ → qq̂g, where γ∗ is the virtual photon. From the result of
Ex. 5.10 (p 130), it is straightforward to write the matrix element squared of
the process γ∗q → qg. Then, using crossing symmetry, we can obtain the
matrix element squared of the processes shown in Fig. 12.10. The result is

|M |2 = K

(
s2 + t

2 + 2uQ
2

st

)
, (12.88)

where the factor K contains contribution from the leptonic spinors, the ver-
tices and the photon propagator. This part is of no interest to us in the
present context. In Eq. (12.88),

s = (pγ − pq)2 , t = (pγ − p
bq)2 , u = (pγ − pg)2 , (12.89)

where the subscripts denote the particle whose momentum is represented by
the notation, and Q

2
= p2

γ . Neglecting the masses of the quarks and intro-
ducing the dimensionless variables

xq =
2Eq

Q
, x

bq =
2E

bq

Q
, xg =

2Eg

Q
, (12.90)
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we can rewrite Eq. (12.88) in the form

|M |2 = K
x2

q + x2
bq

(1− xq)(1 − x
bq)
. (12.91)

If we insert it in the expression for deriving the cross-section, we would obtain

dσ

dxqdx
bq

= K ′ x2
q + x2

bq

(1 − xq)(1− x
bq)
, (12.92)

where K ′ is another uninteresting factor, obtained by integrating K over all
other kinematical variables except xq and x

bq.
Because the gluon is emitted, the quark and the antiquark will not be back

to back. The interesting parameter therefore is the transverse momentum of
the antiquark with respect to the direction of motion of the quark. Taking
the quark direction of motion to be the z-axis, we can write the 4-momenta
of the particles as follows:

pµ
q =

1

2
Q · (xq , 0, 0, xq) ,

pµ
bq =

1

2
Q · (x

bq , xT , 0,−xL) ,

pµ
g =

1

2
Q · (xg,−xT , 0, xL − xq) . (12.93)

The masslessness of the antiquark and the gluon imposes extra constraints:

x2
bq − x2

T − x2
L = 0 , (12.94a)

x2
g − x2

T − (xL − xq)2 = 0 . (12.94b)

In addition, the definitions given in Eq. (12.90) imply the condition

xq + x
bq + xg = 2 . (12.95)

Using Eq. (12.94), we can eliminate xL and obtain

x2
T =

4

x2
q

(1 − xq)(1− x
bq)(1− xg) . (12.96)

2 Exercise 12.10 Verify Eq. (12.96).

If the gluon hadn’t been emitted at all, we would have obtained xg = 0,
and xq = x

bq = 1. Because of the gluon emission, both xq and x
bq would differ

from the value unity. Let us consider the case when the gluon is very soft, so
that we can still use

xq ≈ x
bq ≈ 1 , xg ≈ 0 , (12.97)
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except in factors where the differences from these approximate values are
important. With this approximation, Eq. (12.96) gives

∣∣∣∣
∂x2

T

∂xq

∣∣∣∣ ≈ 4(1− x
bq) . (12.98)

Then Eq. (12.92) can be rewritten as

dσ

dx2
T dxbq

= K ′ x2
q + x2

bq

4(1− xq)(1− x
bq)2
≈ 2K ′

x2
T (1 − x

bq)
, (12.99)

using Eq. (12.97) in writing the last step.
In order to obtain the differential cross-section with respect to the variable

x2
T only, we need to integrate over x

bq. The limits of this integration depend
on xT . We note that x

bq cannot reach the value unity because the gluon has
been emitted. The softer the gluon, the higher the value of x

bq . Eq. (12.94b)
tells us that, for a fixed xT , the gluon is softest if xq = xL, and the smallest
value is xg = xT . Putting this value of xL into Eq. (12.94a) and using Eq.
(12.95), we obtain

(
x

bq

)
max
≈ 1− 1

2
xT , (12.100)

neglecting higher order terms in xT since we are considering small transverse
momenta. Integration of Eq. (12.99) would then give

dσ

dx2
T

=
2K ′

x2
T

ln(x2
T ) + · · · , (12.101)

where the dots represent the sub-leading terms for small xT , which include
terms coming from the lower end of the x

bq integration. Since the transverse
momentum is given by pT = 1

2QxT , we conclude that

dσ

dp2
T

∝ 1

p2
T

ln

(
Q

2

4p2
T

)
+ · · · . (12.102)

This prediction of transverse momentum distribution has been tested for var-
ious values of Q

2
, and the results are in excellent agreement.

12.5 The 1/N expansion

The problem with QCD is that, at low energies, the coupling constant is
not small enough, and therefore perturbation methods cannot be used. It
would therefore be of much help if we can find a small parameter with which
perturbation expansion can be performed.

One strategy is to treat QCD as an SU(N) gauge theory and treat this N ,
the number of colors, as a free parameter. To see how this might help, consider
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(a1) (a2) (c)

Figure 12.11: Examples of one-loop self-energy diagrams for gauge bosons in the
double-line notation. The labels on the diagrams are the same as those used in Fig. 12.5
(p 331).

the gluon self-energy diagrams shown in Fig. 12.5 (p 331). In particular, let us
first discuss diagram ‘a’, which has a gluon loop. Suppose this self-energy
diagram contains the gluons ga and gb as external lines, where a and b are
gauge indices as usual. The couplings will involve the generators in the adjoint
representation. This is more easily seen if we write the field-strength tensor
in the form

F a
µν = ∂µA

a
ν − ∂νA

a
µ + ig

(
t
(ad)
b

)
ac
Ab

µA
c
ν (12.103)

instead of what was written in Eq. (11.34, p 304). The two expressions are
equivalent because of the definition of the adjoint representation given in Eq.
(10.26, p 262). The trilinear coupling of the gluons arises from the quadratic
term in the expression for the field-strength tensor, and hence the generator.
The diagram will contain two such generators from two vertices, and there will
be a trace on them because the internal gluon lines are in a loop. Looking at
Eq. (11.39, p 305) now, we find that the amplitude contains the normalization
factor C in the adjoint representation, which is N , according to Eq. (11.55,
p 308).

If we consider very large values of N , this will be a large factor, and will
become infinite in the limit N → ∞. To compensate for this factor and to
obtain a smooth limit for the self-energy diagram for N →∞, we can suppose
that the coupling constant is of the form g/

√
N . Since there are two vertices

in the diagram, the factor of 1/N coming from the vertices will cancel the
factor of N from the loop amplitude will be independent of N . However, for
large N , g/

√
N is small, so now we have a small coupling constant and we can

use perturbation theory. This is the basic strategy: to perform calculations
with large N and coupling constant g/

√
N , and take the limit N →∞ to see

what are the results that survive in this limit.
What will happen to the diagram in Fig. 12.5c (p 331) that contains a quark

loop? In this case, one will obtain a trace over the generators in the funda-
mental representation, and that is independent of N . Therefore, because of
the factor of 1/N coming from the two vertices, this diagram will vanish in
the limit of infinite N .
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There is an easy way to find out which diagrams would survive in the limit
of largeN without getting into the details of the Feynman rules and associated
traces. For that, we have to introduce the so-called double-line notation for
gluons. The idea is to represent each color index, rather than each particle,
by a line in the diagram. This means that a quark is still represented by a
single line. But a gluon, which belongs to the adjoint representation of the
gauge group which can be obtained by the multiplication N ×N∗ in SU(N),
is represented by two lines in opposite directions. So, in effect, each color
index corresponds to a line in any such diagram, and a name such as color-
flow diagram would be appropriate for it. Various diagrams of Fig. 12.5 (p 331)

have been redrawn in Fig. 12.11 using this new notation.
Looking at the diagrams, we see that each of the diagrams marked ‘a1’ and

‘a2’ contains one closed line that is not at all connected with the external lines.
Any such closed line would contribute a factor N in the amplitude because N
different colors can run through this loop irrespective of the external colors.
The factors of N coming from vertices is easy to determine, just by looking
at the number of vertices. Thus, for example, diagrams a1 and a2 contain
the factor 1/N from vertices and N from the closed color loop, and therefore
these amplitudes are independent of N . The diagram in Fig. 12.11c, on the
other hand, has no closed color loop. So, because of the vertex factors, this
diagram will be of order 1/N , and would be irrelevant in the limit N →∞.

Figure 12.12: A non-planar diagram for
gluon self-energy. The discontinuity on one of
the internal lines implies that the two lines do
not meet in a vertex there: they cross, one over
the other.

There is one class of diagrams
which are even more suppressed.
One such diagram has been shown
in Fig. 12.12. The two gluon lines
within the loop do not meet at
any point. In other words, there
is no quartic vertex in the middle
of the diagram. One gluon line,
say the one going from top left to
bottom right, can be thought of as
going above the plane of the pa-
per, whereas the other is going be-
low the plane, somewhat like a fly-
over crossing a road below. This
feature of the diagram cannot be faithfully drawn on a plane, and therefore
such diagrams are called non-planar diagrams. Any non-planar diagram will
be suppressed by at least 1/N2.

2 Exercise 12.11 Redraw the diagram in Fig. 12.12 using the double-
line notation and hence show that its amplitude is suppressed by 1/N2

for large N.

2 Exercise 12.12 Show that, if we add more gluon lines within the first
two one-loop diagrams of Fig. 12.11 such that the resulting diagram
is still planar, the self-energy function is still independent of N.
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(a)

⊗ ⊗

(b)

⊗

⊗

⊗

Figure 12.13: Color lines for (a) meson 2-point function; (b) diagram for the decay
of one meson into two mesons. The crosses imply a meson wavefunction.

2 Exercise 12.13 Use the double-line notation to draw the self-energy
diagram for a quark and argue that the amplitude will have a finite
limit for N → ∞.

Now that we have set up the notation, let us discuss some features of
strong interactions that can be easily understood using large-N QCD. As a
first example, we consider the decay widths of mesons. Mesons, as said earlier,
contain a quark and an antiquark. Thus, a meson state can be written as

|M〉 =
1√
N

q†1αq̂
†
2α |0〉 , (12.104)

where q†1 and q̂†2 represent creation operators of a quark of flavor 1 and an
antiquark of flavor 2 (the two flavors may be the same for neutral mesons),
and α is a color index. Since there are N colors, there are N different terms
in the implied sum over the color index, and therefore there is a normalization
factor 1/

√
N . There may be extra normalization factors present for unflavored

mesons in which q1 and q2 represent the same flavor, such as the factor of 1/
√

2
in the definition of the π

0 state in Eq. (8.83, p 221), but these are irrelevant
for our present discussion.

Consider now the mass of a meson. The mass appears in the 2-point
function, which has been shown in Fig. 12.13a in a color-flow diagram. The
flavors of the lines are not shown, and are not relevant either, so the discussion
applies for any meson. There is one color loop, which gives a factor of N .
Introducing the meson wave function introduces a factor of 1/

√
N , as seen in

Eq. (12.104). Therefore, the overall power of N , coming from the loop and
the two wavefunctions, is N0.

Consider now the decay width for a meson decaying into two mesons, for
which the color-flow diagram has been shown in Fig. 12.13b. Here also there
is one color loop, and hence a factor of N . However, there are three meson
wavefunctions, which give N

−3/2 . So the overall N -dependence of the ampli-
tude is N

−1/2 . In the limit N → ∞, this implies that the decay amplitudes
vanish, i.e., mesons are stable.
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Of course mesons are not stable in the real world, but then N is also not
infinity. What this extreme limit shows us is that the ratio Γ/M , where Γ is
the decay rate of a meson of mass M , is small. And indeed that is true for
any meson.

2 Exercise 12.14 Evaluate the ratio Γ/M for π
±, π

0 and K± to appre-
ciate the fact that the ratio is small.

Meson-meson scattering will be even more suppressed. Color-flow dia-
grams for a scattering of two initial-state mesons into two final-state mesons
would look similar to that in Fig. 12.13b, except with four lobes instead of
three. The meson wavefunctions now contribute a factor N−2, whereas the
single color loop contributes N . Thus, the overall amplitude behaves as N−1,
which shows that the mesons are also non-interacting in the large-N limit.

The argument above also shows why exotic meson states are not found in
nature. By the term exotic meson states, we imply states with two or more
quarks and an equal number of antiquarks. Since normal mesons, with one
quark and one antiquark, are non-interacting, they cannot possibly bind into
more complicated structures.

Baryons are much more complicated structures in the large-N theory. As
seen in Ch. 8 and Ch. 10, quarks in a baryon are completely antisymmetric in
their color indices. Thus, in an SU(N) color theory, a baryon will contain N
quarks. They can be described as topologically non-trivial states. We do not
get into their detail in this book.

12.6 Lattice gauge theory

It is true that we cannot perform analytical calculations in the low energy
regime of QCD, where the coupling constant is large. But can we at least
get numerical solutions to some problems in that regime? Attempts toward
this direction improved dramatically with the improvement of computers and
algorithms, and have flowered into a subfield called lattice gauge theory. In
this section, we will try to give a brief introduction to the methods and the
problems of this subfield. Although we focus our attention on QCD, it should
be understood that the any quantum field theory can be treated on a lattice.
Such treatment provides a natural way of eliminating all infinities that arise
from momentum integration in a continuum.

12.6.1 Scope and basics

The QCD Lagrangian was given in Eq. (12.48). It contains gluon fields and
quark fields. Among the six known quarks, the top quark is too heavy to form
any bound state, as will be discussed in some detail in Ch. 20. The masses of
the other five quarks, as well as the gauge coupling constant for QCD, form
the set of parameters present in the Lagrangian. With some input values of
these parameters, one can try to find various properties of hadrons and match
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them with experimental results available. This way, one can find the values
of the parameters, and then use them to predict other hadronic properties
which may not be well-known or may even be unobserved.

There are two kinds of basic calculations that one can perform. The first
kind consists of calculations of static properties of various hadrons like their
masses and lifetimes. For example, one can try to calculate the lowest lying
meson state that appears from the Lagrangian. Once this is found, it can be
identified with the mass of the pion. Similarly, heavier hadron masses can be
calculated with some specific values for the input parameters. The hadronic
spectrum need not contain only bound states of quarks and/or antiquarks
which were discussed in Ch. 10. There might also be states consisting of
gluons only. Such states are called glueballs.

The second kind of calculations involve strong corrections to weak and
electromagnetic processes. Consider, e.g., the decay of the tau lepton. This
lepton is heavy enough for the final state to contain hadrons. The basic decay,
at the quark level, would produce a tau-neutrino, along with a quark and an
antiquark. The decay is governed by weak interactions, and we will discuss
such decays in Ch. 16. However, once a quark and an antiquark are produced
in the final state, they will experience strong interaction. The weak interac-
tion mediated amplitude will be modified by strong interaction corrections.
Evaluation of these corrections is an important ingredient in checking the va-
lidity of weak interaction theory when hadrons are involved. Such corrections
are also estimated through lattice calculations.

The lattice mentioned in the name of the method corresponds to space-
time. In this formulation, spacetime is supposed not to be a continuum, but
rather a collection of lattice points. We will confine our discussion to hyper-
cubic lattices (which are just 4-dimensional analogs of 3-dimensional cubic
lattices), which are used in most calculations anyway. The lattice spacing, a,
is a parameter introduced into the theory. The physical limit, or the contin-
uum limit, can be taken by performing the calculations for various values of
a and finally extrapolating the result to the limit a→ 0.

There is a big advantage of performing calculations on a lattice with a
non-zero lattice spacing. Earlier we mentioned how we can regularize a theory
by introducing an extra parameter in it. In particular, we mentioned that,
by introducing the number of spacetime dimensions as a parameter, loop
integrals encountered in perturbation theory can be evaluated. Similarly, the
lattice spacing a can act as a regularization parameter, i.e., it can save the
amplitudes from becoming infinite because the momentum integrations run
only over a finite range that is inversely proportional to a, as will be shown in
Eq. (12.172). In the continuum theory, since the loop corrections are infinite,
the bare parameters are also infinite, as discussed in §12.2. On a lattice,
the loop amplitudes will be finite, and therefore the bare parameters defined
from them would also be finite. Thus it would be possible to take the bare
parameters — the coupling constant and the quark masses — as the input
parameters of the calculations.
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12.6.2 Path integral

In performing calculations on the lattice, one uses the path integral approach
to quantum field theories developed by Feynman. The approach does not
depend on a lattice structure of spacetime, so we outline the basics of this
approach in the continuum language before going over to the lattice picture.

The main idea is to write something like the partition function in statistical
mechanics, from which all physical properties of the system can be derived.
For a quantum field theory, this similar object is called the path integral, and
is defined as

Z =

∫
DΦ1

∫
DΦ2 · · ·

∫
DΦn exp(iA ) , (12.105)

where A is the classical action of the fields Φ1 to Φn. The integration measure
DΦ for any field Φ is defined as

DΦ = lim
n→∞

n∏

i=1

dΦ(xi) , (12.106)

where Φ(xi) denotes the value of Φ at the point xi, and we consider n such
points in the entire spacetime. Consider what we mean when we write an
integration measure dx over a real variable x: we mean that x can take any
value (maybe within a range) and we must sum the integrand over all such
values. Similarly, here we consider the sum of the integrand over all possible
values of Φ(xi) at n different points. In the limit of n going to infinity, we
obtain the sum over all possible configurations of the field Φ. The action
itself is the integral of the Lagrangian over the entire spacetime. From the
path integral, one can obtain the vacuum expectation value of any operator
through the prescription

〈O〉 =
1

Z

∫
DΦ1

∫
DΦ2 · · ·

∫
DΦn O exp(iA ) . (12.107)

For the QCD Lagrangian, the relevant fields are the quark and gluon fields,
and we can write

Z =

∫
DΨ

∫
DΨ

∫
DGµ

a exp

(
i

∫
d4x LQCD

)
, (12.108)

where Ψ represents all quark fields taken together as a huge column vector. In
other words, integration over all configurations of Ψ implies integration over
the configurations of all quark fields. The basic task in lattice calculations is
therefore to estimate the path integral and quantities like that given in Eq.
(12.107) for various operators.

For the gauge fields, the procedure produces some complication. The point
is that two different configurations of gauge fields might in fact be related
through a gauge transformation and be therefore equivalent physically. In
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other words, one really shouldn’t integrate over all configurations of the gluon
fields: just the ones that are physically inequivalent. In order to filter out the
inequivalent configurations of gauge fields, one has to introduce a gauge-fixing
term in the form of a delta function in the integrand of Eq. (12.105) or Eq.
(12.108). It can be shown that this delta function can be absorbed in the
action by introducing some extra unphysical fields. These are the Fadeev–
Popov ghost fields mentioned in Ch. 11.

We will not elaborate on this procedure because, as we shall see, in the
lattice formulation one does not use the gauge fields directly. Rather, one
makes use of the path-ordered integrals . In a continuum theory, the path-
ordered integral of a gauge field between two spacetime points x1 and x2 is
defined as:

U (x1, x2) ≡P exp

(
ig

∫ x2

x1

dxµ Aµ

)
, (12.109)

where Aµ is a 3 × 3 matrix 1
2λ

aAa
µ, as defined in Eq. (11.13, p 300). The

symbol P indicates that it is a path-ordered object, i.e., if we divide the path
into small segments by inserting some intermediate points y1, · · · , yN−1 and
identify x1 as y0 and x2 as yN , then

U (x1, x2) = lim
N→∞

N∏

r=1

U (yr−1, yr) . (12.110)

To see how such quantities transform under a gauge transformation, we
first consider one of the factors of infinitesimal path length appearing in Eq.
(12.110), going from xµ to xµ + ǫµ. Keeping only first order term in ǫ, we can
write

U (x, x + ǫ) = 1 + igǫµAµ(x) . (12.111)

Let us now recall the gauge transformation properties of the gauge fields from
Eq. (11.19, p 301). Clearly, for a gauge transformation that changes a fermion
field Ψ to

Ψ′(x) = UΨ(x) , (12.112)

the quantity U (x, x+ ǫ) will be changed to

U ′(x, x + ǫ) = 1 + igǫµU(x)
(

Aµ(x)U−1(x)− i

g
∂µU

−1(x)
)
. (12.113)

Note that we can write

ǫµ∂µU
−1(x) = U−1(x+ ǫ)− U−1(x) . (12.114)

Using this, we obtain

U ′(x, x+ ǫ) = igǫµU(x)Aµ(x)U−1(x) + U(x)U−1(x+ ǫ) . (12.115)
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Since the term containing Aµ is already first power in smallness, it does not
matter to this order if we change U−1(x) to U−1(x+ ǫ) in this term and write

U ′(x, x + ǫ) = U(x)
(

1 + igǫµAµ(x)
)
U−1(x+ ǫ)

= U(x)U (x, x+ ǫ)U−1(x + ǫ) . (12.116)

From Eq. (12.110), it is now obvious that for a finite path, we will obtain

U ′(x1, x2) = U(x1)U (x1, x2)U−1(x2) . (12.117)

From Eqs. (12.112) and (12.117), it is clear that there can be two kinds of
gauge invariants involving the gauge fields. They are of the following generic
forms:

Type 1 : ψ(x1)U (x1, x2)ψ(x2) ,

Type 2 : Tr
(
U (x1, x2)U (x2, x3)U (x3, x4)U (x4, x1)

)
. (12.118)

We will see later that the QCD action on the lattice can be built up by using
only these two kinds of invariants.

12.6.3 Quantum field theory on Euclidean spacetime

As we remarked earlier, lattice calculations are done by taking the spacetime
points to be points on a hypercubic lattice. A hypercubic lattice is defined
in a Euclidean space, so first of all we need to define the theory on a Eu-
clidean spacetime. From the Minkowskian spacetime, we therefore go over
to a Euclidean space, whose spatial co-ordinates are the same as the spatial
co-ordinates of the Minkowski spacetime, and whose temporal co-ordinate, to
be denoted by t, is defined by

t = it . (12.119)

The co-ordinate 4-vector in the Euclidean space is defined as

xµ ≡ {t, x, y, z} = {it, x, y, z} . (12.120)

Superscripted and subscripted vector indices will be taken to denote the same
thing, which means that the Euclidean space metric is taken to be

g
µν

= diag(1, 1, 1, 1) . (12.121)

Thus,

xµxµ = −xµxµ = −x2 . (12.122)

The Lagrangian depends on fields which are functions of spacetime points,
and therefore varies from one spacetime point to another. We can denote this
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dependence by writing the Lagrangian of Minkowski space as L (t,x). We
now define the Lagrangian in the Euclidean space by the relation

L (t,x) = −L (t,x) , (12.123)

where t is defined through Eq. (12.119). The Euclidean action, A , is defined
by the obvious formula

A =

∫
d4x L (t,x) . (12.124)

Since Eq. (12.119) tells us that the Euclidean element of spacetime volume is
given by

d4x = id4x , (12.125)

we can combine it with Eq. (12.123) to write

iA = −A . (12.126)

Therefore the path integral can be written in this Euclidean space in the form

Z =

∫
DΨ

∫
DΨ

∫
DGµ

a e
−A , (12.127)

and the vacuum expectation value of an operator O as

〈O〉 =
1

Z

∫
DΨ

∫
DΨ

∫
DGµ

a Oe−A . (12.128)

One might wonder why we put a minus sign on the right hand side of the definition in Eq.
(12.123). We want to emphasize that it is only a matter of convention. If we had omitted
the minus sign there, Eq. (12.126) would not have the minus sign as well. In this case, we
would have written the path integral with a factor of eA rather than e−A . But, because of
the change of notation in Eq. (12.123), the new A would have been negative of the action
that appears in Eq. (12.127). So the path integral would have contained the same exponent,
whether we call it −A and define the Euclidean Lagrangian through Eq. (12.123), or call it A
and define L with the opposite sign on the right hand side of Eq. (12.123).

Let us now discuss how the Euclidean Lagrangian looks. We start with
the Lagrangian of a free Dirac field in Minkowski space and use Eq. (12.119):

LDirac = ψ

(
iγ0 ∂

∂t
+ iγi ∂

∂xi
−m

)
ψ

= ψ

(
−γ0 ∂

∂t
+ iγi ∂

∂xi
−m

)
ψ . (12.129)

We can now define the Dirac matrices in the Euclidean space as

γ0 = γ0 , γi = −iγi , (12.130)
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so that they satisfy the anticommutation relation
[
γµ, γν

]
+

= 2δµν . (12.131)

The Euclidean Dirac matrices are therefore all hermitian. Since lower and
upper vector indices are equivalent in the Euclidean space, γ

µ
and γµ are

numerically the same matrices.
Then we can write

LDirac = ψ

(
−γ0 ∂

∂t
− γi ∂

∂xi
−m

)
ψ

= −ψ
(
γ

µ
∂µ +m

)
ψ . (12.132)

Eq. (12.123) now tells us that the free Dirac Lagrangian in the Euclidean
space is given by

L Dirac = ψ
(
γ

µ
∂µ +m

)
ψ . (12.133)

In passing, it should be noted that ψ is not defined as ψ†γ0 in the Euclidean
space. Since all γ

µ
’s have the same hermiticity property, such a definition

would not make the right hand side of Eq. (12.133) invariant under rotations
in the Euclidean space. Instead, ψ in independently defined Euclidean space
such that ψψ is invariant.

2 Exercise 12.15 Taking all Euclidean gamma matrices to be hermitian
is just a matter of convention. We could have also taken all γ

µ
’s

to be anti-hermitian. Make such a choice and find the Euclidean
Lagrangian for a free Dirac field in this convention.

We now perform the same exercise on the interaction term between the
fermions and the gauge bosons. In the Minkowski space, we have

Lint = −gψ
(
γ0G0 − γiGi

)
ψ , (12.134)

where Gµ are 3× 3 matrices defined with the gluon fields,

Gµ =
1

2
λaGa

µ , (12.135)

defined in accordance with the more general notation introduced in Eq. (11.13,
p 300). Since the gluon field is a vector field, we should define its components
in the Euclidean space in such a way that they bear the same relation with
the Minkowski space components as the components of the co-ordinate vector
does, i.e.,

G0 = iG0 , Gi = Gi . (12.136)

The interaction Lagrangian can be written as

Lint = igψ
(
γ0G

0 + γiG
i
)
ψ

= igψγ
µ
Gµψ . (12.137)
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Combining with the Euclidean Lagrangian of the free Dirac field given in Eq.
(12.133), we can now write

L Dirac + L int = ψ
(
γ

µ
Dµ +m

)
ψ , (12.138)

where

Dµ = ∂µ − igGµ . (12.139)

Because of the Euclidean space definitions given in Eqs. (12.119) and
(12.136), it is easy to see that the Euclidean components of the field-strength
tensor are given by

Ga
0i = iGa

0i , Ga
ij = Ga

ij . (12.140)

Therefore, the pure gauge Lagrangian can be written as

Lgauge = −1

4
Ga†

µνG
µν
a

= −1

4

(
−2Ga†

0iG
a
0i + G

a†
ij G

a
ij

)

= −1

4

(
2Ga†

0i G
a
0i + G

a†
ij G

a
ij

)

= −1

4
Ga†

µνG
a
µν . (12.141)

This implies that the Euclidean action of QCD is given by

A =

∫
d4x

(
1

4
Ga†

µνG
a
µν + Ψ

(
γ

µ
Dµ +M

)
Ψ

)
. (12.142)

In writing this equation, we have gone back to the notation where Ψ stands
for all quark fields, and M is a huge square matrix, with appropriate entries
for the masses of the different quark fields.

2 Exercise 12.16 Prove Eq. (12.140). [Hint : Beware of the fact that Eq.
(12.136) implies

G0 = iG0 , Gi = −Gi , (12.143)

where the minus sign appears because the spatial components of a Euclidean vector
has the same value whether the index is upper or lower, whereas in Minkowski space
there is a relative negative sign.]

2 Exercise 12.17 From the definition of co-ordinates and gauge fields in
the Euclidean space, show that the analog of the gauge transformation
rule of Eq. (11.19, p 301) is given by

A
′
µ = UAµU

−1 +
i

g
U(∂µU

−1) (12.144)

in the Euclidean space. [Note : The sign of the A-independent term is
different.]
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12.6.4 Quarks and gluons on a lattice

So far, we have worked with a spacetime continuum. We have been developing
the tools which would make it easier for us to formulate the path integral on
a spacetime lattice. We are now ready to do so. Our first task is to know how
to write the lattice action with quarks and gluons.

The action will have to be gauge invariant. Already in Eq. (12.118), we
have identified two kinds gauge invariant combinations involving fermion fields
and gauge fields. The fermion fields appeared directly in the type-1 invariants,
and the gauge fields appeared in both types of invariants through the path-
ordered integrals.

On the lattice, then, we can take a direct approach for the quark fields and
represent them by anticommuting variables on each lattice site. They belong
to the fundamental representation of the QCD gauge group SU(3).

U(µ)(x) ≡ x x+ aµ̂

U †
(µ)(x) ≡ x x+ aµ̂

W(µν)(x) ≡

x x+ aµ̂

x+ aν̂

Figure 12.14: Pictorial representa-
tions of basic link and plaquette vari-
ables defined in Eqs. (12.147), (12.148)
and (12.149).

In order to introduce the gauge fields,
i.e., the gluons, we need something that
resembles the path-ordered integrals dis-
cussed earlier. There is however no
continuous path now from one point to
another, because the lattice represents
spacetime, and it is discrete. Thus, the
best we can do is to assign a function
of two different lattice points that will
work the same way as a path-ordered in-
tegral would do in the continuum, i.e.,
will have the gauge transformation prop-
erty like that shown in Eq. (12.117). The
simplest such thing would be a function
of two nearest neighbors sites on the lat-
tice. We call this function a link variable
and denote it by the notation U(µ)(x).
This would stand for a link variable for
the two points on the lattice, one at x,
and the other its nearest neighbors in the

µth direction. Note that we put the index µ within parentheses because it
should not be thought that the quantity transforms like a spacetime vector.
In fact, there is no concept of a spacetime vector now, because we are on the
lattice where the Lorentz symmetry is not present.

The connection between the link variables and the gauge fields can be
established through the analogy with the continuum theory. Remember that
the path-ordered integral in the Minkowski space was defined through Eq.
(12.109). In the Euclidean space, the corresponding expression should read

U (x1, x2) ≡P exp

(
−ig

∫ x2

x1

dxµ Aµ

)
. (12.145)
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The reason for the appearance of the minus sign was explained in Eq. (12.122).
Between the points x and x + aµ̂, we can neglect the variation of the gauge
field and obtain

U (x, x+ aµ̂) = exp
(
− iagAµ(x)

)
. (12.146)

where µ̂ is the unit vector on the spacetime lattice in the µth direction, so
that x + aµ̂ is the nearest neighbor of the point x in the µth direction. It is
this quantity that we identify as our link variable:

U(µ)(x) ≡ U (x, x + aµ̂) = exp
(
− iagAµ(x)

)
. (12.147)

Clearly,

U †
(µ)(x) = U (x+ aµ̂, x) = exp

(
iagAµ(x)

)
. (12.148)

Pictorial representations of the objects U(µ)(x) and U †
(µ)(x) have been shown

in Fig. 12.14.

In writing Eqs. (12.147) and (12.148) and all subsequent equations of this section, we omit the
special symbol for denoting Euclidean space variables. Our transition from Minkowski space to
Euclidean space is now complete. We will now talk exclusively about field theory on a lattice,
which is defined in the Euclidean space, and therefore all variables are supposed to be in the
Euclidean space from now on, without any special notational indication. The special notation
will come back later where necessary.

While these link variables are the basic units of type-1 gauge invariants on
the lattice, the type-2 invariants described in Eq. (12.118) are formed from
the plaquette variables, which are defined for a unit planar face of a lattice
cell. For a lattice cell in the µ-ν plane, the plaquette variable is defined as

W(µν)(x) ≡ U(µ)(x)U(ν)(x+ aµ̂)U †
(µ)(x + aν̂)U †

(ν)(x) , (12.149)

where x is the vertex with the minimum values of µ as well as ν co-ordinates.
Fig. 12.14 contains a pictorial representation of such variables as well.

It should be clear that neither the link variables nor the plaquette variables
are gauge invariant. For example, comparing Eq. (12.118) with Eq. (12.149),
it is clear that the W(µν)’s are not gauge invariant, but rather their traces
are. The transformation properties of the link variables are obvious from Eq.
(12.117). We now show how the link variables and the plaquette variables
help us build the gauge invariant lattice action.

12.6.5 Lattice action

The pure gauge action can be written in terms of the plaquettes. To show
this, we take the easy case of a U(1) gauge theory. Writing e for the coupling
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constant and the gauge fields as Aµ, we can use Eq. (12.147) to rewrite Eq.
(12.149) in the form

W(µν)(x) = exp
(
iaeAµ(x)

)
exp

(
iaeAν(x+ aµ̂)

)

× exp
(
− iaeAµ(x+ aν̂)

)
exp

(
− iaeAν(x)

)
. (12.150)

The exponents all commute for a U(1) theory, so we can add the powers.
Expanding the total power now about the point x, we find

W(µν)(x) = exp

(
iae

[
Aµ +

(
Aµ + a∂µAν

)
−
(
Aµ + a∂νAµ

)
−Aν

]
+ . . .

)

= exp
(
ia2eF(µν) + . . .

)
, (12.151)

where all field values now refer to the point x. The dots refer to higher order
terms in the lattice spacing a.

2 Exercise 12.18 Because of the non-abelian nature of the QCD gauge
group, the exponents cannot be simply added as has been done in Eq.
(12.151). One must use the Baker–Campbell–Hausdorff formula in
order to combine the indices. Show that the commutator terms in the
Baker–Campbell–Hausdorff formula give rise to the non-linear terms
of the field-strength tensor, so that one still obtains the last step of
Eq. (12.151).

For QCD, we will obtain a similar expression:

W(µν) = exp
(
ia2gG(µν) + . . .

)
. (12.152)

Here and henceforth, we use the notation for the matrix representation of the
gluon fields, G, instead of the more general notation A used for general gauge
fields in earlier sections. Expanding the exponential, we obtain

W(µν) = 1 + ia2gG(µν) −
1

2
a4g2G(µν)G(µν) + · · · . (12.153)

Notice the parentheses around the directional indices. They imply that these
are not vector indices, and no summation should be implied on them. Note
that the notation defined in Eq. (12.135) implies that

Tr
(
G(µν)G(µν)

)
=

1

2
Ga
(µν)G

a†
(µν) , (12.154)

using the normalization of the fundamental representation decided upon in
Eq. (11.54, p 308). Therefore,

1

g2
Tr

(
1−W(µν)

)
=

1

4
a4Ga

(µν)G
a†
(µν) + . . . , (12.155)

where denotes the real part of the quantity that follows.
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2 Exercise 12.19 Find the next higher order term in Eq. (12.155).

Let us now see what is the relation of this quantity with the discretized
version of the continuum action. In the continuum Euclidean space, the pure
gauge action is given in the fermion-independent term of Eq. (12.142). In
the lattice, we can approximate the spacetime integral of a function by the
prescription

∫
d4x→ a4

∑

x

, (12.156)

where the sum on the right hand side runs over each cell in the lattice, and
a4 is the volume of a cell. Thus, the discretized limit of the pure gauge action
should be

1

4
a4
∑

x

∑

µ<ν

2Ga
(µν)G

a†
(µν) , (12.157)

where the factor of 2 is coming from the fact that the continuum action has
unrestricted sum over the Lorentz indices, whereas in the discretized version
we sum only over µ < ν. Comparing with Eq. (12.155), we find that the pure
gauge part of the lattice action can be written as

Agauge =
2

g2

∑

x

∑

µ<ν

Tr
(

1−W(µν)

)
. (12.158)

This expression is often written in the form

Agauge =
2

g2

∑

P

Tr
(

1− 1

2
(WP +W †

P )
)
, (12.159)

where the subscript P denotes a plaquette, and the sum is over all plaquettes.
Let us now look at the terms involving fermions. The mass terms are

straightforward. The derivative term of a fermion field can be written, in
terms of quantities on the lattice, by the prescription

ψγ
µ
∂µψ →

1

2a

∑

µ

ψ(x)γµ

(
ψ(x+ aµ̂)− ψ(x− aµ̂)

)
. (12.160)

Adding to it the interaction term between fermions and gauge fields:

−igψ(x)γ
µ
Gµ(x)ψ(x) , (12.161)

we obtain

ψγ
µ
Dµψ →

1

2a

∑

µ

ψ(x)γµ

(
ψ(x+ aµ̂)− 2iagGµ(x)ψ(x) − ψ(x− aµ̂)

)
.

(12.162)
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Note that, according to Eq. (12.147),

U(µ)(x) = 1− iagGµ(x) +O
(
a2
)
. (12.163)

Multiplying both sides to the right by ψ(x+ aµ̂), we obtain

U(µ)(x)ψ(x + aµ̂) = ψ(x+ aµ̂)− iagGµ(x)ψ(x) +O
(
a2
)
. (12.164)

Similarly,

U †
(µ)(x)ψ(x − aµ̂) = ψ(x− aµ̂) + iagGµ(x)ψ(x) +O

(
a2
)
. (12.165)

Therefore the part of the action that involves the fermions can be written in
the form

Afermion = −
∫
d4x

(
ψγ

µ
Dµψ +mψψ

)

→ −a4

[
1

2a

∑

x

∑

µ

(
ψ(x)γµU(µ)(x)ψ(x + aµ̂)

− ψ(x)γµU
†
(µ)(x)ψ(x − aµ̂) + . . .

)

+m
∑

x

ψ(x)ψ(x)

]
, (12.166)

where the dots represent terms with higher powers of a. On the lattice, the
Lagrangian therefore can be taken to be only the terms written explicitly in
the equation above, discarding the terms represented by the dots. The total
action will be a sum of the contributions given in Eqs. (12.158) and (12.166).
This lattice action would reduce to the continuum action in the limit a→ 0.

It should be noted that the lattice action contains only the gauge invariant
combinations shown in Eq. (12.118). For the pure gauge action, this is obvious
since we used only the traces of the plaquette variables, which are type-2 gauge
invariants. In Eq. (12.166), we might note that the combination used in the
first term is nothing but ψ(x)γµU (x, x+ aµ̂)ψ(x+ aµ̂). The Euclidean Dirac
matrices γµ are irrelevant while considering gauge transformations. Other
than that, this is exactly like a type-1 invariant. Similarly, the combination
in the second term is ψ(x)γµU (x+ aµ̂, x)ψ(x− aµ̂), which can be written as
ψ(x)γµU (x, x− aµ̂)ψ(x− aµ̂) by neglecting higher order terms in a, and this
is also a type-1 invariant.

12.6.6 Fermion doubling problem

However, the simple procedure described above has a serious problem. To see
this, let us use Eq. (12.160) to write the free part of the lattice action, implied
in Eq. (12.138), in the form

A 0 = a4
∑

x

∑

y

ψ(x)K(x, y)ψ(y) , (12.167)
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where

K(x, y) =
1

2a

∑

µ

γ
µ

(
δy,x+abµ − δy,x−abµ

)
+mδy,x . (12.168)

Although we have written the left hand side as a function of the two co-
ordinates x and y, the right hand side is really a function of y−x. So, we can
define the Fourier transform as

K(p) =
∑

y−x

exp

(
i
∑

µ

p
µ
(y

µ
− xµ)

)
K(x, y)

=
1

2a

∑

µ

[
exp

(
iγ

µ
p

µ
a
)
− exp

(
−iγ

µ
p

µ
a
)]

+m

= i
∑

µ

γ
µ
p̃µ +m, (12.169)

where

p̃µ =
1

a
sin
(
p

µ
a
)
. (12.170)

The inverse of this expression will be the propagator, as discussed in §4.10.2.
It is easy to see that the propagator will be given by

K−1(p) =
−i
∑

µ γµ
p̃µ +m

∑
µ p̃

2
µ +m2

. (12.171)

The propagator in the co-ordinate space will be obtained by taking the Fourier
transform.

It is there that the problem lies. To appreciate this, first note that since the
co-ordinates are now the lattice points, which are points with a well-defined
periodicity, each p

µ
is bounded in the region

−π
a
< p

µ
≤ π

a
. (12.172)

Eq. (12.172) is reminiscent of the fact that if we have a function f(x) which is periodic with
period 2π, then it can be decomposed into a Fourier series of the form

f(x) =
1

2
C0 +

∞
X

n=1

“

Cn cos nx+ Sn sinnx
”

, (12.173)

with

Cn =
1

π

Z π

−π
dx f(x) cos nx ,

Sn =
1

π

Z π

−π
dx f(x) sinnx . (12.174)

We can state this in reverse by saying that if we have a function defined only for integers (like
Cn and Sn), it is the Fourier transform of a function that has the property f(x−π) = f(x+π),
i.e., is restricted to the region −π < x ≤ π. On a lattice, since y

µ
− xµ can only be of the

form na where n is an integer, it follows that ap
µ

is restricted in the region −π to +π, which

is what Eq. (12.172) shows.
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Next, consider what will happen if we try to find the propagator in the
co-ordinate space. It will be given by an integral:

K−1(x− y) =

∫
d4p

(2π)4
exp

(
−i
∑

µ

p
µ
(xµ − yµ

)

)
K−1(p) . (12.175)

For each component of p
µ
, the integral extends to the region given in Eq.

(12.172). Dominant contributions to this integral will come from values of
p

µ
for which the denominator of K−1(p) is minimum, i.e., when p̃µ = 0 for

all µ. For each µ, this can happen when p
µ

= 0 or when p
µ

= π/a. The

first of these two solutions is expected, since even in the continuum limit, i.e.,
a→ 0, the contribution from the region near p

µ
= 0 will dominate the integral

that defines the propagator in co-ordinate space. But the other solution is a
shocker. In the limit a→ 0, this means that infinite momentum contributions
would dominate the said integral. This is unphysical. Occurrence of this extra
solution is called the fermion doubling problem. For 4 dimensions, there are
therefore 24 or 16 different solutions for p̃µ = 0 for all µ: only one of them is
physically acceptable in the continuum limit, the other 15 are not.

2 Exercise 12.20 Consider the action of a complex scalar field φ on
a lattice. Show that, apart from terms which are integrals of total
derivatives in the continuum limit, the action can be written in the
form given in Eq. (12.167), with the obvious replacements of ψ by φ
and ψ by φ†, and

K(x, y) = − 1

a2

X

µ

„

δy,x+abµ + δy,x−abµ − 2δy,x

«

+m2δy,x . (12.176)

Hence show that the propagator is given by

K−1
S (p) =

1
4

a2

X

µ

sin2(ap
µ
/2) +m2

, (12.177)

so that the doubling problem does not occur for a scalar field.

To avoid the problem of doubling, one usually takes the fermion terms in
the lattice action as follows:

A fermion = a4

[
m
∑

x

ψ(x)ψ(x)

+
1

2a

∑

x,µ

ψ(x)γ
µ

(
U(µ)(x)ψ(x + aµ̂)

−U †
(µ)(x− aµ̂)ψ(x− aµ̂)

)

− r

2a

∑

x,µ

ψ(x)
(
U(µ)(x)ψ(x + aµ̂)− 2ψ(x)

+U †
(µ)(x− aµ̂)ψ(x− aµ̂)

)]
, (12.178)
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where r is called the Wilson parameter . The extra term should not affect the
continuum limit because it vanishes in that limit. There are other prescrip-
tions for avoiding the same problem, but they will not be discussed here.

The expression in Eq. (12.178) has been written only for one quark flavor.
In the total action, we need to sum over such terms for all quark flavors.
The resulting expression, along with the pure gauge contribution given in Eq.
(12.158), constitutes the full QCD action on a lattice.

2 Exercise 12.21 Argue that the term involving the Wilson parameter
should not affect the continuum limit by showing that this term is of
higher order in the lattice spacing a compared to the other term.

12.6.7 Path integral on a lattice

We have already defined the action on a lattice. In order to define the path
integral, we now have to know how to integrate e−A over the field configu-
rations. For the fermion field, the answer is straightforward. For the gauge
field, we mentioned that the continuum formulation has some complication
because of gauge invariance.

For the lattice, we notice that the gauge fields do not directly appear
anywhere in the lattice action. They appear only through the link variables.
The link variables, as defined in Eq. (12.147), are matrices. For QCD, these are
in fact SU(3) matrices in which the gauge fields take the role of the parameters
that define an SU(3) transformation. Thus, all we need to do is to integrate
over all possible SU(3) matrices. This integration can be defined irrespective
of the gauge choice, in a gauge invariant manner.

As shown earlier, a general element of SU(3) has eight parameters. In other
words, any SU(3) matrix can be written as a function of eight parameters,
which we called θa’s. The allowed values of these θa’s span an 8-dimensional
space. We need to integrate over this space. The value of any θa is bounded.
For example, the U(1) group has only one parameter which is bounded in
the region 0 ≤ θ < 2π. Thus, the integration over all SU(3) matrices would
mean an integration over a finite region of the 8-dimensional parameter space
of SU(3). However, we cannot simply write the integration as

∫
dθ1 · · ·

∫
dθ8.

In general there exists a non-trivial factor in the measure on this parameter
space.

An analogy might help. Consider spherical polar co-ordinates in 3-dimensional space, with the
parameters r, θ and φ. We know that the integral of a function f(r, θ, φ) over the space cannot
be written as

R

dr
R

dθ
R

dφ f(r, θ, φ). Rather, we write
R

dr
R

dθ
R

dφ r2 sin θf(r, θ, φ). The
factor r2 sin θ has to be put in because it makes this measure independent of co-ordinate
transformation. For a general system of co-ordinates, this factor is given by

p

|det g|, where g

is the metric, i.e., the distance between two neighboring points qi and qi + dqi is given by ds,
where

ds2 = gijdqidqj . (12.179)

Similarly, if we can define the notion of a distance between two unitary matrices, we can find
an invariant measure on the parameter space of SU(3), a measure that will remain invariant
under gauge transformations.
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Consider an arbitrary matrix G that belongs to the group SU(3). It is
realized by some particular values of the parameters θa. Consider now another
matrix where the parameters have been increased by infinitesimal amounts,
and call it G + dG. The distance of two matrices G and G + dG in the
parameter space can be defined by the relation

ds2 = tr
(
dG†dG

)
. (12.180)

Obviously, it is gauge invariant, in the sense that it does not change if both
G and G + dG are multiplied by the same matrix G′, either from the left or
from the right. It is also non-negative, and vanishes only when dG vanishes.

If we put in the functional form of G in terms of the θa’s, this will give us
an equation of the form

ds2 = gabdθadθb , (12.181)

where gab will depend on the details of the functional dependence of G on the
θa’s. This is the metric in the parameter space. As outlined before,

∫
dθ1 · · ·

∫
dθ8

√∣∣∣ det(gab)
∣∣∣ (12.182)

will then constitute a gauge invariant measure. This is called the Haar mea-
sure. We will denote this whole expression by dU , and then will define DU
according to the prescription given in Eq. (12.106). In finding the path inte-
gral, we therefore need not integrate over all gauge field configurations: we
need to use the measure DU for integrating over the gauge fields.

2 Exercise 12.22 Consider the group SU(2). The most general element
of this group can be written in the form

“

A B
−B∗ A∗

”

, (12.183)

with

A = cos
θ

2
+ i cosα sin

θ

2
, B = sin

θ

2
sinα eiβ . (12.184)

Find the invariant integration measure on the SU(2) group space.

12.6.8 Correlation functions and physical observables

We have described how the lattice action as well as the path integral is set
up. We now outline how some calculations are performed to obtain physical
quantities. We already mentioned in Eq. (12.107) how the expectation value
of any operator is defined through the path integral. Suppose now we consider
the correlation function of O(x, t)O(0, 0) for t > 0, and where the operator
O is chosen to be ψγ

0
γ

5
ψ. Introducing a complete set of energy eigenstates∣∣n

〉
between the two factors of the operator O, we can write

〈0 |O(x, t)O(0, 0)| 0〉 =
∑

n

〈
0
∣∣O(x, 0)

∣∣n
〉 〈
n
∣∣O(0, 0)

∣∣0
〉

2En
e−Ent , (12.185)
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where the energy eigenstates have been normalized by the relation

〈n | n〉 = 2En . (12.186)

The exponential factor appearing in Eq. (12.185) is just the time evolution
factor e−iEnt, written in terms of the Euclidean time defined in Eq. (12.119).
To avoid the dependence on the spatial co-ordinate, we can sum over x, which
will give us only the zero-momentum modes:

〈
0

∣∣∣∣∣
∑

x

O(x, t)O(0, 0)

∣∣∣∣∣ 0
〉

=
∑

n

〈
0
∣∣O
∣∣n
〉 〈
n
∣∣O
∣∣0
〉

2mn
e−mnt . (12.187)

The right hand side has non-zero contribution from all states which have the
transformation properties of ψγ

0
γ

5
ψ. The pion is the lightest among such

states. Thus, if we can evaluate the left hand side for large values of t, the
contribution from other states will be negligible, and the exponential decay
of the result with respect to t will give the value of the pion mass.

The procedure described above would work if we knew all the basic pa-
rameters in the QCD Lagrangian. In practice, this is not the case. So one
takes the values a few experimentally observed quantities (like the pion mass)
as inputs, and use them to obtain values of the basic parameters. These basic
parameters are then used to predict other observables.

12.6.9 Continuum limit

Of course, all lattice calculations are done with an implied non-zero lattice
spacing a, and the result of any physical quantity depends on this spacing. In
order to extract the physical value of the quantity, one needs to extrapolate
the results to the limit of vanishing a.

There is one important issue that we did not point out when we wrote the
lattice action in Eq. (12.178). In any theory, the action must be dimension-
less in the natural units. For a field theory in the continuum, the Lagrangian
contains fields and their derivatives and has dimensions of [M4], and this di-
mension is compensated by the integration measure over the 4-dimensional
spacetime when we calculate the action. For a lattice, there is no integration
over spacetime points: only a sum. The dimension of the Lagrangian is com-
pensated by an explicit factor of the elementary volume a4 of the lattice. This
brings in a new feature: there is a fundamental unit of length on a lattice.
We can use it to define dimensionless fields on the lattice, e.g.,

ψ̆ = a
3/2ψ . (12.188)

We can also define a dimensionless mass parameter through the relation

m̆ = am . (12.189)

We can say that ψ̆ and m̆ denote the fermion field and its mass in lattice
units . The interesting point is that we can write Eq. (12.178) by using ψ̆ and
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m̆ only, without having to write the lattice spacing a explicitly anywhere. It
is to be noted that the link variables contain the combination

Ăµ = aAµ , (12.190)

which can also be thought of as the gauge field in the lattice units. The pure
gauge action also can be written in terms of Ăµ only, without having to use a
explicitly. Thus, all parameters and fields can be considered as dimensionless
in a lattice action. Equivalently, we can say that the lattice spacing does not
appear explicitly in the lattice action. Even where a appears as the argument
of the field variables, as e.g. ψ(x+aµ̂) or ψ(x−aµ̂) in Eq. (12.178), the lattice
only knows them as the field at the next lattice point along the positive or
negative µ̂ direction, without realizing anything about the physical distance
between the two points.

This is the reason that going to the continuum limit a→ 0 is tricky. It is
like killing a person who does not exist!

However, things are not as bad as the analogy suggests. Note that Eq.
(12.189) implies going to the limit a→ 0 is the same as going to the limit where
m̆, the fermion mass on the lattice, vanishes. The fermion propagator in the
co-ordinate space, K(r), represents correlation function, and the correlation
length ξ is defined by the relation

lim
r→∞

K(r) ∼ 1

r
e−r/ξ . (12.191)

As indicated in Ex. 12.23 below, this implies that

ξ =
1

m̆
=

1

am
. (12.192)

On the lattice therefore, as we go toward the continuum limit, the correlation
length diverges. This is indicative of a critical point, in terms of the language
of the physics of phase transitions . To summarize, the continuum limit is
realized for the values of the parameters for which the correlation length
becomes infinite. One therefore needs to tune the bare coupling constant to a
value that shows critical behavior. In numerical computations of lattice QCD
one can never reach the critical point where the correlation length is really
infinite. Rather, one reaches a region of parameter space where the correlation
length is sufficiently large so that critical behavior emerges, and the system
loses the memory of the discrete lattice.

2 Exercise 12.23 Take the propagator of a scalar field, given in Eq.
(4.143, p 91). Take the Fourier transform in the static limit and show
that in the co-ordinate space, the propagator has the form given in
Eq. (12.191), with ξ identified by Eq. (12.192).

It should be noted that the correlation length given in Eq. (12.192) is
the dimensionless correlation length, or in other words, the correlation length
in lattice units. As we go to larger and larger values of ξ and therefore
smaller and smaller values of the lattice spacing a, we require larger and larger
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Figure 12.15: The figure on the left shows a coarse lattice, the figure on the right
shows a finer lattice. Obviously, in order to cover physics of a fixed physical length
indicated by the thick line, one needs larger number of lattice points.

numbers of points on the lattice to understand the physics of a definite physical
length scale. The idea is indicated in Fig. 12.15. A minimum lattice size is
therefore essential for understanding a particular phenomenon. For example,
if a typical hadron size is roughly 0.5 fm (fm means femtometer, i.e., 10−15 m)
and we want to study the correlation function of two hadrons, we will have to
take a lattice which at least extends beyond a couple of femtometers. If we
are working with a value of ξ that amounts to a = 0.05 fm, we need a lattice
which has at least a few dozens of points along any direction. In principle,
it is best to take lattices with a very large number of points. However, it is
not possible to take lattices with thousands, or even hundreds, of points in
any given direction, because then the calculations would require prohibitively
large computer time. So we must be satisfied so far with a maximum of a few
dozen points along each direction.

12.7 Confinement

We have talked about asymptotic freedom, i.e., the fact that at higher and
higher energies, quarks behave more and more like free particles. High energy
implies that we are probing small distance, as explained in Ch. 1. What
happens at the other extreme? Behavior of quarks is certainly very different
at large distances. We know this because, although there is ample evidence
that the hadrons are made of quarks and gluons, no experiment has ever
detected a quark or a gluon in isolation. It seems that the more we try
to separate the constituents of a hadron, the more they resist separation,
remaining inseparable. This property is called confinement , i.e., the fact that
quarks want to be confined in bound states.

It seems counterintuitive that the interaction is small at small distances
and large at large distances. But it is also true that our intuition is largely
based on electromagnetic and gravitational interactions, whose macroscopic
effects we see all around, and these effects fall off at large distances. Con-
sidering only electromagnetic interactions since we decided not to talk about
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+ −

Figure 12.16: Schematic lines of force between two magnetic monopoles placed in
a superconductor.

gravitational interactions in this book, we notice that there is a big difference
between electromagnetic and strong interactions, viz., the dynamics of the
former is governed by an abelian gauge theory whereas that of the latter by
a non-abelian gauge theory. As we noted earlier, it is the crucial difference
which ensures that the sign of the beta function is negative for strong inter-
actions. This, in turn, implies asymptotic freedom at high energies and large
coupling at low energies.

Nevertheless, there is an analogy from electromagnetism that might help
us understand the phenomenon of confinement. It has to do with magnetic
poles rather than electric charges. A magnet has two opposite poles, which we
call the north pole and the south pole usually. We cannot separate the poles.
In other words, if we pull them apart, the two poles do not become isolated
monopoles. In the extreme case that the magnet breaks into two pieces, each
piece becomes a dipole consisting of a north pole and a south pole. The same
is true, for example, with a meson made from a quark and an antiquark. If we
put in a lot of energy to separate the pair, a new quark-antiquark pair can be
produced, and each of the two quarks — the original one and the one newly
produced in the pair — would pair with an antiquark to form two mesons.

To extend the analogy further, we can consider what would have happened
if magnetic monopoles existed and could be placed in a superconductor. Su-
perconductors show Meissner effect, i.e., they expel magnetic flux. If there is
a magnetic monopole placed within the superconductor, the flux lines have to
come out and therefore there must be flux lines within the superconductor.
However, because of the abhorrence of superconductors toward magnetic field
lines, the lines should not be spread uniformly within the superconducting
medium, but would rather exit through the nearest boundary of the super-
conductor. If we now consider two monopoles with opposite magnetic charges
placed in a superconducting medium, the lines coming out of one monopole
will be squeezed and end up on the other, occupying minimum possible area
within the superconductor. The state of affairs is shown schematically in
Fig. 12.16.
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The same picture can be a representation of the color field lines between a
quark and an antiquark, provided the vacuum behaves like a superconducting
medium so far as the color forces are concerned. However, there is no analytic
derivation from the QCD Lagrangian that confirms that the vacuum indeed
behaves this way. This should be taken only as an analogy to understand
confinement.

Although there is no analytic proof of confinement for QCD theory in the
spacetime continuum, lattice formulation of QCD has a simple argument in
favor of it. The argument involves the calculation of the static potential energy
V (R) between a quark and an antiquark, separated by a spatial distance R.
Without loss of generality, we take the quarks to be separated along one of the
co-ordinate axes, say the x-axis. Consider now a Wilson loop of length R along
the x-axis and length T along the Euclidean time axis. It will correspond to
a quark-antiquark pair created at a certain time, separated instantaneously
by the distance R, allowed to stay like that for time T , and then annihilate.
Let us denote the value of this Wilson loop by W (R, T ). If we average over
all possible configuration of gauge fields, we obtain

〈W (R, T )〉 = exp
(
−
∫
dt Hint

)
= e−V (R)T , (12.193)

a statement that we do not prove here.
Now we try to find the value of 〈W (R, T )〉 on the lattice. For this, we first

need to write the basic equations, Eqs. (12.127) and (12.128), in a form that
is appropriate for a lattice formulation.

We can, for the present purpose, forget about the integration over
fermionic variables. As for the integration over gauge fields, we argued ear-
lier that the proper measure is the Haar measure, which we denoted by DU .
Thus, path integral on the lattice can be written as

Zlat =

∫
DU e−A gauge , (12.194)

where the pure gauge action is given in Eq. (12.158). The expression for
expectation value of W (R, T ) would then be

〈W (R, T )〉 =
1

Zlat

∫
DU W (R, T )e−A gauge . (12.195)

The factor Zlat in the denominator is a constant, and is not important
for our discussion. In the numerator, we use the pure gauge action given in
Eq. (12.159). This action has an overall factor of 1/g2. For large g, we can
make an expansion of the exponential in powers of 1/g2 and keep only the
first non-zero term.

The question is: what is the first non-zero term? Let us start with the
zeroth order term, which is proportional to the integral

∫
DU W (R, T ) . (12.196)
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R

T

Figure 12.17: Schematic representation of the first non-zero term that appears in
the strong-coupling expansion for the expectation value of W (R,T ).

This integral vanishes. The reason is that W (R, T ) contains various link
variables. Any link variable, when integrated over all possible values of U ,
gives zero.

This is easy to see. Start from the 2 × 2 orthogonal matrix in its most general form, whose
elements are of the form cos θ and sin θ. If we integrate over all possible matrices, i.e., over all
possible values of θ, we obtain zero for each element. The conclusion remains unchanged even
if there are phases with different elements so that the matrix is not orthogonal, but still unitary.
With very little effort, one can see that the argument holds for any N ×N unitary matrix, i.e.,
for any any element Uij ,

Z

dU Uij = 0 . (12.197)

Already, this equation shows why the integral of W (R,T ) will vanish. A non-zero integral can
be obtained if the integrand contains element of U as well as U†:

Z

dU Uij(U
†)kl =

1

N
δilδjk . (12.198)

We will have to use this result presently, in order to obtain a non-vanishing term that contributes
to 〈W (R,T )〉.

It follows from Eq. (12.198) that the integral will have non-zero contri-
bution when, corresponding to any link present in the R × T loop, there is
a neutralizing contribution from one of the plaquette factors present in the
exponential. This will mean that we need to consider the term with at least
all plaquettes bordering the boundary of the loop. If we include only these
plaquettes, the inner links of these plaquettes will not have a matching con-
tribution from anywhere else, and the integration over these links will give
zero. Continuing the argument, it is clear that the first non-zero contribution
comes from the term in the exponential that contains all plaquettes enclosed
by the loop, and only the single power of each of them. This point has been
schematically represented in Fig. 12.17.
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The number of plaquettes enclosed by the loop is RT/a2. Each plaquette
will bring one power of 1/g2 with it. Thus, the calculation must produce a
result of the form

〈W (R, T )〉 ∝
(

1

g2

)RT/a2

. (12.199)

Comparing with Eq. (12.193), we find that the quark-antiquark static poten-
tial is given by

V (R) =
R

a2
ln g2 (12.200)

in the strong-coupling limit, i.e., for large g.
This is the important result. It shows that the potential grows linearly

with distance. Thus the potential is larger and larger at greater distances. It
is therefore impossible to pull apart a quark and an antiquark from a bound
state of the two, which implies that quarks are confined. The only problem
is that this result cannot be continued to the continuum limit because of the
factor a2 in the denominator of Eq. (12.200), so that for the continuum theory,
we really do not have a proof, only an indication.

As an aside, we can note that the proof does not depend at all on the non-
abelian nature of the interaction. In fact, the same result would follow for
an abelian gauge theory, if the coupling constant is large enough so that the
strong-coupling expansion can be made. QED, however, has a small coupling
constant, which is why electrons and positrons are not confined.

12.8 Asymptotic properties of color gauge
fields

12.8.1 Dual of field-strength tensor

In Ch. 6 and Ch. 7, we introduced various discrete symmetries and showed
that the QED Lagrangian is invariant under parity, time reversal and charge
conjugation. Using exactly the same kind of arguments, we can show that the
QCD Lagrangian, as given in Eq. (12.48), respects all the discrete symmetries
mentioned in the previous sentence. In other words, discrete symmetries P, T
and C are consequences of the gauge invariant Lagrangian of Eq. (12.48).

At this point, we can stop and ask ourselves how the Lagrangian was
obtained in the first place. We introduced the field-strength tensor in §11.2.2
and constructed the Lagrangian of pure gauge fields in §11.2.3. In performing
this exercise, we depended heavily on the analogy of QED. The question
is: have we written the most general Lagrangian that is allowed by gauge
invariance?

Of course we have seen that mass terms for gauge fields are not gauge
invariant. We also don’t want to write non-renormalizable terms. However,
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other than what we have already written in Eq. (11.40, p 305), there is at least
one possible term that is both renormalizable and gauge invariant. To show
this, let us first introduce the dual to the field-strength tensor:

F̃ a
µν =

1

2
εµνλρF

λρ
a . (12.201)

Basically, this interchanges the space-space components with the time-space
components. If we do this for the electromagnetic field tensor, for which the
F 0i’s are the electric field components whereas the F ij ’s are the magnetic
field components, we see that for F̃ , the roles are reversed.

Once we identify the dual, we can ask whether we can construct terms in
the Lagrangian involving the dual. Like the field-strength tensor, the dual
contains linear as well as quadratic terms in the gauge fields. Therefore, we
can contemplate a term of the form

(constant)× F̃ a
µν F̃

µν
a (12.202)

in the Lagrangian. Certainly this term will be gauge invariant, which can
easily be seen from the gauge transformation property of the field strength
tensor given earlier. It will also be a renormalizable term. However, there is no
need to worry about the reason for not writing such a term in the Lagrangian,
because this term is not independent from what we have already written, as
elaborated in Ex. 12.24.

2 Exercise 12.24 Using the properties of the antisymmetric tensor, in
particular Eq. (D.11, p 729), show that

eF a
µν

eFµν
a = F a

µνF
µν
a . (12.203)

However, it is also possible to consider a term of the following form in the
Lagrangian:

Lnew = (constant)× F a
µν F̃

µν
a . (12.204)

Again, this term will be gauge invariant and renormalizable. It is not related
to any other term that we have considered so far in the Lagrangian. Then
why did we not write such a term in the Lagrangian for pure gauge fields?

Let us go back to abelian gauge theories. Could the Lagrangian of QED
contain a term like that shown in Eq. (12.204)? Here we note that, using the
complete antisymmetry of the Levi-Civita tensor, we can write

Fµν F̃
µν =

1

2
εµνλρFµνFλρ = 2εµνλρ(∂µAν)(∂λAρ)

= ∂µ

(
2εµνλρAν∂λAρ

)
. (12.205)

This is a total divergence term. And we said in Ch. 4 that such terms are
irrelevant.
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We now consider the same exercise for non-abelian fields. Using the anti-
symmetry of the Levi-Civita tensor and the expressions for the field-strength
tensor given in Eqs. (11.34) and (11.69), we can write

F a
µν F̃

µν
a =

1

2
εµνλρ

(
2∂µA

a
ν − gfbcaA

b
µA

c
ν

)(
2∂λA

a
ρ − gfdeaA

d
λA

e
ρ

)
.

(12.206)

In this expression, first it should be noticed that the term quartic in the gauge
fields is in fact zero. To see this, we apply the Jacobi identity, Eq. (11.56,
p 308), and then rename the dummy gauge indices to write this term in the
form

Quartic term ∝ εµνλρfbca fdeaA
b
µA

c
νA

d
λA

e
ρ

= −εµνλρ
(
fbea fcda + fbda feca

)
Ab

µA
c
νA

d
λA

e
ρ

= −εµνλρfbca fedaA
b
µ

(
Ae

νA
d
λA

c
ρ +Ad

νA
c
λA

e
ρ

)
. (12.207)

Finally, using feda = −fdea as well as the antisymmetry of the Levi-Civita
symbol on both terms, we obtain that the expression is −2 times the original
expression, which means that it vanishes. The remaining terms of Eq. (12.206)
can be written in the form

F a
µν F̃

µν
a = 2εµνλρ

(
(∂µA

a
ν )(∂λA

a
ρ)− gfbca (∂µA

a
ν)Ab

λA
c
ρ

)
. (12.208)

This shows that, even for the non-abelian case, we can write the F̃F term as
a total derivative. In fact, if we define

Kµ = 2εµνλρ
(
Aa

ν∂λA
a
ρ −

1

3
gfbcaA

a
νA

b
λA

c
ρ

)
, (12.209)

or alternatively

Kµ = εµνλρAa
ν

(
F a

λρ +
1

3
gfbcaA

b
λA

c
ρ

)
, (12.210)

it can be shown that

∂µK
µ = F a

µν F̃
µν
a . (12.211)

2 Exercise 12.25 Show that the expressions in Eqs. (12.209) and
(12.210) are indeed equivalent.

2 Exercise 12.26 Starting from Eq. (12.209), verify Eq. (12.211), using
the complete antisymmetry of the Levi-Civita symbol, as well as the
symmetry properties of the structure constants given in Eq. (11.53,
p 308).

2 Exercise 12.27 With the matrix fields defined in Eq. (11.13, p 300),
show that Eq. (12.209) can be written in the form

Kµ = 2Cεµνλρ Tr

„

Aν∂λA
†
ρ − 2

3
gAνAλAρ

«

, (12.212)



378 Chapter 12. Quantum chromodynamics

where C is the normalization constant for the generators defined in
Eq. (11.39, p 305).

This seems like the end of the story: we have shown that the term is a
total derivative, and therefore should be neglected, according to what we said
in Ch. 4. However, let us ask ourselves why any total derivative term present
in the Lagrangian has to be irrelevant? An answer was provided in Ch. 4, viz.,
that all fields vanish at the spacetime surface at infinity. But that just brings
in a new question: why should fields vanish at infinity?

The simplest answer to this question is that, unless fields vanish at infinity,
the total energy of the field becomes infinite, which would not correspond to
a physical configuration of the field. This is indeed the right answer for scalar
fields and fermion fields. For gauge fields, however, the situation is somewhat
different. The basic fields are the Aa

µ’s, whereas the pure gauge Lagrangian
involves the field-strength tensor F a

µν . Finiteness of energy would dictate that
the field-strength tensor should vanish at infinity, not necessarily the fields
themselves.

In the abelian case, this requirement is enough to render the FF̃ term
irrelevant. Using the complete antisymmetry of the Levi-Civita tensors, we
can write Eq. (12.205) in the form

Fµν F̃
µν = ∂µ

(
εµνλρAνFλρ

)
. (12.213)

Thus the action coming from this term can be transformed into a surface
integral of AνFλρ, which vanishes since Fλρ vanishes at infinity.

This is not so for non-abelian gauge fields. From the gauge transformation
property of the fields Aa

µ given in Eq. (11.21, p 302), it is clear that if we have
a gauge field for which

gAµ = i(∂µU)U−1 (12.214)

at some spacetime point, then by making a suitable gauge transformation we
can make the field vanish at that point. That would mean that the field-
strength tensor would vanish as well, and so will the energy density of the
field. Alternatively, we can say that if at each spacetime point at infinity the
field has the form given in Eq. (12.214) for some U , the energy density would
vanish for all asymptotically far points, and therefore the total energy of the
field cannot be infinite. However, using Eq. (12.211), we can write

∫
d4x F a†

µν F̃
µν
a =

∫
dSµ K

µ , (12.215)

where dSµ denotes an element of the boundary of spacetime. Even though
the field-strength tensor vanishes at the boundary, Kµ does not necessarily
do so because of the extra term in Eq. (12.210) which does not contain the
field-strength tensor. So one obtains

∫
d4x F a†

µν F̃
µν
a =

1

3
gεµνλρfbca

∫
dSµ A

a
νA

b
λA

c
ρ . (12.216)
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Obviously, there is no guarantee that the surface integral of Kµ vanishes at
infinity, which means that surface effects cannot be neglected for such a term.
Said another way, even if the FF̃ term is a total divergence, it cannot be
ignored in the Lagrangian for a non-abelian gauge theory. It can have real
physical effects.

The nature of some of these effects can be easily guessed if we notice that
the term contains a Levi-Civita symbol in the definition of the dual of the
field-strength tensor. Because of this, such a term would inflict violation of
parity and time reversal symmetries. If we take CPT invariance for granted,
violation of time reversal symmetry is equivalent to CP violation. For this
reason, we will discuss the implication of an FF̃ term in Ch. 21, where CP
violation will be discussed. Before that, in the rest of this section, we want to
do some groundwork by discussing some properties of such a term.

12.8.2 Topological invariants

We now discuss an interesting property of the surface integral mentioned in
Eq. (12.216). First, we note that taking surface integrals is not an easy task
in the Minkowski space, where the far points cannot be identified through
the invariant distance since the metric is not positive definite. Even a point
with very large values of spacetime co-ordinates might be at a very small
invariant distance, or even zero distance, from the origin of co-ordinates. In
contrast, in a Euclidean space, the surface of spacetime at infinity is indeed
a surface that is at infinite distance from the origin. So we use the Euclidean
space, introduced in §12.6, for our work. In Eq. (12.142) we have shown
the Euclidean form of the pure gauge action. Similarly, if we consider the
left hand side of Eq. (12.215) as a term in the Minkowski space action, the
corresponding term in the Euclidean action will be

I ≡ −
∫
d4x F a†

µν F̃
µν

a , (12.217)

where the dual of the field-strength tensor is related to the field-strength
tensor itself in exactly the same way as it is in the Minkowski space, i.e.,
through Eq. (12.201), and the Levi-Civita symbol in the Euclidean space is
defined by ε0123 = ε0123 = +1. Making the same arguments that we have
made for the Minkowski space, we can write

I = −1

3
gεµνλρfbca

∫
dSµ A

a
νA

b
λA

c
ρ . (12.218)

The next thing is to notice that pure gauge fields are easily identified in
the matrix notation, as in Eq. (12.214). In order to use the matrix notation,
we need to rewrite the integrand. Note that

Tr
(
TaTbTc

)
=

1

2
Tr
(
Ta[Tb, Tc]

)
+

1

2
Tr
(
Ta[Tb, Tc]+

)

=
1

2
ifbcd Tr

(
TaTd

)
+ (symmetric in b↔ c) . (12.219)
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Using the normalization of Eq. (11.39, p 305) and specializing to the funda-
mental representation for which C = 1

2 , we obtain

Tr
(
TaTbTc

)
=

1

4
ifbca + (symmetric in b↔ c) . (12.220)

If we now put this back into Eq. (12.216), the term symmetric in the inter-
change of the indices b and c does not contribute, and we can write

I =
4

3
igεµνλρ

∫
dSµ Tr

(
AνAλAρ

)

=
4

3g2
εµνλρ

∫
dSµ Tr

(
(∂νU)U−1(∂λU)U−1(∂ρU)U−1

)
, (12.221)

using the form of the pure gauge fields from Eq. (12.144). Taking the Lorentz
index µ along the timelike direction, this integral can be written as

I =
4

3g2
εijk

∫
d3x Tr

(
(∂iU)U−1(∂jU)U−1(∂kU)U−1

)∣∣∣∣∣

t=+∞

t=−∞
. (12.222)

It is the value of this integral that concerns us.
In order to make the argument without getting into unnecessary details,

we consider the gauge group to be SU(2). Clearly, the value of the integral
I can be zero if U is a constant at the boundary of spacetime. To see that
other values are possible as well, consider gauge fields of the form

Ai =
t2 + r2

t2 + r2 + a2
× i

g
(∂iU)U−1 , (12.223)

where a is a positive constant, r denotes the spatial distance from the origin
of co-ordinates, and

U =
t+ ix · σ√
t2 + r2

, (12.224)

where σ denotes the Pauli matrices. Note that, at large distances from the
Euclidean origin, the gauge fields are of the form mentioned in Eq. (12.214).

Evaluation of Eq. (12.222) is now straightforward. First, we note that

(∂iU)U−1 =
i

t2 + r2
(δimt− εimm′xm′)σm . (12.225)

There are three such terms in the integrand. The trace is over the Pauli
matrices:

Tr(σmσnσp) = 2iεmnp . (12.226)

Putting this into the integrand of Eq. (12.222) and noting the fact that the
integral involving an odd number of spatial co-ordinates would vanish, we
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obtain

I =
8

3g2
εijk

∫
d3x

(t2 + r2)3

[
t3εijk − 3tεinpεjnn′εkpp′xn′xp′

]∣∣∣∣∣

t=+∞

t=−∞
.

(12.227)

Since the integrand is odd in t, we can write this result as

I =
16

3g2
lim

t→∞
εijk

∫
d3x

(t2 + r2)3

[
t3εijk − tεinpεjnn′εkpn′r2

]
(12.228)

using also the result that
∫
d3x f(r)xixj = 1

3δij
∫
d3x f(r)r2. The rest of the

integration can be performed easily and one obtains

I =
32π2

g2
. (12.229)

If we do not restrict ourselves to the choice of U given in Eq. (12.224), we
obtain that the integral given in Eq. (12.216) is always of the form

I =
32π2n

g2
(12.230)

for some integer n.

2 Exercise 12.28 Supply the missing steps for obtaining the result given
in Eq. (12.229). [Note : You may use the result

Z ∞

0
dz

zn−1

(z + 1)m
= ß(n,m− n) (12.231)

where ß denotes the beta function. The result has been discussed in some detail in
§G.5 of Appendix G.]

2 Exercise 12.29 Redo the integrals for the choice

U =
t− ix · σ
p

t2 + r2
, (12.232)

which is in fact the inverse of the choice taken in Eq. (12.224). Show
that Eq. (12.230) is obtained with n = −1.

12.8.3 QCD vacuum

The integer n encountered in Eq. (12.230) is called the winding number or
the Pontryagin index of a function. We can gain an intuitive feeling for this
number by considering the 1-dimensional analogy of functions on a circle. We
will denote the co-ordinate on the circle by φ. Obviously, 0 ≤ φ < 2π, and
the point φ = 2π is identical to the point φ = 0. So, obviously the mappings
from the circle will have to have the property f(φ) = f(φ + 2π). Consider
then

f(φ) = einφ (12.233)
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where n is an integer. Obviously,
∫ 2π

0

dφ
f ′(φ)

f(φ)
= 2πin , (12.234)

where f ′(φ) is the derivative of f(φ). This equation is the 1-dimensional
analog of Eq. (12.230).

The integer n appearing in Eq. (12.233) can be interpreted as the number
of points on the circle that gives the same functional value. For example, with
n = 2, both φ = π/2 and φ = 3π/2 will have f(φ) = −1. With n = 3, the
same functional value is obtained for the points where φ equals π/3, π, or
5π/3. In this sense, the value of the function winds around n times on the
set of complex numbers of unit modulus: hence the name winding number.
This kind of visualization is not possible for 4-dimensional spacetime, but the
idea is still the same. Here we consider mapping from the boundary of the
4-dimensional spacetime, which is a 3-sphere, denoted in the mathematics
literature by S3. The functional values are SU(2) group elements (remember
we have been talking about the SU(2) gauge group for a while), which also
encompass an S3. Thus, the mappings are from S3 to S3, and are in perfect
analogy with the mappings from S1 to S1 (i.e., from a circle to the elements of
the U(1) gauge group) which were used in the 1-dimensional example. As we
have seen a little while ago, these mappings are characterized by an integer n,
and different values of n belong to different topological sectors of the theory.

We can digress a little bit here to explain the statement that the elements of an SU(2) group
encompass an S3. In the fundamental representation, the most general element of an SU(2) is
of the form given in Eq. (12.183), with |A|2+ |B|2 = 1. Writing A = a1+ia2 and B = b1+ib2,
the condition can be expressed in the form a21 + a22 + b21 + b22 = 1. This defines a 3-sphere in a
4-dimensional Euclidean space, just as the constraint x2 + y2 + z2 = 1 defines the surface of a
sphere (or 2-sphere, if one insists on a more general nomenclature) in a 3-dimensional space.

The group of QCD is SU(3), not SU(2) that we have been discussing so
far in the context of topological properties of gauge field configurations. For-
tunately, there is no need to get into a similar discussion about SU(3). There
is a theorem by Bott that says that the topological structure of gauge fields
of any SU(N) group (and many other groups) in 4-dimensional spacetime is
the same. In other words, different topological sectors can be characterized
by an integer. Gauge field configurations with n > 0 are called instantons,
and those with n < 0 are called anti-instantons.

The vacuum state can therefore have gauge fields in any of the topological
sectors. Let us call the state with gauge field configurations with winding
number n by

∣∣n
〉
. Clearly, such a state is not an eigenstate of the Hamiltonian:

instantons can change the winding number. The vacuum state is in fact given
by

|θ〉 =
∑

n

e−inθ |n〉 . (12.235)

The sum goes over all integers, from −∞ to +∞.
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There is a very simple and well-known analogy from non-relativistic quantum mechanics that
tells us that the vacuum state must be of the form given in Eq. (12.235). Consider the non-
relativistic Schrödinger equation for the energy eigenvalues:

d2

dx2
ψ + V (x)ψ = Eψ , (12.236)

which we have written for a 1-dimensional system in order not to deal with unnecessary notational
complication, and also absorbed factors of 2m/~2 into the definitions of V (x) and E for the
same reason. Now suppose we are dealing with a periodic potential, i.e., V (x) = V (x+ a) for
all x. This means that the Hamiltonian commutes with the translation operator Ta which is
defined by Taf(x) = f(x + a) for any function f(x). The solutions for the energy eigenstates
will then also be eigenstates of the operator Ta. It can then be shown that these solutions are
of the form

ψ(x) = eikxFk(x) , (12.237)

where Fk is some function which has the same periodicity as the potential, i.e., Fk(x) =
Fk(x+ a). Obviously, this implies

ψ(x+ a) = eikaψ(x) , (12.238)

so that the probability is the same at x and x+ a for any value of x. These are usually called
Bloch solutions in the parlance of condensed matter physics, and correspond to wavefunctions
of electrons in a lattice.

In Eq. (12.235), we found that the vacuum state is characterized by a
parameter θ. This is truly an eigenstate of the Hamiltonian because a

∣∣θ
〉

state
cannot evolve into another state which has a different value of the parameter.
To see this, consider the matrix element

〈
θ′
∣∣e−iHt

∣∣θ
〉
.

〈
θ′
∣∣e−iHt

∣∣ θ
〉

=
∑

n,n′

ei(n′θ′−nθ)
〈
n′ ∣∣e−iHt

∣∣n
〉

=
∑

n,k

ein(θ′−θ)eikθ′ 〈
n+ k

∣∣e−iHt
∣∣n
〉
, (12.239)

replacing n′ by n + k in the last step. The matrix element between the two
states would depend only on the difference between the winding numbers of
the states, so we can write

〈
θ′
∣∣e−iHt

∣∣ θ
〉

=
∑

n,k

ein(θ′−θ)eikθ′ 〈
k
∣∣e−iHt

∣∣ 0
〉

= δ(θ′ − θ)
∑

k

eikθ
〈
k
∣∣e−iHt

∣∣ 0
〉
, (12.240)

performing the sum over n. This shows that the parameter θ is not changed by
time evolution, proving that the state

∣∣θ
〉

is an eigenstate of the Hamiltonian
for any value of θ.

The explicit factor of eikθ appearing in the expression above can be ab-
sorbed into the Lagrangian. For this, we write the matrix element of the
time-evolution operator,

〈
k
∣∣e−iHt

∣∣ 0
〉

=

∫
DΨ

∫
DΨ

∫
DGµ

a exp

(
i

∫
d4x LQCD

)
, (12.241)
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where the integral runs only over gauge configurations that have winding
numbers equal to zero at t = −∞ and equal to k at t = +∞. Using the
expression for the winding number in terms of the gauge fields,

k =
g2

32π2

∫
d4x F a†

µν F̃
µν
a (12.242)

that follows from Eq. (12.230), we can therefore write

eikθ
〈
k
∣∣e−iHt

∣∣ 0
〉

=

∫
DΨ

∫
DΨ

∫
DGµ

a

exp

(
i

∫
d4x

(
LQCD +

θg2

32π2
F a†

µν F̃
µν
a

))
. (12.243)

Thus θ is an additional parameter in the Lagrangian. The value of this param-
eter can be determined by experiments. So far there has been no measurement
of this parameter. There are only bounds, which imply that θ must be very
small. This bound will be discussed in Ch. 21.



Chapter 13

Structure of hadrons

In Ch. 10, our entire discussion revolved around the so-called static properties
of hadrons. We argued that such properties of low-lying hadrons can be
explained by assuming that the hadrons have quarks as their constituents.
In order to make the argument more convincing, we need to show that the
dynamical properties of hadrons can also be explained with the help of quarks.
This is what we want to do in this chapter.

Dynamical properties, as discussed in Ch. 1, are the characteristics shown
in various interactions. Thus, in this chapter, we analyze the phenomena of
various scattering processes involving hadrons. Remember that this does not
mean processes where the initial and the final states contain only hadrons.
Hadrons will be there, but there might be leptons as well. In fact, it is easier
to analyze a scattering of a lepton and a hadron, because in this case we need
to worry about the structure of only one of the initial state particles. That
is certainly easier than having two hadrons in the initial state, and having to
analyze two unknown structures at the same time.

13.1 Electron–proton elastic scattering

The most easily available stable lepton is the electron, and the most abundant
hadron is the proton. Thus, it is natural that we begin with the discussion
of their scattering. Since the electron does not have any strong interaction,
the dominant contribution to this process will come from a photon exchange
between the electron and the proton. The relevant diagram has been shown
in Fig. 13.1.

The diagram is the same as the diagram for muon–antimuon production,
Fig. 5.6 (p 132), or, more precisely, to the diagram of electron-muon elastic
scattering. The only difference is that the proton, unlike the muon, is not a
fundamental particle. Hence we cannot use the simple Dirac vertex for the
proton. To remind us of this, we have drawn the proton lines with a thicker
pen in the figure.

385
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e
− (k

)

e −
(k ′)

p(p)

p(
p
′ )

Figure 13.1: Diagram for electron–proton elastic scattering at the lowest order in
perturbation theory. We used thick lines for the proton to remind us that it is not an
elementary particle.

The amplitude of the process can be written in the form

iM =
[
u(k′)ieγµu(k)

]−igµν

q2

[
u(p′)(−ieΓν)u(p)

]
, (13.1)

where eΓν is the electromagnetic vertex function of the proton, and qµ is the
4-momentum carried by the photon. Note that we have used the same symbol
for the spinors pertaining to the proton and to the electron field. They can
be distinguished only by the momenta associated with them:

M = −e
2

q2

[
u(k′)γµu(k)

][
u(p′)Γµu(p)

]
. (13.2)

This gives

|M |2 =
e4

q4
ℓµνhµν , (13.3)

where ℓµν and hµν come respectively from the bilinears involving the electron
and the proton spinors, after averaging over initial spins and summing over
final spins. Evaluation of ℓµν is straightforward, and the result is

ℓµν =
1

2
Tr
(

(k/+m)γν(k/′ +m)γµ
)

= 2
(
kµk′ν + kνk′µ +

1

2
q2gµν

)
.(13.4)

where m is the electron mass, and

q = k − k′ (13.5)

is the momentum carried by the internal photon line, a relation which ensures
that q2 = 2(m2 − k · k′) that has been used in the evaluation of ℓµν .

For the part involving the proton spinors, we obtain

hµν =
1

2
Tr
(

(p/+M)Γ‡
ν(p/′ +M)Γµ

)
, (13.6)
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where M is the mass of the proton, and the notation of double dagger was
introduced in Eq. (5.64, p 127). In order to proceed, we need to know what
Γµ is. For this, we take a hint from the discussion of form factors in §5.7.1.
The electromagnetic current is, after all, conserved. We showed that the
most general form of the matrix element subject to this condition contains
four form factors. Later, in §6.9.3, we showed that two of these form factors
violate parity. With pure QED interactions, parity will not be violated, so we
can write

Γµ = F1(q2)γµ − F2(q2)iσµνq
ν . (13.7)

As explained in §5.7.1, F1(q2) and F2(q2) denote the charge form factor and
the anomalous magnetic moment form factor of the proton. [Note the appar-
ent sign difference of the F2 term between Eq. (5.121, p 140) and this equation,
which has been caused by the fact that in this case, p − p′ = −q because of
our choice of notation in Eq. (13.5).] Since the expression appears sandwiched
between spinors, we can use Gordon identity to rewrite it as

Γµ =
(
F1(q2) + 2MF2(q2)

)
γµ − (p+ p′)µF2(q2) . (13.8)

Putting this in, we obtain

hµν = (−gµν +
qµqν
q2

)H1 + (pµ −
ν

q2
qµ)(pν −

ν

q2
qν)

H2

M2
, (13.9)

where

ν = p · q , (13.10)

and both H1 and H2 are functions of q2:

H1 = −q2(F1 + 2MF2)2 , (13.11a)

H2 = 4M2(F 2
1 − q2F 2

2 ) . (13.11b)

These can be called the form factors that appear in electron–proton elastic
scattering.

It is to be noted that, since p′ = p+q, by squaring both sides we obtain 2p·
q = −q2, which means that the ratio ν/q2 appearing in Eq. (13.9) could have
been written simply as − 1

2 . But we keep ν with a view to future applications,
and never use the value of ν/q2 in what follows. Moreover, keeping ν explicitly
in the expression for hµν , it is easy to see that

qµhµν = 0 , qνhµν = 0 , (13.12)

a property that is a consequence of the fact that qµΓµ vanishes between the
spinors, as was argued in §5.7.
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Using the expressions in Eqs. (13.4) and (13.9), we obtain

ℓµνhµν = (4kµkν + q2gµν)hµν

= −(4m2 + 2q2)H1 +
{

(2k · p− ν)2 + (q2M2 − ν2)
}H2

M2
, (13.13)

where we have used kinematical relations like

q2 = 2k · q = −2k′ · q = 2m2 − 2k · k′ , (13.14)

which follow from Eq. (13.5).
So far in the discussion, we did not assume any particular frame. From

now on, let us specialize to the fixed target frame of the proton, i.e., in the
frame in which the initial proton is at rest. In this frame,

ν = p · (k − k′) = M(E − E′) , (13.15)

where E and E′ are the energies of the incoming and the outgoing electron.
Thus, in terms of the parameters defined in this frame, we obtain

ℓµνhµν = −
(

4m2 + 2q2
)
H1 +

(
4EE′ + q2

)
H2 . (13.16)

We now further assume that the energies involved are much higher than
the electron mass, so that the electron mass can be ignored. In that case, if θ
is the angle between k and k′, we get

q2 = −2k · k′ = −2EE′(1− cos θ) , (13.17)

so that

ℓµνhµν = 4EE′
[
2H1 sin2 θ

2
+H2 cos2

θ

2

]
, (13.18)

and consequently

|M |2 =
4π2α2

EE′ sin4 θ
2

[
2H1 sin2 θ

2
+H2 cos2

θ

2

]
. (13.19)

Using the value of E′ from the relation in Eq. (4.226, p 109), the angular
distribution of the cross-section can now be written down directly by using
Eq. (4.225, p 109). In the notation used here, the expression would be

dσ

dΩ
=

α2

16ME2(M + E − E cos θ)

[
2H1 sin2 θ

2 +H2 cos2 θ
2

sin4 θ
2

]
. (13.20)

As an aside, we can also discuss the cross-section of the process e−e+ → pp.
The problem is similar to that of the muon pair production discussed in §5.4.2,
except that for the electromagnetic vertex of the proton, we should use the
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vertex function given in Eq. (13.7). The Feynman amplitude will therefore be
given by

M =
e2

s

[
vp2

γµup1

][
up′

1

(
F1γµ − iF2σµνq

ν
)
vp′

2

]
, (13.21)

instead of the simpler expression given in Eq. (5.87, p 132). Performing the
calculations in a straightforward manner, one obtains

σ =
4πα2

3s

√
1− 4M2

s

(
G2

M (s) +
2M2

s
G2

E(s)
)
, (13.22)

where M is the proton mass, and

GE(q2) = F1(q2) + q2F2(q2) ,

GM (q2) = F1(q2) + 2MF2(q2) . (13.23)

2 Exercise 13.1 Verify Eq. (13.22).

13.2 Deep inelastic scattering

When energies are high, electron–proton scattering will not remain elastic.
In the final state, one can obtain multiple hadrons. Let us call this reaction
figuratively as

e+ p→ e+X , (13.24)

where X can mean ‘anything that can be consistent with all conservation
laws’. This is schematically shown in Fig. 13.2. Such processes are often
called inclusive, because the final state includes everything ponderable. As
opposed to it, a scattering is called exclusive when we take only one or a few
specific outgoing channels into consideration.

The expression for the cross-section of an inclusive process would be given
in the form

dσ =
1

4
√

(k · p)2 −m2M2

d3k′

(2π)32E′ F , (13.25)

where

F =
∑

f

(
∏

a

d3p′a
(2π)32E′

a

)
(2π)4δ4(k + p− k′ −

∑

a

p′a)|Mfi|2 . (13.26)

This is basically the same as Eq. (4.178, p 99). The first factor on the right
hand side of Eq. (13.25) is the initial state factor. In the final state factors,
we have singled out one of the particles in the final state, viz., the electron,
and written its phase space factor explicitly in Eq. (13.25). The phase space
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e
− (k

)

e −
(k ′)

p(p)

Figure 13.2: Pictorial representation of electron–proton inelastic scattering. The blob
on the right vertex implies that it is not a fundamental vertex coming from a Lagrangian.
The number of outgoing lines at the proton vertex is symbolic: there can be any number
of particles there.

factors of all other particles, along with the 4-momentum conserving delta
function and the amplitude squared of the process, have been dumped into
something called F , as seen in Eq. (13.26). Note that this expression contains
a summation over all possibilities regarding other particles. The quantity
denoted by |Mfi|2 denotes the amplitude squared for a particular final state
f , summed over all possible final spins and polarizations, and averaged over
the initial ones.

If we want to analyze experimental data in the fixed target (FT) frame of
the proton, the initial state factor becomes 1/(4Mk). The phase space factor
for the electron can be written as

d3k′ = dΩ′dk′ k′2 = dΩ′dE′ E′k′ , (13.27)

using k′ dk′ = E′dE′, as shown in Eq. (4.162, p 96). Putting these into Eq.
(13.25), we can write the differential cross-section with respect to the electron
energy as well as the solid angle of scattering as

dσ

dΩ′dE′ =
1

(4π)3M

k′

k
F . (13.28)

Since inelastic scattering takes places at energies much higher than the proton
mass, we will neglect the electron mass and write E and E′ in places of k and
k′ in what follows.

Usually, when we write any derivative of order two or more, we write the order of the derivative
with the d that appears in the numerator, e.g., d2y/dx2. Here, we have deviated from this cus-
tom. Or, more precisely, we are defying it. Partly the reason is that the notation is superfluous:
we can determine the order of derivatives by counting the independent variables which appear
downstairs. Also, for cross-sections, the usual custom poses a huge problem. For a multi-particle
final state, there are too many variables on the right hand side, and it is cumbersome to keep
track of the order of the derivatives with respect to a number of them. For example, even in
a simple formula like the definition of cross-section in Eq. (13.25), if we want to attach the
order of smallness to the cross-section on the left hand side, it would be a different number for
different final states. So, whatever is the order of the derivative, we will write the numerator
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as dσ. In fact, that’s what we have done in many places earlier in the book where we denoted
the angular distribution of the cross-section by dσ/dΩ, knowing fully well that the differential
of the solid angle contains two independent angles.

How much can we say about F without being bothered about the prod-
ucts in the final state? From the discussion of §4.12.1, we know that F is a
Lorentz invariant quantity. It must contain a factor of e from the electron
vertex, and at least another factor of e from the vertex where the other end
of the photon line attaches. The photon propagator has a denominator of
q2. These two together provide a factor of e2/q2 = 4πα/q2 to the amplitude.
The contribution to the amplitude coming from the electron spinors and the
electron-photon vertex is the same as obtained for the elastic scattering, so
in the amplitude squared, we should have the tensor ℓµν , as defined in Eq.
(13.4). To contract its indices, we need another tensor Wµν . Let us normalize
this tensor Wµν such that

F = 4πM

(
4πα

q2

)2

ℓµνWµν , (13.29)

so that

dσ

dΩ′dE′ =
α2

q4
E′

E
ℓµνWµν . (13.30)

Now the question is, what more can we say about Wµν? Well, we know
that it should be composed of the 4-vectors p and q, since all vectors for the
outgoing particles have been integrated over. Further, since the electromag-
netic current is conserved, it should obey the relations

qµWµν = 0 , qνWµν = 0 . (13.31)

The most general tensor that satisfies these conditions is of the form

Wµν =
(
− gµν +

qµqν
q2

)
W1 +

(
pµ −

p · q
q2

qµ)(pν −
p · q
q2

qν

)W2

M2

+iεµνλρp
λqρ W3

M2
. (13.32)

Here, W1, W2 and W3 are Lorentz invariant form factors. Or, in this case,
it is better to call them structure functions because they tell us something
about the structure of the proton, as we will see presently. We have put in
inverse powers of the proton mass with the last two terms so that all three
structure functions have the same dimensions.

2 Exercise 13.2 What are the mass dimensions of the structure func-
tions H1,H2, and of the functions W1,W2?

Since parity is conserved in electromagnetic interactions, the form factor
involving the Levi-Civita symbol must be zero. In any case, it does not
contribute to the cross-section since the leptonic tensor is symmetric in the
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two vector indices. The other two structure functions are both non-zero in
general. And notice that, with only these two structure functions, the form of
the hadronic tensor is exactly the same as that encountered in the electron–
proton elastic scattering in §13.1. In performing the contraction ℓµνWµν , we
can use our experience from the elastic scattering case. The only difference
is that in the present case, p · q and q2 are unrelated, whereas in the case of
elastic scattering they obeyed the relation p · q = − 1

2q
2. But we have never

used this special relation for performing the contraction in the case of elastic
scattering. So we can use the analogy with Eq. (13.18) to write

ℓµνWµν = 4EE′
[
2W1 sin2 θ

2
+W2 cos2

θ

2

]
, (13.33)

Putting this result into Eq. (13.30), we obtain

dσ

dΩ′dE′ =
α2

4E2 sin4 θ
2

[
2W1 sin2 θ

2
+W2 cos2

θ

2

]
. (13.34)

At this point, it is worthwhile to make a comparison between the structure
functions W1, W2 and the form factors H1, H2 of elastic scattering used in
§13.1. As said earlier, W1 and W2 are Lorentz invariants which depend on the
4-vectors p and q. Lorentz invariant combinations from these two 4-vectors
are p2, q2 and p · q. Of these, p2 = M2, so it is not a variable. Thus, W1 and
W2 are in general functions of both q2 and p · q. Of the two, q2 is necessarily
negative, so it is convenient to define the positive variable

Q
2 ≡ −q2 = −qµqµ . (13.35)

2 Exercise 13.3 Argue that q2 < 0 for the process under consideration.

The functional dependence of the structure functions can then be summarized
by writing

W1,2 = W1,2(Q
2
, ν) , (13.36)

where ν = p · q as defined previously. On the other hand, the form factors
H1, H2 are functions of Q

2
only, since p · q = 1

2Q
2

for elastic scattering. This
fact can be made explicit if we try to construct the quantity F , defined in Eq.
(13.25), for the case of elastic scattering. From the expression in Eq. (13.26),
it is clear that for elastic scattering, F takes the value

Fel =

∫
d3p′

(2π)32p′0
(2π)4δ4(k + p− k′ − p′)|M |2

=

∫
d4p′

(2π3)
δ(p′2 −M2)Θ(p′0)(2π)4δ4(q + p− p′)|M |2 , (13.37)

using Eq. (4.158, p 96). Performing the integration over the 4-momentum p′

now, we obtain

Fel = 2πδ
(

(p+ q)2 −M2
)

Θ(p0 + q0)× e4

q4
ℓµνhµν , (13.38)
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using the square of the amplitude from Eq. (13.3). Comparing this with the
general expression for F in Eq. (13.29), we find that for elastic scattering,
Wµν is related to hµν :

W (el)
µν =

1

4M
δ(ν − 1

2
Q

2
)hµν . (13.39)

The delta function present here explicitly shows that the form factors appear-
ing in hµν can be taken as functions of either Q

2
or ν. Note that we have

omitted the step function in this expression. The reason is that it is really
not necessary. Once we have taken all other particles on-shell and imposed
4-momentum conservation, the proton can only gain in energy, and therefore
the energy of the scattered proton has to be positive.

In terms of the form factors F1 and F2 defined in Eq. (13.7), we can write
Eq. (13.39) as:

W
(el)
1 =

ν

2M
(F1 + 2MF2)2δ(ν − 1

2
Q

2
) ,

W
(el)
2 = M(F 2

1 + Q
2
F 2

2 )δ(ν − 1

2
Q

2
) . (13.40)

Further, consider what would happen if the electron were scattering off some
pointlike particle. Then F2 would be negligible, being proportional to the
fine-structure constant α, as shown in §5.7.4. Barring O (α) corrections, F1

is the electric charge of the particle, which would be 1 for the proton. So we
could write

W
(pl)
1 =

1

2M
δ(1 − Q

2

2ν
) ,

νW
(pl)
2 = Mδ(1− Q

2

2ν
) , (13.41)

where pl in the superscript stands for pointlike. Note that on the right hand
sides of these two equations, Q

2
and ν appear exclusively in the combination

Q
2
/2ν. This fact will be very important for our subsequent discussion.

13.3 Structure functions and charge distribu-

tion

How does a structure function carry information about an object? To obtain
a general idea, let us consider an experiment where an electron is scattered
off an extended object with a static charge distribution given by eρ(x) in a
certain frame. The electrostatic potential ϕ(x) will be related to the charge
distribution by the Poisson equation:

∇
2ϕ(x) = −eρ(x) . (13.42)
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The electron, which is used as the probe in this experiment, will interact with
this charge distribution through the interaction Lagrangian

Lint = eψγµψA
µ = eψγ0ψϕ , (13.43)

since for the static charge distribution, A = 0. The Feynman amplitude for
the transition coming from this interaction would be

M = e
[
u(k′)γ0u(k)

]
ϕ(q) , (13.44)

where q = k−k′, as defined in Eq. (13.5). Here, ϕ(q) is the Fourier transform
of ϕ(x). Using the Poisson equation, Eq. (13.42), we can write

ϕ(q) =
e

q2
F (q) , (13.45)

where F (q) is the Fourier transform of the charge distribution:

F (q) =

∫
d3x eiq·xρ(x) . (13.46)

Putting Eq. (13.45) into Eq. (13.44), we obtain

M =
e2

q2

[
u(k′)γ0u(k)

]
F (q) . (13.47)

In the expression for cross-section, we will have to used the absolute square
of this amplitude, which will contain |F (q)|2. If we were dealing with a point
charge, equal to the charge of the proton, located at a point x = a, we would
have used ρ(x) = δ3(x − a), which would have given |F (q)|2 = 1. So we
obtain the result

dσ = |F (q)|2
(
dσ
)

pl
, (13.48)

where the subscripted letters pl stand for pointlike. The differential of the
cross-section, denoted by dσ, may or may not contain the differentials of
all possible kinematical variables. As long as we do not integrate over the
kinematical variables that occur in q, the result is valid.

Let us summarize the lesson. If we measure the differential cross-section
of scattering between a point particle (e.g., the electron) hitting a target, the
proportional deviation from the result expected for a pointlike target gives us
the Fourier transform of the charge distribution in the target.

13.4 Scaling

It is now clear that the Lorentz invariant structure functions W1 and W2

contain information about the structure of the proton. In order to extract
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this body of information, it is useful to use a different set of independent
kinematic parameters. We define a few such variables, paying no attention at
this stage whether they are independent:

x =
Q

2

2p · q =
Q

2

2ν
,

y =
p · q
p · k . (13.49)

The first one is often called Bjorken-x. Note that for the case of elastic
scattering, its value would be 1. The second one, y, has an easy interpretation
in the FT frame: it is (E−E′)/E, i.e., the fractional energy loss of the electron.
Obviously, the kinematical range of this parameter is given by

0 ≤ y ≤ 1 . (13.50)

As for the variable x, we first note that it must be positive since both its
numerator and its denominator are positive. Moreover, note that

(p+ q)2 = M2 + 2p · q −Q
2
. (13.51)

The quantity on the left hand side, the invariant mass squared of the hadronic
part of the final state, cannot be smaller than M2, which is the value obtained
for elastic scattering. Thus we find that the variable x also has the same range
for a general scattering:

0 ≤ x ≤ 1 . (13.52)

An interpretation of this variable will be given in §13.5. As we will see, this
holds the key to the goal that we are after, viz., understanding the structure
of hadrons.

2 Exercise 13.4 Show that, in the deep inelastic region where the
masses of the incoming particles and the outgoing electron can be
neglected, the invariant variables x and y can be written in terms of
the Mandelstam variables as

x = − t

s+ u
, y =

s+ u

s
. (13.53)

[Note : Although this is not a 2-to-2 scattering, the Mandelstam variables can be
defined through the incoming electron and proton and the outgoing electron.]

Earlier in Eq. (13.34), we expressed the differential cross-section for the
inelastic scattering with respect to the energy and direction of the final elec-
tron in the FT frame. Let us now transform the result in terms of variations
with respect to the Lorentz invariant variables x and y. As a first step, we
integrate Eq. (13.34) over the azimuthal angle and write

dσ

d(cos θ)dE′ =
πα2

2E2 sin4 θ
2

[
2W1 sin2 θ

2
+W2 cos2

θ

2

]
, (13.54)
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a relation that uses variables of the FT frame. The relation between the
variables (E′, θ) and (x, y) can be obtained by using Eqs. (13.10) and (13.17)
in the equations defining x and y. Using these, we obtain

dσ

dxdy
=

2πα2

xyME

(
yW̃1 +

[1− y
xy

− M

2E

]
W̃2

)
, (13.55)

where we have defined the new combinations

W̃1 = MW1 ,

W̃2 =
ν

M
W2 , (13.56)

which are both dimensionless structure functions. Both of these can be seen
as functions of the kinematical variables Q

2
and ν, or equivalently of x and

y.

Eq. (13.55) seems to be an expression of differential cross-section written entirely in terms of
Lorentz invariant quantities, except for the presence of E, which is the energy of the incoming
electron in the FT frame. However, this shortcoming can easily be fixed. Eq. (13.15) shows
that ν is equal to M(E−E′) in the FT frame. Thus, the maximum possible value of ν is ME,
and we can use this to replace E by νmax/M in Eq. (13.55) if we wish so.

2 Exercise 13.5 Show that

dE′ d(cos θ) =
My

1 − y
dx dy . (13.57)

Use this to derive Eq. (13.55) from Eq. (13.54).

A function of two variables is said to exhibit the property of scaling if it
depends only on one combination of the two variables. Experimentally, this
is exactly what is seen of the structure functions W̃1 and W̃2 when Q

2
is very

large. In particular, it is seen that in this kinematical region, the structure
functions W̃1 and W̃2 depend not on Q

2
and ν independently, but only on

their ratio, i.e., on the Bjorken-x variable. In other words, if one analyzes
scattering data at different sets of values of Q

2
and ν such that their ratio

is a constant, the deduced values for the structure functions would show no
variation at all. In mathematical notation, we can write

W̃1(Q
2
, ν)

Q
2≫M2

———−→ F1(x) ,

W̃2(Q
2
, ν)

Q
2≫M2

———−→ F2(x) . (13.58)

This scaling property of the structure functions is crucial in understanding
the structure of hadrons, as we will presently see.

13.5 Partons

At this point, let us recall Eq. (13.41) which says that if the electrons scatter

off pointlike particles, the structure functions W̃1 and W̃2 should depend only
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on the combination Q
2
/2ν, or the Bjorken-x. Scattering data then seem to

be telling us that, for large Q
2
, the electrons “see” pointlike particles in the

proton. The constituent parts of the proton, or of a hadron in general, were
given the name partons at the beginning, because there was no a priori reason
to believe that these were the same as the quarks introduced by Gell-Mann
and Zweig to explain the static properties of hadrons.

Let us assume that the partons are quarks, i.e., they are fermions with
some charge which is not necessarily equal to the proton charge. A proton
has more than one quark. Let us assume that a particular quark is carrying a
momentum fraction x′ of the whole proton, which means that its 4-momentum
is x′pµ. Since the quark is assumed to be pointlike at the energies in consid-
eration, we can easily write the cross-section of its elastic scattering with an
electron. The absolute square of the amplitude in this case would still be given
by an expression of the form given in Eq. (13.3), with ℓµν given by Eq. (13.4).
The difference occurs in other parts. First, since the quark is also pointlike,
the tensor hµν should now have a form similar to that of ℓµν , except that it
should involve the initial and the final quark momenta. Second, the electric
charge of the quark is not the same as that of the proton. If the charge is
eQ, we should have an extra factor of Q2 in the expression. In summary, we
would obtain

|M |2 =
Q2e4

q4
ℓµν × 2

(
x′pµp

′
ν + x′pνp

′
µ +

1

2
q2gµν

)
, (13.59)

where p′ is the 4-momentum of the final quark and q is defined, as before,
by Eq. (13.5). In the leptonic part, the electron mass can be neglected, as
announced before. The quark mass has been neglected as well, assuming the
quark to be sufficiently light.

Suppose we now put this expression into the formula for the scattering
cross-section. There will be an integration over the final quark momentum p′.
The integration measure can be written as

∫
d3p′

(2π)32p′0
· · · =

∫
d4p′

(2π)3
δ(p′2) · · · , (13.60)

where the dots denote the rest of the integrand. So, the differential cross-
section with respect to the final electron momentum will be given by

dσ =
1

4x′k · p
d3k′

(2π)32E′

∫
d4p′

(2π)3
δ(p′2)(2π)4δ4(xp+ q − p′)|M |2

=
1

4x′k · p
d3k′

(2π)22E′ δ
(

(x′p+ q)2
)
|M |2 . (13.61)

Let us now look at the remaining delta function. Ignoring the term x′2p2

compared to the magnitude of q2, we can write this part of the expression as

δ
(

2x′p · q −Q
2
)

=
1

2p · q δ(x
′ − x) =

x

Q
2 δ(x

′ − x) , (13.62)
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using the definition of x from Eq. (13.49). Note that this factor forces x′ to
be equal to x. And this, finally, is the physical interpretation of the variable
x that we had defined earlier: it is the momentum fraction carried by a quark
from which the electron scatters. In view of the delta function found above,
we will replace x′ by x everywhere else in the expression.

In a general frame, the phrase momentum fraction would be meaningless. A given quark in
a hadron can have momentum in any direction, not necessarily along the direction of motion
of the hadron. In particular, even if the 3-momentum of the hadron is zero, the quarks inside
the hadron can be moving. The statement about momentum fraction makes sense only in the
so-called infinite momentum frame, in which a hadron moves with a very large momentum.
Therefore, magnitudes of transverse momenta are negligible, and the quarks inside the hadron
can also be considered to be moving only in the direction of motion of the hadron. In this
frame, x is the fraction of hadronic momentum carried by a quark.

Putting things back into Eq. (13.61), we obtain

dσ

dE′dΩ′ =
2Q2α2

q4
1

MQ
2

E′

E
δ(x′ − x)ℓµν

(
xpµp

′
ν + xpνp

′
µ +

1

2
q2gµν

)
.

(13.63)

Comparing this with Eq. (13.30), we find that for electron-quark scattering,

Wµν =
Q2

MQ
2 δ(x

′ − x)
(
xpµp

′
ν + xpνp

′
µ +

1

2
q2gµν

)
. (13.64)

In order to extract the structure functions from this, we use p′ = xp + q to
note that

x(pµp
′
ν + pνp

′
µ) +

1

2
q2gµν = 2x2(pµ +

1

2x
qµ)(pν +

1

2x
qν)

+
1

2
q2
(
gµν −

qµqν
q2

)
. (13.65)

Looking back at the definition of the structure functions from Eq. (13.32), we
then identify

W1 =
Q2

2M
δ(x− x′) , (13.66a)

W2

M2
=

2Q2x2

MQ
2 δ(x− x

′) =
Q2x

Mν
δ(x− x′) . (13.66b)

Thus, the structure functions defined in Eq. (13.56) are given by

W̃1 =
1

2
Q2δ(x − x′) , (13.67a)

W̃2 = Q2xδ(x − x′) . (13.67b)

We thus obtain an important relation connecting the two structure functions:

W̃2(x,Q
2
) = 2xW̃1(x,Q

2
) . (13.68)
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This is called the Callan–Gross sum rule, and is obeyed very well by data
in the deep inelastic region, characterized by the relation Q

2 ≫ M2. Such
agreement shows that the electrons are indeed scattering off quarks inside
the proton, and these quark degrees of freedom show up in the deep inelastic
region. And since it is the scaling region where the structure functions have
the form given in Eq. (13.58), we can also write

F2(x) = 2xF1(x) . (13.69)

2 Exercise 13.6 The Callan–Gross sum rule is a consequence of spin-
1/2 nature of quarks. Show that if the quarks were spinless, one would
have obtained W1 = 0 instead of the expression shown in Eq. (13.66a).

13.6 Parton distribution functions

Eq. (13.63) gives the contribution of a single quark of charge eQ with a specific
value of the momentum fraction x to the differential cross-section of deep
inelastic electron–proton scattering. The proton does not contain just a single
quark. So, in order to obtain the structure function for the proton, we need
to sum over all kinds of partons that are present in the proton. Apart from
that, we also need to integrate over the momentum distribution of the quarks
inside the proton. If the probability density of finding the ith kind of quark
with a momentum fraction x′ within the proton is fi(x

′), then we should have

W̃2 =
∑

i

Q2
i

∫
dx′ xδ(x − x′)fi(x

′) =
∑

i

Q2
ixfi(x) , (13.70)

whereas the structure function W̃1 will be given by Eq. (13.68).
There is a summation over all different kinds of partons, and we can

now ask what different kinds should be taken into account. While discussing
isospin and flavor SU(3) symmetry, we mentioned that the proton contains
two up-quarks and one down-quark. So, to obtain the structure functions for
the proton, we need to add the contributions these two types of quarks. But
that is not all. All we have shown in Ch. 8 and Ch. 10 is that many of the
static properties of the proton can be explained by treating the proton as a
uud bound state. But it may be true that apart from these three quarks,
there are other particles in the proton which do not affect the properties we
have discussed before.

Indeed, such is the case with atoms. Their chemical properties come from
the outer shell electrons, or valence electrons, only. The inner shell electrons,
as well as the nucleus, are unexposed in chemical reactions. In the same
manner, we can think of the possibility that the two up quarks and single
down quark that determine the static properties of the proton are the valence
quarks . In addition, there can be any number of quarks, antiquarks and even
gluons, all of which play a part in the structure of the proton. These other
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ones, analogues of the inner shell electrons of an atom, are called, somewhat
figuratively, sea quarks or ocean quarks . The first name is more commonly
used, but we will use the second one here, because, while speaking, the first
one can easily be confused with c-quark, the short name for the charm quark.

In the proton or the neutron, we do not expect any charm quark, or the
even heavier quarks. The reason is that these quarks are heavier than the
nucleon. But the up, down, and strange quarks can exist in the proton, along
with their antiparticles. So, Eq. (13.70) can be written in the more explicit
form as

1

x
F

(ep)
2 (x) =

4

9

(
up(x) + ûp(x)

)

+
1

9

(
dp(x) + d̂p(x)

)
+

1

9

(
sp(x) + ŝp(x)

)
. (13.71)

We have made some changes in the notations in writing this equation. First,
on the left hand side, we have put parenthesized superscripts to identify the
initial states of the scattering process considered, in order to distinguish it
from data from other initial states that we will use very soon. Second, we
have discontinued the use of the notation fi that appears in Eq. (13.70).
Instead, we are using the first letter in the name of a quark to denote its
distribution function. And third, we have put a subscript p on all such dis-
tribution functions to remind us that these are the distributions obtained in
the proton.

There are a lot of functions in Eq. (13.71), and naively it seems that it
would be impossible to deduce the values of all of them. But we will show
now that under some reasonable assumptions, the functions can all be derived
from the data.

Data need not come only from electron–proton scattering. We can also
perform electron scattering off neutrons. There will be a similar set of form
factors for this scattering, and in the deep inelastic region, we will be able to
write

1

x
F

(en)
2 (x) =

4

9

(
un(x) + ûn(x)

)

+
1

9

(
dn(x) + d̂n(x)

)
+

1

9

(
sn(x) + ŝn(x)

)
. (13.72)

The number of functions seems to have proliferated further, but there is a
simplifying feature if we neglect all effects of isospin violation, which are
very tiny anyway. If isospin symmetry is considered to be exact, then the
u-quark distribution function in the proton should be the same as the d-
quark distribution function in the neutron, and vice versa. Also, the strange
quark and antiquark distribution functions should be the same in the proton
and the neutron. Thus we can write

up(x) = dn(x) ≡ u(x) ,

dp(x) = un(x) ≡ d(x) ,

sp(x) = sn(x) ≡ s(x) . (13.73)
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Figure 13.3: Schematic diagram to show how ocean quarks and gluons arise in a
baryon.

The functions u(x) and d(x) have some contribution coming from the va-
lence quarks and the rest from the ocean quarks. Let us separate these two
contributions and write

u(x) = uv(x) + uo(x) , (13.74)

and similarly for d(x). For the antiquarks of these two flavors, as well as
for the strange quarks and antiquarks, the entire contribution is from ocean
quarks.

Where do the ocean quarks come from? When thinking about the con-
stituents of a nucleon, we can start with the three valence quarks and nothing
else. However, we cannot ignore the fact that these quarks are interacting
in order that they can form a bound state. These interactions are QCD in-
teractions, whereby gluons are emitted from quarks, and such gluons make
quark-antiquark pairs in turn, and those pairs fuse to turn to gluons, and
so on. Strong interactions are flavor blind, so all flavors of quarks should be
equally produced in such processes unless they are kinematically disfavored.
We have disregarded the presence of charm and heavier quarks precisely for
such kinematical reasons, as explained earlier. But the up, down and strange
quarks are light, and if we disregard their masses all of them should have
equal proportions in the ocean. So we write

uo(x) = do(x) = û(x) = d̂(x) = s(x) = ŝ(x) ≡ S(x) . (13.75)

Eqs. (13.71) and (13.72) acquire much simpler-looking forms under these sim-
plifying assumptions, viz.:

1

x
F

(ep)
2 (x) =

1

9

(
4uv(x) + dv(x)

)
+

4

3
S(x) ,

1

x
F

(en)
2 (x) =

1

9

(
uv(x) + 4dv(x)

)
+

4

3
S(x) . (13.76)
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There are extra constraints on the distribution functions appearing here.
The number of valence quarks imply the relations

∫ 1

0

dx uv(x) = 2 ,

∫ 1

0

dx dv(x) = 1 , (13.77)

or equivalently,

∫ 1

0

dx
(
u(x)− û(x)

)
= 2 ,

∫ 1

0

dx
(
d(x) − d̂(x)

)
= 1 . (13.78)

2 Exercise 13.7 Verify, with the help of Eq. (13.75), that Eqs. (13.77)
and (13.78) are equivalent.

With the help of these constraints, the parton distribution functions can be
found from the analysis of electron–proton and electron–neutron scatterings.
The momentum fraction of the quarks and antiquarks in the proton, say, can
then be calculated as

ǫu ≡
∫ 1

0

dx x
(
u(x) + û(x)

)
(13.79)

and a similar expression for other flavors of quarks. The findings are surpris-
ing. They show that,

ǫu = 0.36 , ǫd = 0.18 . (13.80)

In other words, only 54% of a nucleon’s momentum comes from the u and
the d quarks and their antiparticles. Certainly, it is not possible that the s
quark carries the rest of the momentum. In fact, the s quark contribution
should be very small. So the inescapable conclusion is that the rest of the
momentum is carried by gluons, which are uncharged and therefore do not
contribute to electromagnetic scattering. The gluons, therefore, are the dom-
inant constituents of the proton and the neutron. If we use the word parton
to indicate the fundamental particles which are constituents of hadrons, then
it should mean quarks, antiquarks and gluons.

13.7 Parton distribution and cross-section

We now discuss the relation between parton distributions and cross-sections in
a different, although related, way. The electron–proton scattering, at the basic
level, must be the scattering of an electron with a parton inside the proton.
The parton can be a quark or an antiquark. Gluons do not scatter off electrons
at the tree-level, hence their effects are higher order. Analysis of electron-
quark scattering would be the same as that of electron-muon scattering, except
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that the quark charge would be different from the muon charge. For a quark
or antiquark of charge eQf , we can read the differential cross-section from Eq.
(12.54, p 337):

dσ

dt
=

2πα2Q2
f

s̆
2

s̆
2

+ ŭ
2

t
2 . (13.81)

Note that we are writing the differential cross-section in the Lorentz invariant
manner, something that was discussed in §4.13. Also note that we have added
a crescent sign ( ˘ ) on top of s and u, to indicate that these Mandelstam
variables pertain to the quark-level scattering process, and are different from
the corresponding Mandelstam variables for the electron–proton scattering
which will be denoted without the crescent signs. The variable t is however
the same whether we consider the quark-level scattering or the hadron-level
scattering, since it involves only the 4-momenta of the initial and final electron.
Now, the above formula for differential cross-section can be written as

dσ

dt
=

2πα2Q2
f

t2

(
1 +

ŭ

s̆

2
)

=
2πα2Q2

f

t2

[
1 + (1− y)2

]
, (13.82)

using the expression for the variable y given in Eq. (13.53) which can also be
written as

y =
s̆+ ŭ

s̆
(13.83)

in the deep inelastic region where the momentum of the initial quark is taken
to be xpµ where pµ is the proton momentum.

Eq. (13.82) gives the differential cross-section of electron scattering against
a single quark or antiquark with momentum xpµ. To obtain the differential
cross-section for the electron–proton scattering, we need to multiply by the
probability of finding that kind of fermion with momentum xpµ inside the
proton, and then integrating over x and summing over all such fermions, i.e.,
on all types of quarks and antiquarks. Thus,

dσ

dt

(
e(k)p(p)→ e(k′)X

)
=
∑

f

∫
dx ff (x)

dσ

dt

(
e(k)f(xp)→ e(k′)f

)

=
∑

f

∫
dx ff(x)

2πα2Q2
f

t2

[
1 + (1 − y)2

]
. (13.84)

Therefore,

dσ

dx dt
=
[∑

f

ff (x)Q2
f

]2πα2

t2

[
1 + (1− y)2

]
. (13.85)

It is more convenient to exchange t for the dimensionless quantity y on the
left hand side of this expression. From the definitions given in Eq. (13.49), we
obtain

t = q2 = −2p · qx = −2p · kxy = −sxy . (13.86)
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Evaluating the Jacobian for going from the variables (x, t) to (x, y), we obtain

dx dt = sx dx dy . (13.87)

So the differential cross-section can be written as

dσ

dx dy
=
[∑

f

xff (x)Q2
f

]2πα2s

t2

[
1 + (1 − y)2

]
. (13.88)

We have used the scaling arguments to assume that the parton distribution
function ff depends only on x and not on q2. Note that the y dependence of
the differential cross-section comes entirely from the scattering of individual
partons.

13.8 Fragmentation

In §12.4, we derived cross-sections of various processes involving quarks and
gluons in the initial and final states. In a real experiment, we cannot deal
with quarks and gluons directly because they are confined. We perform exper-
iments involving hadrons. However, we are beginning to see why the parton
level cross-sections are relevant. We can say that the description of any pro-
cess involving hadrons can be divided into three parts. First, we describe how
the hadrons are made of partons. This part is taken care of through the parton
distribution functions. The second part consists of the basic scattering pro-
cess occurring at the parton level. In this process, the final state also contains
partons. Once the partons are created, they start losing energy by emitting
gluons. When the energies of individual partons become small enough, close
to the scale ΛQCD, the strong coupling constant becomes large enough that
these partons can hadronize. This is the third part of the process, which again
cannot be described through perturbative QCD. Like the first part, here also
we need to use some functions that will bridge the partonic description and
the hadronic description. This bridging is done through what are called the
fragmentation functions .

In order to discuss the fragmentation functions, we can shift our attention
from deep inelastic scattering to e+e− collisions where there is no hadron
in the initial state and therefore no parton distribution function to worry
about. As described in §12.4.2, at the basic level e+e− → qq̂ is the lowest
order scattering process that involves strongly interacting particles in the
final state. The cross-section of this process would equal the inclusive cross-
section of e+e− → hadrons because the quark and the antiquark produced
must hadronize eventually. If we are not interested in the particular hadrons
produced, we need not get into the details of the hadronization process.

Things change if we are interested about some exclusive cross-section.
For example, suppose we are trying to estimate the e+e− cross-section into
a final state containing a particular hadron h. We can denote the process
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by e+e− → hX , where X stands for anything that is consistent with all
conservation laws, just as in the case of deep inelastic scattering. The cross-
section for this scattering can be written as

σ(e+e− → hX) =
∑

q

∫
dz σ(e+e− → qq̂)×

[
Dh

q (z) +Dh
bq (z)

]
,(13.89)

where Dh
q (z), for example, is the probability that the quark q and the debris

resulting from it end up producing the hadron h which carries a fraction z
of the momentum of the quark produced at the parton level. These are the
fragmentation functions . Momentum conservation would imply the constraint

∑

h

∫ 1

0

dz zDh
q (z) = 1 , (13.90)

implying that all momentum carried by the quark would finally be divided
into hadrons. There is another constraint, coming from the fact that each
quark-antiquark pair produced must finally end up in some hadron. This
constraint can be expressed as

∑

q

∫ 1

zh

dz
[
Dh

q (z) +Dh
bq (z)

]
= Nh , (13.91)

where Nh is the average number of hadrons h produced in the e+e− collision.
The lower limit of the integral, zh, corresponds to the threshold energy needed
to produce the hadron h, which is equal to 2mh/Q, where mh is the mass of
h and Q is the total e+e− energy in the CM frame, which means that the
quark and the antiquark are produced with energies 1

2Q each.

2 Exercise 13.8 The fragmentation functions are usually parametrized
in the form

Dh
q (z) = A(1 − z)n/z , (13.92)

where A and n are phenomenological parameters. Show that the lead-
ing growth of Nh depends logarithmically on Q:

Nh ∼ ln(Q/2mh) . (13.93)

13.9 Scale dependence of parton distribution

From their definitions, the form factors and consequently the parton distribu-
tion functions depend on two kinematical variables. As pointed out in §13.4,
these variables can be taken to be Q

2
and ν, or equivalently of x and y. We

can also take x and Q
2

as the two independent parameters. The advantage
of this choice is that x is the scaling parameter, whereas Q

2
has a simple

physical interpretation, viz., negative of the 4-momentum squared exchanged
in the process.
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Although the distribution functions discussed earlier were considered to be
functions of the Bjorken-x only, this is only an approximation. In reality, the
distribution functions depend on Q

2
, i.e., on the 4-momentum of the photon

that is used to probe them. In this section, we discuss the cause and nature
of this dependence.

Let us first try to understand the cause qualitatively. There are quarks in
a hadron, and there are gluons as well. If they had not interacted at all, their
momentum would not have changed, and the distribution functions would
not have changed either. But interactions are there, of course, and they lead
to a departure from this idyllic situation. For example, consider two quarks
interacting within a hadron. If the interaction is elastic, the total momenta
of the quarks do not change. However, it is possible that one of the quarks
emits a gluon in the interaction, i.e., the process is effectively qq → qqg. In
this case, some momentum and energy are transferred from the quarks to the
gluons. There can be other similar processes, resulting in momentum transfer
between different kinds of partons in a hadron. Since these processes are
energy dependent, the distribution functions depend on the energy scale.

Lately, we had been denoting the distribution functions by the letters de-
noting the flavors. We can continue doing so, i.e., denote the quark distribu-
tion functions by q and so on. The equations governing the scale dependence
of the distribution functions of quarks, antiquarks and gluons would then have
the following general forms:

dq(x,Q
2
)

d ln Q
2 =

α3

2π

∫ 1

x

dx′

x′

[
Pq→qg(

x

x′
)q(x′,Q2

) + Pg→qbq(
x

x′
)g(x′,Q2

)

]
,

(13.94a)

dq̂(x,Q
2
)

d ln Q
2 =

α3

2π

∫ 1

x

dx′

x′

[
Pq→qg(

x

x′
)q̂(x′,Q2

) + Pg→qbq(
x

x′
)g(x′,Q2

)

]
,

(13.94b)

dg(x,Q
2
)

d ln Q
2 =

α3

2π

∫ 1

x

dx′

x′

[
Pq→gq(

x

x′
)
∑

q

(
q(x′,Q2

) + q̂(x′,Q2
)
)

+ Pg→gg(
x

x′
) g(x′,Q2

)

]
. (13.94c)

These equations are called the DGLAP equations because they were proposed
and developed in three different papers: one by Dokshitzer, one by Gribov and
Lipatov, and another by Altarelli and Parisi. We now discuss the meanings
of different terms in this set of equations.

First of all, let us talk about the factor of α3 outside the integral sign in
each equation. This has to be there, because if α3 vanished, there would have
been no interactions and therefore no evolution of the distribution functions.
The numerical factor 1/(2π) appearing with α3 does not require an explana-
tion. It is just a convention: it could have been absorbed into the definition
of the factors P which appear within the integrals.
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The factors P are called splitting functions. They represent the proba-
bility of the kind of emission indicated in the subscripts. Thus, for example,
consider the first term on the right hand side of Eq. (13.94a). The factor
q(x′,Q2

) represents quark distribution function with momentum fraction x′.
If a quark with this momentum fraction emits a gluon, the momentum of the
quark would be reduced. This process would then contribute to the quark dis-
tribution q(x,Q

2
) for some x < x′. Thus, only values of x′ > x can contribute,

a fact that is reflected in the limits of the integration. The splitting function,
along with the factor α3/(2π), represents the probability that a quark would
indeed emit a gluon, i.e., the ratio of the cross-sections of the process with
a gluon emission and the process without. Similarly, a gluon splitting into
a quark-antiquark pair contributes to the distribution functions of both the
quark and the antiquark, represented by the splitting functions Pg→qbq in the
first two equations. The contribution represented by the first term on the
right hand side of Eq. (13.94b) comes really from an antiquark splitting out
a gluon, and hence should contain P

bq→bqg. However, because of the invariance
of strong interactions under charge conjugation, we must have

P
bq→bqg = Pq→qg , (13.95)

which is why we do not use an extra bit of notation for this splitting function.
The same splitting function contributes to the scale dependence of the gluon
distribution function as well. The last term in Eq. (13.94c) represents the
contribution coming from one gluon splitting into two gluons through the
cubic vertex that occurs in Yang-Mills theories.

The scale dependence of the parton distribution functions has been de-
termined by various groups. In Fig. 13.4, we show the typical results for two
different scales. One clearly sees that the higher the scale, the ocean quarks
and gluons become more and more important.

From this comment, we now revisit one question that was left unanswered
in Ch. 9. The LHC is a machine with two colliding proton-proton beams, as
opposed to other modern collider machines where particle-antiparticle beams
are used. The reason for this is the very high energy of the beams. At such
high energies, the gluon component of the proton is quite high, so they play
a dominant role. This component is the same in a proton and an antiproton.
Therefore, there is not much motivation of creating an antiproton beam to
collide with a proton beam: two proton beams serve the same purpose, roughly
speaking.

13.10 Quark masses

We talked about quark masses in Ch. 10. The precise values of the masses were
not necessary in order to derive the mass relations between various hadrons
given in §10.7. But the magnetic moment formulas given in §10.8 imply some
values of the quark masses. For example, consider Eqs. (10.114) and (10.115),
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Figure 13.4: Parton distribution functions for the proton at two different scales.
[From A. D. Martin, W. J. Stirling, R. S. Thorne, G. Watt: Eur. Phys. J. C63

(2009) 189; with kind permission from the authors and from Springer Science &
Business Media B.V.]

which give magnetic moments of the proton and the neutron in terms of
the quark magnetic moments. Inverting these two equations and using the
measured values of µp and µn, we obtain

µu =
4

5
µp +

1

5
µn = 1.85µN ,

µd =
1

5
µp +

4

5
µn = −0.97µN , (13.96)

where µN is the nuclear magneton. If the magnetic moment of quarks is given
by the standard formula for the magnetic moment of a fermion involving its
charge and mass, we obtain the following estimates for the quark masses:

md = 322 MeV , mu = 338 MeV . (13.97)

If these were really the masses of the up- and down- quarks, we could not have
neglected the quark masses in the analysis of deep inelastic scattering of §13.5.
Fortunately, there is no reason to believe that these are mass parameters that
the quark fields should have in the basic Lagrangian. The reason is that the
quarks in a hadron are strongly bound, and the valence quarks are not the
only constituents of a hadron. There are ocean quarks, as well as a sizable
contingent of gluons. The valence quarks live in this ocean. Whenever a
particle is in a non-trivial background of other particles, coherent interactions
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with the background induce an inertia on the particle, so that its effective
mass becomes different from its actual mass. For example, when light passes
through a transparent medium, interactions with the particles comprising the
medium assign an effective mass to the photon, and as a result light does
not travel with the speed that it has in the vacuum. Similarly, the masses
quoted in Eq. (13.97) should be seen as the effective masses of the valence
quarks while they are inside a nucleon. These values of the masses are called
constituent quark masses .

In contrast, the mass parameters appearing in the Lagrangian are called
current quark masses. These masses are lower than the constituent quark
masses. For up and down quarks which are the main constituents of the nu-
cleons, agreement of experimental data with the analysis carried out assuming
massless quarks indicates that these two quark masses must be negligible.

There is however no way to measure these masses directly, because the
quarks are always confined in hadrons. One has to take recourse to indirect
means of estimating the masses. In Ch. 18, we will describe some techniques
that achieve this goal, and the result is

mu = 1 to 3 MeV , md = 3 to 7 MeV . (13.98)

Lattice calculations support these estimates.
In §10.7, we argued that the strange quark must be heavier than the up-

and the down- quarks, which we summarized in Eq. (10.77, p 279). Naively the
difference seems to be about 100 MeV, since the mass differences between two
adjacent rows in a flavor SU(3) diagram is roughly of that amount. Analysis
shows that

ms = 95± 5 MeV . (13.99)

These three quarks are therefore much lighter than the nucleon, and in fact
lighter than ΛQCD. The other quarks, starting with the charm, are heavier.
We will discuss these heavy quarks in Ch. 20.

13.11 Glueballs

If gluons are present in hadrons, as indicated from the discussion of §13.6, is
it possible that there are hadrons which are composed of gluons only? After
all, gluons have cubic and quartic self couplings, so they interact with one
another. Can they not create bound states through such interactions? There
is no reason why they would not be able to bind, and a hadron formed with
gluons, without any valence quarks, would be called a glueball .

Lattice calculations indicate that such bound states should exist, and the
lowest glueball state should have a mass of less than 2 GeV. However, No
glueball has been experimentally observed yet. They would be hard to observe
because they would mix with meson states.



Chapter 14

Fermi theory of weak interactions

Weak interactions, as the name implies, are very weak compared to the strong
and electromagnetic interactions. As a rough estimate of the strengths of
different interactions, let us compare the strong, electromagnetic and weak
forces between two protons separated by a distance of 1 fm, or 10−13 cm. If
the strong force between them defines our unit of force, the electromagnetic
force will be of order 10−2, and the weak force will be about 10−14 in this
unit.

And yet, weak interactions are very important. The reason is that, al-
though they are weak, they can give rise to many kinds of physical phenomena
which strong and electromagnetic interaction cannot. Take, for example, par-
ity violation. We have discussed before that both strong and electromagnetic
interactions conserve parity. But parity is violated in particle interactions, and
weak interactions must be responsible for it. There are many other phenom-
ena which are possible only because of weak interactions. We will encounter
many examples of this kind as we discuss weak interactions in this chapter
and a few subsequent ones.

14.1 Four-fermion interaction

Fermi was motivated by nuclear beta decays, which are processes in which a
nucleus with atomic number Z transforms into another nucleus with atomic
number Z + 1, emitting an electron and an antineutrino. At the nucleon
level, this implies the decay of a neutron into a proton, an electron and an
antineutrino:

n→ p+ e− + ν̂ . (14.1)

Obviously, it involves four fermions. Fermi wanted to explain the process by
an interaction where all four fermion fields interact at a point. In electrody-
namics, the current between fermions interacts with the photon field. Here,
Fermi assumed that the current between two fermions interacts with the cur-
rent between the other two fermions: a current-current interaction. So he

410
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wrote the interaction as

Lint = −G
[
ψ(p)γ

µψ(n)

][
ψ(e)γµψ(ν)

]
, (14.2)

where ψ(n) denotes the neutron field, ψ(p) the proton field, and so on. The
neutrino field operator creates an antineutrino, the conjugated electron field
operator creates an electron, and thus the process of Eq. (14.1) becomes pos-
sible in the first order perturbation using this interaction. Fermi had a Dirac
matrix sandwiched between each pair of fermion fields because the result was
a vector bilinear, and it was already known that such bilinears play a big role
in electromagnetic interactions. The object G appearing in Eq. (14.2) is a
constant.

2 Exercise 14.1 � What is the mass dimension of the coupling constant
appearing in Eq. (14.2)?

2 Exercise 14.2 The interaction written in Eq. (14.2) is of course not
hermitian. We said in Ch. 4 that Lagrangians must be hermitian. It
means that we need to add the hermitian conjugate of the interaction
shown. Construct the conjugate and name one process which can be
described by the conjugate term.

It was soon realized that there is a host of other phenomena for which the
same kind of interaction might be responsible. Of course there are processes
like

n+ ν→ p+ e , (14.3)

which can occur from the same terms that are responsible for beta decay.
But there can be more. For example, the muon decays into an electron, a
muon-type neutrino and an electron-type antineutrino: again a process in
which four fermions participate. Neutrinos can scatter off electrons, a process
which has the neutrino and the electron in both initial and final states, again
making a total of four. Thus, the belief grew that Fermi-type interactions,
or four-fermion interactions, will be able to explain all phenomena involving
weak interactions: one only needs different fields assembled in an interaction
like that in Eq. (14.2) to describe different processes.

For the nuclear beta decay itself though, Fermi’s original idea proved in-
sufficient. It was clearly seen that in some beta decay processes, the spin of
the nucleus changes. Fermi took the vector current between two nuclei, in
analogy with vector currents that occur in QED. Since the nuclei are quite
non-relativistic in beta decay processes, we can consider the non-relativistic
limit of the vector bilinear. Such NR limits have been worked out in Ap-
pendix F, and from the result given in Eqs. (F.142) and (F.143), we see that
such interactions cannot change the spin of a nucleus. On the other hand, if
one had used axial vector bilinears in writing the interaction, it could have
induced spin change, since in the NR limit such bilinears reduce to spin, as
shown in Eq. (F.144, p 755).
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So, beta decay transitions were divided into two classes. In one, the emitted electron and
antineutrino, taken together, is in a spin-0 combination. Such transitions are called Fermi
transitions. The other kind, where the electron and the antineutrino are in a spin-1 combination,
is termed Gamow–Teller transition. In the so-called allowed approximation where the physical
dimensions of the nucleus is completely neglected with respect to the wavelength of the emitted
leptons, the leptons do not have any orbital angular momentum. So, in a Fermi transition, the
spin of the nucleus does not change. On the other hand, for a Gamow–Teller transition, the
nuclear spin can change: ∆Jnuc = 0,±1. So, if nuclear spin changes, it has to be a Gamow–
Teller transition. On the other hand, if both initial and final nuclear spins are zero, it has to
be a Fermi transition. Other cases, where initial and final nuclear spins are equal but non-zero,
can be mixed transitions.

2 Exercise 14.3 In a typical beta decay process, the total energy carried
by the emitted leptons is of the order of a few MeV. Estimate the
wavelength of the leptons and show that the allowed approximation
is a very good one.

Faced with the task of accommodating spin-changing nuclear transitions,
it was realized that Fermi over-specified the rules of the game while writing
an interaction term like that in Eq. (14.2). All he needed was two bilinears of
the same type so that they can give a Lorentz scalar upon contraction. So,
instead of the product of two vector currents which we can succinctly denote
by [VV], one could also use [SS], [TT], [AA] or [PP] interactions, using the
notation for different kind of bilinears that was introduced in Eq. (4.93, p 79).
Among these, the axial vector interaction between two nucleons would produce
a spin-flip in the non-relativistic limit, as is suggested by the non-relativistic
reduction of different fermion bilinears given in §F.3.3 of Appendix F. Thus,
one should also include [AA] interactions in order to accommodate Gamow–
Teller transitions.

About a quarter of a century after Fermi’s 1933 paper, when parity vio-
lation was discovered, it was realized that Fermi’s original interaction cannot
give parity violation. Neither can an [AA] kind of interaction. One must have
polar and axial vector currents together in a bilinear in order to have parity
violation, as was indicated in the discussion of §6.2.5. Therefore, to accom-
modate parity violating effects, Fermi’s interaction involving four fermionic
fields was modified to include [VA] and [AV] interactions as well:

Lint = −G
[
ψ1γ

µ(a+ a′γ5)ψ2

][
ψ3γµ(b+ b′γ5)ψ4

]
, (14.4)

where we have denoted the fermion fields by ψ1 through ψ4 in order to make
the argument more general than just beta decay. In a sense this is comforting,
because it contains both Fermi type and Gamow–Teller type interactions. If
the nucleon current is represented by the first bilinear, Fermi-type interac-
tion can be obtained with a′ = 0 and Gamow–Teller-type interaction can be
obtained with a = 0.

But it also makes matters uglier, because instead of just one constant that
appears in Eq. (14.2), we now seem to need a large number of constants to
describe an interaction. And the question is how to know these constants
a, a′, b, b′ in general. We can always set one of them to have any value we
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want, say 1, by adjusting the definition of the overall coupling G. But that
might require a different coupling G for each process that we want to explain
through four-fermion interactions. Alternatively, we can stick to one universal
G for all processes, and adjust the quantities a, a′, b, b′ to account for different
processes. Either way, we seem to have four constants in Eq. (14.4) for any
process that we want to describe.

If any of the fields is a neutrino field, there is a way of telling the relative
magnitudes of the polar and axial vector currents in that bilinear. This comes
from an experimental input which we discuss in §14.2. If we discuss a process
where no neutrinos are involved, we have no such guideline.

We face another burning question when we look at an interaction like that
in Eq. (14.4). Suppose from experiments we know that we need an interaction
that will involve the creation operators for the particles which are quanta of
the fields ψ1 and ψ3 and annihilation operators for the particles of ψ2 and
ψ4. But even then, who told us that ψ1 and ψ2 will be combined into one
bilinear and ψ3, ψ4 in the other? Why don’t we have a bilinear like [ψ1 · · ·ψ4],
multiplying another of the form [ψ2 · · ·ψ3]? The answer to this question will
be discussed in §14.3.

14.2 Helicity and chirality

14.2.1 Helicity

The Hamiltonian for a free Dirac particle was given in Eq. (4.42, p 69). Using
the gamma matrices, we can write it as

H = γ0(γipi +m) . (14.5)

From general quantum mechanical argument, we know that operators that
commute with the Hamiltonian of a system represent conserved quantities for
the system. Let us ask what are the kinematical operators that commute with
this Hamiltonian.

The momentum operator is an obvious candidate. Any component of
the momentum operator commutes with the Hamiltonian, and therefore the
momentum of a free particle is conserved.

Let us explore angular momentum operators as well. A free particle cannot
have orbital angular momentum. The spin angular momentum comes from
the matrix representation of the Lorentz group, as described in §3.5. For
Dirac fields, Eq. (4.73, p 76) tells us that the matrices 1

2σµν constitute the
representation of the generators. A matrix for which both indices of σµν

are spatial would represent an angular momentum generator, as mentioned
explicitly in Eq. (3.58a, p 54). Thus, we can identify the generators for spin
angular momentum for a Dirac particle as 1

2Σi (for i = 1, 2, 3), where

Σi =
1

2
ǫijkσjk . (14.6)
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From this, it is clear that all components of spin angular momentum cannot
commute with the Hamiltonian of Eq. (14.5), because the sigma matrices do
not commute with the gamma matrices, as shown in Eq. (4.96, p 79).

But this is not the end of the story. First of all, notice that the mass
term in the Hamiltonian contains the matrix β, or γ0, which commutes with
all sigma matrices with spatial indices. The first term in the Hamiltonian
contains the combination γ0γlpl, and note that

[
γ0γlpl , piσjk

]
= γ0plpi

[
γl, σjk

]
= −2iγ0plpi

(
δjlγk − δklγj

)
. (14.7)

The combination on the right vanishes when contracted with ǫijk, so that we
find that the combination Σ · p commutes with the first term as well, and
therefore with the entire Hamiltonian. Thus, although spin is not conserved
for a free Dirac particle, its component along the 3-momentum is. We can
thus define the quantity

h ≡ Σ · p
p

, (14.8)

which is called helicity, and which is twice the spin component along the
direction of momentum.

An important property of the helicity operator is that its square is the
identity operator:

h2 = 1 . (14.9)

To prove this, it is better to write the spin 3-vector in terms of the covariant
components in the form

Σi = γ0γiγ5 , (14.10)

which can be shown to be an equivalent definition by taking each of the
matrices γi and using the definition of γ5 from Eq. (4.88, p 78). A more formal
proof is given in Appendix F, using Eq. (F.48, p 741). With this form, it is
easy to see that

[
Σi,Σj

]
+

= 2δij , (14.11)

so that

p2h2 = ΣiΣjpipj =
1

2

[
Σi,Σj

]
+
pipj , (14.12)

using the fact that momentum components commute with one another. Now
we can use the anticommutator of the Σ matrices and find that the right hand
side equals p2, which proves Eq. (14.9). The consequence of Eq. (14.9) is that
helicity eigenvalues can be +1 or −1. If we somehow produce a Dirac particle
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in any one of the eigenstates, it will remain in this state until it is influenced
by some interaction.

Neutrinos are produced in many reactions. Experiments were designed to
measure neutrino helicity in these reactions. Of course it cannot be measured
directly, because neutrinos interact only very feebly with all known kinds of
matter. But neutrino helicity can be inferred from the data of momentum and
spin of other particles. For example, consider the decay of a charged pion:

π
+ → µ

+ + νµ . (14.13)

Measurements on the antimuon produced in this decay show that its helic-
ity is always −1, within the limits of experimental error. To understand
the implication of this result on the neutrino, let us look at Fig. 14.1, where
we consider the decay of a particle into two particles. In the rest frame
of the decaying particle, the decay products go back to back. If we now
measure the spin of the particle going to the right and find that it is op-
posite to the momentum, the direction of this spin would be as shown in
the figure. If the decaying particle is spinless, the total spin of the two de-
cay products should add up to zero. This determines the direction of the
spin vector of the other particle as well, and its spin would also be antipar-
allel to the momentum, as shown in Fig. 14.1. Thus, the helicity of the
neutrino, emitted in pion decay, is also −1. And, although different parti-
cles show different helicities for different processes, for neutrinos the result
is always the same, and for antineutrinos it is just the opposite, i.e., +1.

• ⇐⇒

Figure 14.1: Helicity of two fermions
produced in the decay of a spinless parti-
cle. Each long arrow denotes the direction
of momentum of a decay product, and the
short one above it denotes the direction of
the component of spin along the momen-
tum.

We have two different u-spinors,
or positive energy spinors, as the so-
lution of the Dirac equation. These
are degenerate, and we can make two
linear combinations of them such
that one corresponds to helicity −1
and the other to helicity +1. For
neutrinos, we see that we obtain only
one of these two helicity eigenstates.
It therefore suggests that in the in-
teraction term, the neutrino field ap-
pears with the projection matrix of
this helicity.

The projection matrix is easy to obtain, as outlined in Ex. 14.4. But the
problem is that the helicity operator, or the associated projection operators,
are not Lorentz invariants. In other words, if a fermion has a positive helicity
in one frame, in another frame its helicity can be negative. This is easily seen
by considering how a particle, which is moving in one frame with a certain
velocity, looks from another frame which is moving at a greater velocity in the
same direction. Obviously from this second frame the direction of momentum
will seem reversed, and so will helicity. So, helicity projection operators cannot
be put into Lagrangians, since any Lagrangian must be Lorentz invariant.
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2 Exercise 14.4 If you have a matrix Q with the property that Q2 = 1,
show that Q± ≡ 1

2
(1 ± Q) are projection matrices, and that these two

matrices are mutually orthogonal. In other words, show that

Q
2
+ = Q+ , Q

2
+ = Q+ , Q+Q− = Q−Q+ = 0 . (14.14)

14.2.2 Chirality

We now consider a different kind of projection. We note that the definition
of γ5, given in Eq. (4.88, p 78), implies that

(
γ5

)2

= 1 . (14.15)

The projection matrices for negative and positive eigenvalues of γ5 can be
written down in the manner indicated in Ex. 14.4:

L ≡ 1

2
(1− γ5) , R ≡ 1

2
(1 + γ5) . (14.16)

These are called the left-chiral and the right-chiral projection matrices re-
spectively. By acting these projections on a fermion field or a spinor, we can
obtain chiral projections of the field or the spinor. For example, Lψ ≡ ψL

would be called the left-chiral or left-handed projection of the field ψ, and
Rψ ≡ ψR the right-chiral or right-handed projection.

The free Dirac Hamiltonian does not commute with γ5, because it contains
gamma matrices which do not commute with γ5. Therefore chirality, unlike
helicity, is not conserved even for a free particle. On the other hand, because
γ5 commutes with the sigma matrices, the chirality of a field is a Lorentz
invariant concept. To see this explicitly, we take the transformation property
of a fermion field under Lorentz transformations from Eq. (4.73, p 76), and
multiply both sides of this equation by the projection matrix L. Using the
commutation property of γ5 with the sigma matrices, we obtain

ψL(x) = Lψ(x) −→ Lψ′(x′) = exp

(
− i

4
ωµνσµν

)
ψL(x) , (14.17)

which says that under Lorentz transformation, a left-chiral field remains left-
chiral. The same is true for right-chiral fields. Thus, any place in a Lagrangian
where a fermion field operator can be used, we can also use a left-chiral or a
right-chiral field operator in its place: it would not affect the Lorentz invari-
ance of the Lagrangian.

Any expression regarding fermionic fields can be written by using the left-
and right-chiral fields. One merely has to observe that

L + R = 1 , (14.18)

so that any fermion field can be written in the form

ψ = (L + R)ψ = ψL + ψR . (14.19)



§14.2. Helicity and chirality 417

For the purpose of making Lorentz invariant combinations, we define the
objects

ψL ≡
(
ψL

)†
γ0 , ψR ≡

(
ψR

)†
γ0 , (14.20)

and note that

ψL = (Lψ)†γ0 = ψ†Lγ0 = ψ†γ0R = ψR , (14.21)

and a similar equation obtained by interchanging left with right. To see how
one can write fermion bilinears by using chiral projections, we can take a
scalar bilinear for example, and use Eq. (14.18) to write

ψψ = ψRψ + ψLψ . (14.22)

Using the projection properties

L2 = L , R2 = R (14.23)

and relations like Eq. (14.21), we can then write

ψψ = ψRRψ + ψLLψ = ψLψR + ψRψL . (14.24)

2 Exercise 14.5 Show the following relations for fermion bilinears:

ψγµψ = ψ
L
γµψL + ψ

R
γµψR , (14.25)

ψσµνψ = ψLσµνψR + ψRσµνψL . (14.26)

2 Exercise 14.6 Show that

ψ
L
ψL = ψ

R
ψR = 0 . (14.27)

14.2.3 Connection

We thus have the following dilemma. Chirality is Lorentz invariant but not
conserved for a massive particle and cannot be measured easily. On the other
hand, helicity is conserved for a free particle, and can be measured, but is not
a Lorentz invariant and therefore cannot be called an intrinsic property of the
particle.

For massless particles, however, the dilemma does not exist. In fact, we
now show that for massless particles, helicity and chirality are the same thing.
The massless spinor solutions should have the form

up =
p/√
p
ξ , vp = − p/√

p
χ , (14.28)

where ξ and χ are normalized eigenvectors of γ0 with eigenvalues +1 and −1
respectively:

γ0ξ = ξ , γ0χ = −χ . (14.29)
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These solutions are obtained by putting m = 0 in Eqs. (4.58) and (4.59), and
using the normalization prescribed in Eq. (4.62, p 72).

Take the expression for up, for example. Since p/ = γ0p−γipi for a massless
particle, we see that

up =
√
p
(
γ0 − γini

)
ξ , (14.30)

where n is a 3-vector of unit length in the direction of p. Using Eq. (14.29),
we can further simplify this expression to the form

up =
√
p
(

1− γini

)
ξ . (14.31)

Consider the action of the helicity operator, Σini, on this spinor. Using the
form of Σi given in Eq. (14.10), we obtain

Σiniup =
√
pγ5γ0γini

(
1− γjnj

)
ξ . (14.32)

Since γiniγjnj = 1
2 [γi, γj]+ninj = −1 and γ0 anticommutes with each γi, we

obtain

Σiniup =
√
pγ5γ0

(
1 + γini

)
ξ =
√
pγ5

(
1− γini

)
γ0ξ

=
√
pγ5

(
1− γini

)
ξ = γ5up , (14.33)

using Eq. (14.29) on the way. The result shows that the actions of the helicity
matrix and the matrix γ5 produce identical results on a massless u-spinor.
The same can be shown for a v-spinor. And since these spinors can be taken
as a basis to write any spinor, we have proved the equivalence of γ5 and Σini

on massless spinors.

2 Exercise 14.7 Follow similar steps to show that

Σinivp = γ5vp (14.34)

for massless spinors.

14.2.4 Neutrino helicity

Helicity of neutrinos was measured in various experiments. Of course, neu-
trinos are extremely evasive, so the measurements were not made directly on
neutrinos. If a particle has a two-body decay mode of which one is a neu-
trino, measurements made on the other decay product bear information about
the momentum of the neutrino, and its spin projection along the direction of
momentum. Earlier in §14.2.1, we mentioned that such experiments have
shown that the neutrino helicity is equal to −1 to a remarkable accuracy. For
antineutrinos, the helicity was always found to be positive.

If neutrinos are massless, this would imply that in any process, only the
left-chiral neutrinos or right-chiral antineutrinos are produced. This can hap-
pen if, in the four-fermi interaction of Eq. (14.4), any neutrino field always
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appears with the combination of polar and axial vector currents that projects
out its left-chiral component. For example, if ψ4 is a neutrino field, one should
have b′ = −b so that the combination (b + b′γ5) is proportional to the left-
chiral projection matrix given in Eq. (14.16). If both factors have a neutrino
field, we can take a = −a′ = 1 and b = −b′ = 1, and with this normaliza-
tion of these parameters, the overall coupling parameter is usually denoted by
GF /
√

2, where GF is called the Fermi constant .
Earlier, in Ex. 6.7 (p 158), we argued that only the polar vector interaction

or the axial vector interaction cannot produce any parity violating effect, only
a combination of them can. We are now encountering a situation where, for
neutrinos, the couplings of the polar and the axial vector interactions have
equal magnitude. In this sense, we can say that parity is violated maximally.

It is known now that neutrinos are not really massless. Nevertheless, the
masses are so small compared to the energies of the neutrinos with which any
experiments can be done that the masses can be ignored as a first approxi-
mation. The repercussions of non-zero mass will be discussed in Ch. 22.

14.2.5 Weyl fermions

Fermions that can exist in only one chirality state are called Weyl fermions.
We can decompose a fermion field operator into chiral projections, as in Eq.
(14.19). The Dirac equation, Eq. (4.44, p 70), takes the following form in terms
of these chiral projections of the field:

iγµ∂µψL = mψR , (14.35a)

iγµ∂µψR = mψL . (14.35b)

This shows that the free evolution of a left-chiral field gives rise to a right-
chiral field, and vice versa, if the fermion has a mass. A purely left-chiral or
right-chiral field can be obtained only if the fermion is massless. Inspired by
the fact that the neutrino helicity is negative, we discuss left-chiral Weyl fields
here. To discuss right-chiral Weyl fields, one merely needs to interchange the
left- and right-chiral projection operators in what follows in this section.

Left-chiral Weyl fields are defined by the relation

Lψ(x) = ψ(x) , (14.36)

or equivalently by

Rψ(x) = 0 . (14.37)

From the discussion on Lorentz transformation properties of chiral projection
of fields given in §14.2.2, it is clear that such conditions are Lorentz invariant.
The plane wave expansion of such a field will be given by

ψ(x) =

∫
D3p

(
d(p)uL(p)e−ip·x + d̂†(p)vL(p)e+ip·x

)
. (14.38)
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Table 14.1: Feynman rules for external lines related to a left-chiral Weyl field.

Feynman rule for
incoming outgoing

fermion uL(p) uL(p)
antifermion vL(p) vL(p)

This looks like the plane wave expansion of a Dirac field given in Eq. (4.65,
p 72), but there is a difference. For a Dirac field, there is a sum over two
different u-spinors and v-spinors. Because of the constraint condition of Eq.
(14.36) or Eq. (14.37), we cannot get two different solutions of either the u-
spinor or the v-spinor. There can be only one of each type, satisfying the
conditions

Lu = u , Lv = v . (14.39)

Those solutions are denoted by uL and vL, and they appear in Eq. (14.38).
It is interesting to note that although both spinors have the same chirality

in Eq. (14.38), the states created by d†(p) and d̂†(p) acting on the vacuum
have opposite helicities. To prove this statement, let us define the states

|F (p)〉 ≡ d†(p) |0〉 ,
∣∣∣F̂ (p)

〉
≡ d̂†(p) |0〉 . (14.40)

Denoting CPT by Θ as in Ch. 7, we can write

Θd(p)Θ−1 = d̂(p) . (14.41)

Now suppose the particle state is left-handed, i.e.,

Σ · p |F (p)〉 = −p |F (p)〉 . (14.42)

Applying CPT transformation on both sides of Eq. (14.42), we obtain

Σ · p
∣∣∣F̂ (p)

〉
= +p

∣∣∣F̂ (p)
〉
, (14.43)

using the fact that under CPT, the helicity operator is odd, since spin changes
sign and momentum remain invariant. Thus the left-handed neutrino and
right-handed antineutrino are contained in the same field operator. To the
list of Feynman rules for external lines given in Table 4.1 (p 91), we can add
more for Weyl fermions, which are given in Table 14.1.

14.3 Fierz transformations

In §14.1, we raised the question of how four fermionic fields should be paired
into two bilinears. Within the realm of the four-fermion interaction theories,
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the answer to this question cannot be decided. However, it is also true that
the question is somewhat irrelevant in such theories. No matter how they
are grouped, it is possible to transform them to a different grouping. Such
regroupings are called Fierz transformations.

14.3.1 Scalar combinations

In order not to be bothered by the change of sign obtained by commuting
two fermionic field operators, we carry out the derivation using spinors whose
components are numbers and therefore commute. Suppose w denotes either
a u-spinor or a v-spinor, and we define quadrilinears of the form

eS(1234) =
[
w1w2

][
w3w4

]
,

eV (1234) =
[
w1γ

µw2

][
w3γµw4

]
,

eT (1234) =
[
w1σ

µνw2

][
w3σµνw4

]
,

eA(1234) =
[
w1γ

µγ5w2

][
w3γµγ5w4

]
,

eP (1234) =
[
w1γ5w2

][
w3γ5w4

]
, (14.44)

where the four spinors can correspond to four different momenta, and can
even be the solutions of the free Dirac equations of four different parti-
cles if one wants to be completely general. We can also consider similar
quadrilinears where w1 and w4 grouped together, and call them eI(1432) for
I = S, V, T,A, P . The Fierz rearrangement theorem then says that it is pos-
sible to find numerical co-efficients FIJ which satisfy the equation

eI(1234) =
∑

J

FIJ eJ(1432) . (14.45)

According to our summation convention explained in §2.1, automatic summa-
tion convention does not apply on the indices I or J which stand for the five
different groupings that appear in Eq. (14.44). The rest of this exercise would
consist of the evaluation of the co-efficients FIJ .

We begin this exercise by rewriting the expressions of Eq. (14.44) in the
manner

eI(1234) = n2
I

[
w1ΓIrw2

][
w3Γr

Iw4

]
, (14.46)

where the matrices ΓIr constitute a complete basis for expressing all 4 × 4
matrices. They have been written with two indices, one for the categories
that appear in Eq. (14.44), and the other for the different matrices that oc-
cur in each category. Note that although automatic summation convention
is not implied on repeated uppercase indices, as noted earlier, it is implied
on repeated lowercase indices, since bilinears with the same value of I and
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different values of r are related by Lorentz transformations. We take these
basis matrices in such a way that they satisfy the orthogonality condition

Tr
(

Γr
IΓJr′

)
= 4δIJδ

r
r′ . (14.47)

This means that we can use the matrices shown in Eq. (4.93, p 79), with the
exception that for Γr

A, we should use put in an extra factor of i, i.e., should
use iγµγ5. The quantity nI appearing in Eq. (14.46) are then found to be

I S V T A P
nI 1 1

√
2 −i 1

. (14.48)

Note that n2
T = 2 because eT , as defined in Eq. (14.44), contains unrestricted

sums over the indices µ, ν, whereas the basis matrices contain only the sigma
matrices with µ < ν.

Using the property mentioned in Eq. (14.47), any 4× 4 matrix M can be
written as

M =
1

4

∑

I

ΓIr Tr
(

Γr
IM
)
, (14.49)

which implies the relation

1

4

∑

I

(
ΓIr

)
ab

(
Γr

I

)
cd

= δadδbc . (14.50)

Multiplying this by (Γq
J)c′c(ΓJq)a′a and summing over the matrix rows or

columns whose indices have been repeated, we obtain

1

4

∑

I

(
ΓJqΓIr

)
a′b

(
Γq

JΓr
I

)
c′d

= (ΓJq)a′d(Γq
J )c′b . (14.51)

Next, one should observe that the basis matrices have been chosen in such
a way that the product of any two of them always gives another basis matrix.
In other words, any two matrices Γq

I and Γr
J satisfy a relation of the sort

Γq
I Γr

J = (constant)× Γs
K , (14.52)

so that Eq. (14.51) can be rewritten in the form

(ΓIq)ad(Γq
I)cb =

∑

K

CIK

(
ΓKs

)
ab

(
Γs

K

)
cd
. (14.53)

To obtain the co-efficients CIJ , we multiply both sides by
(

ΓJr

)
dc

(
Γr

J

)
ba

and

use Eq. (14.47) to obtain

(
ΓIq

)
ad

(
Γq

I

)
cb

(
ΓJr

)
dc

(
Γr

J

)
ba

= 16
∑

K

CIKδJKδ
r
sδ

s
r . (14.54)
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Recall that the sum over r is implied in our notation, so the right hand side
gives 16NJCIJ , where NJ is the number of basis matrices in the J-th category,
i.e., NS = 1, NV = 4 etc. Thus we obtain

CIJ =
1

16NJ
Tr
(

ΓIqΓJrΓq
IΓr

J

)
. (14.55)

Multiplying Eq. (14.53) by (w1)a(w2)b(w3)c(w4)d and by using the definition
of the quadrilinears provided in Eq. (14.46), we can easily identify the co-
efficients FIJ defined in Eq. (14.45):

FIJ =
n2

I

n2
J

CIJ . (14.56)

The result can be summarized in a matrix form:

F =
1

4




1 1 1
2 −1 1

4 −2 0 −2 −4
12 0 −2 0 12
−4 −2 0 −2 4

1 −1 1
2 1 1



. (14.57)

14.3.2 Pseudoscalar combinations

The scalar combinations introduced in Eq. (14.44) are clearly not enough for
us, because interactions such as in Eq. (14.4) contain also combinations where
one bilinear has a polar vector current whereas the other has an axial vector
current. To discuss such combinations, we introduce the notation

e′I(1234) = nIn
eI

[
w1ΓIrw2

][
w3Γr

Iγ5w4

]
, (14.58)

where Ĩ denotes the opposite-parity partner of the index I, i.e., Ĩ =
P,A, T, V, S respectively for I = S, V, T,A, P . Some obvious relations follow
from this definition, such as

e′S(1234) = e′P (3412) , e′V (1234) = e′A(3412) , (14.59)

as well as

e′T (1234) = e′T (3412) , (14.60)

which follows by using the property

σλργ5 = − i
2
ελραβσαβ , (14.61)

whose proof has been discussed in Ex. F.6 (p 741). Such relations can be sum-
marized by writing

e′I(1234) =
∑

J

XIJ e
′
J(3412) , (14.62)
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where

X =




0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0



. (14.63)

It should also be noted that we can write

e′I(1234) = eI(1234′) , (14.64)

where, in writing the quadrilinear on the right hand side, we use

w′
4 = γ5w4 (14.65)

instead of the spinor w4. With the help of this trick, we can now write

e′I(1234) =
∑

J

XIJe
′
I(3412) =

∑

J

XIJeI(3412′)

=
∑

J,K

XIJFJKeK(32′14) . (14.66)

But the order of the two bilinears is unimportant for the definition of eI , i.e.,

eI(1234) = eI(3412) . (14.67)

Using this, we obtain

e′I(1234) =
∑

J

(XF )IJeJ (1432′) =
∑

J

(XF )IJe
′
J(1432) . (14.68)

The relevant matrix in the transformation for the pseudoscalar quadrilinears
is therefore

XF =
1

4




1 −1 1
2 1 1

−4 −2 0 −2 4
12 0 −2 0 12
4 −2 0 −2 −4
1 1 1

2 −1 1



. (14.69)

14.3.3 Invariant combinations with fields

If we use field operators instead of spinors, derivations with the matrices
remain unaffected. The only difference is that, in the two orderings discussed,
there would be two field operators whose position need to be interchanged, and
that would produce an extra minus sign. Thus, if we introduce the notations

ES(1234) =
[
ψ1ψ2

][
ψ3ψ4

]
(14.70)
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and similar ones for EV , ET etc, the Fierz transformation rules would read

EI(1234) = −
∑

J

FIJEJ (1432) ,

E′
I(1234) = −

∑

J

(XF )IJE
′
J (1432) . (14.71)

Earlier we mentioned that, strictly within the framework of the four-
fermion interaction, it is not possible to tell which pairs of fermionic fields
should appear in one bilinear. One might be tempted to think that Fierz re-
arrangements hold a key to this mystery. If we can identify any quadrilinear
that stays invariant under Fierz transformations, the problem disappears, and
we reach a theoretically satisfying position. Let us then try to see whether
such combinations exist.

We started with polar and axial vector bilinears in §14.1, so let us first
check the possibility of Fierz invariants from them. Using Eq. (14.57), we find

EV (1234) +EA(1234) = EV (1432) +EA(1432) . (14.72)

On the other hand, from Eq. (14.69), we obtain

E′
V (1234) +E′

A(1234) = E′
V (1432) +E′

A(1432) . (14.73)

Combining, we obtain that

(EV + EA)± (E′
V + E′

A) (14.74)

are invariant under Fierz transformation. Such combinations would corre-
spond to interactions of the form

[
ψ1γ

µ(1± γ5)ψ2

][
ψ3γ

µ(1± γ5)ψ4

]
. (14.75)

Since each bilinear contains a polar current plus or minus an axial current,
such interactions are often called V +A or V −A interactions.

Earlier, we said that measurements of neutrino helicity indicate that we
should have V −A currents in the bilinears which involve a neutrino field. We
now see that four-fermion interactions consisting of a product of V −A interac-
tions are invariant under Fierz transformations. These two statements match
beautifully, and we might be tempted to think that four-fermion interactions
always contain V −A currents for all fermions.

But such a conclusion need not be very reliable. The reason is that, for
reasons that will be discussed in §14.8, Fermi theory cannot be taken as a
fundamental theory. It can work only if it is the low-energy limit of some
deeper theory. That theory may not have any quadrilinear at all — quadri-
linears might appear when the low-energy limit is taken. If that is so, the
requirement of invariance under Fierz transformations becomes meaningless.
Accordingly, the bilinears might involve unequal combinations of polar and
axial currents, the combination being determined by the basic requirements
of the deeper theory. We will see these statements vindicated when we discuss
the standard electroweak model in Ch. 16.
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2 Exercise 14.8 Show that the combination ES +EP − 1
2
ET remains in-

variant under Fierz transformations.

14.4 Elastic neutrino–electron scattering

Not surprisingly, the processes involving neutrinos which have been most ex-
tensively studied experimentally are their scattering with electrons. Let us
denote the process as follows, indicating our symbols for the 4-momenta of
the different particles involved:

ν(k) + e(p)→ ν(k′) + e(p′) . (14.76)

We want to keep the discussion general in the sense that we do not assume, at
the outset, which kind of neutrinos we are talking about. But we do assume
that it is the same kind of neutrino in the initial and the final state in order
that the process is elastic.

How do we group the four field operators to write the four-fermi inter-
action? Should we group an electron field with a neutrino field, or the two
electron field operators together in a bilinear? If we choose the latter option,
i.e., [ee][νν] combination, then we do not know the co-efficients of the polar
and the axial vector currents in the electron bilinear. On the other hand, if
we start with one neutrino field operator for each bilinear, i.e., the [eν][νe]
pairing, then each bilinear should be V −A type according to the neutrino he-
licity argument. But we have seen that such combinations are Fierz invariant,
i.e., Fierz transformations guarantee that

[
ψ(e)γ

µ(1− γ5)ψ(ν)

][
ψ(ν)γµ(1 − γ5)ψ(e)

]

=
[
ψ(e)γ

µ(1− γ5)ψ(e)

][
ψ(ν)γµ(1 − γ5)ψ(ν)

]
. (14.77)

The lesson is that, we can take both possibilities into account by writing the
four-fermi interaction in the form

Lint = −GF√
2

[
ψ(e)γ

µ(cV − cAγ5)ψ(e)

][
ψ(ν)γµ(1− γ5)ψ(ν)

]
. (14.78)

Note that the combination occurring in the neutrino bilinear involves left-
chiral projections only. The overall constant is taken to be the Fermi constant,
and the co-efficients in the electron bilinear have been left unspecified: the
parts involving polar and axial currents have co-efficients cV and cA respec-
tively.

The amplitude of the process is easily written from the interaction La-
grangian, and it is

M = −GF√
2

[
up′γµ(cV − cAγ5)up

][
uk′γµ(1− γ5)uk

]
. (14.79)
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In writing this, we have not indicated explicitly which spinor belongs to which
kind of field: the momentum corresponding to the spinor should provide an-
swers to such questions.

We now want to square the amplitude, averaging over initial spins and
summing over final ones. For neutrinos, the averaging or the summing is
trivial, since we have only left-chiral neutrinos. For electrons, the averaging
over initial states would mean summing and dividing by 2. Thus we obtain

|M |2 =
1

2

∑

spins

∣∣∣M
∣∣∣
2

=
G2

F

4
EµνNµν , (14.80)

where

Eµν = Tr
[
(p/′ + m)γµ(cV − cAγ5)(p/ +m)γν(cV − cAγ5)

]
,

Nµν = Tr
[
k/′γµ(1 − γ5)k/γν(1− γ5)

]
. (14.81)

Note the part that contains the neutrino momenta. The factor (1 − γ5)
commutes with the combination k/γν , so that we can write

Nµν = Tr
[
k/′γµk/γν(1− γ5)2

]
= 2 Tr

[
k/′γµk/γν(1 − γ5)

]
, (14.82)

since (1− γ5)2 = 2(1− γ5), which follows easily from Eq. (14.15). The traces
can be evaluated using the formulas appearing in §F.1.4 and we end up with
the result

Nµν = 8
(
k′µkν + kµk

′
ν − k · k′gµν − iεαµβνk

′αkβ
)
. (14.83)

The evaluation of Eµν , though a little more tedious, is no more complicated.
It produces the result

Eµν = 4(c2V + c2A)(pµp′ν + pνp′µ − p · p′gµν) + 4m2(c2V − c2A)gµν

−8icAcV ε
λµρνp′λpρ . (14.84)

When we put these expressions back into Eq. (14.80), we note that in the
expressions of both Eµν and Nµν , there is one part which is symmetric in the
indices and one part which is antisymmetric. While taking contractions, we
will have one contribution that would involve the symmetric terms from both
factors, and another that would involve the antisymmetric parts from both.
Thus,

|M |2 = 8G2
F

[{
(c2V + c2A)(pµp′ν + pνp′µ − p · p′gµν)

+m2(c2V − c2A)gµν

}
(k′µkν + kµk

′
ν − k · k′gµν)

−2cAcV ε
λµρνεαµβνk

′αkβp′λpρ

]
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Figure 14.2: Differential cross-section for neutrino–electron scattering as a function
of the scattering angle θ for ω = 10m. The overall scale is arbitrary. Two sets of values
of the constants cV and cA have been taken: one corresponding to Eq. (16.56, p 476)
and the other to Eq. (16.61, p 478). The importance of these values has been described
in Ch. 16.

= 16G2
F

[
(cV + cA)2(k · p)2 + (cV − cA)2(k′ · p)2

−2m2(c2V − c2A)k · k′
]
, (14.85)

using the contraction formula of Eq. (D.11, p 729) and the kinematical relations

k · p = k′ · p′ , k · p′ = k′ · p , (14.86)

that follow from 4-momentum conservation.
Neutrino–electron scattering experiments are usually done in fixed target

frames where the initial electron is at rest. We can use the result given in Eq.
(4.225, p 109) to write the differential cross-section for this problem, which is

dσ

dΩ
=
G2

Fm
2

4π2

1

(m+ ω − ω cos θ)2

×
[
(cV + cA)2ω2 + (cV − cA)2ω′2 − (c2V − c2A)ωω′(1 − cos θ)

]
,

(14.87)

where m is the mass of the electron, and the initial and final energies of the
neutrino, ω and ω′, are related by

ω′ =
mω

m+ ω − ω cos θ
, (14.88)
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as expounded in Eq. (2.94, p 34).
One characteristic of this differential cross-section is that it is very strongly

peaked in the forward direction. In Fig. 14.2, we show a schematic plot of the
differential cross-section as a function of the scattering angle θ.

Within the purview of Fermi theory, the constants cV and cA that appear
in the interaction Lagrangian are completely arbitrary. However, we will see
later in Ch. 16 that their values are related to some other properties of the
interacting particles.

14.5 Inelastic neutrino–electron scattering

We can also discuss inelastic scattering processes involving neutrinos. For
example, consider the process

νµ(k) + e(p)→ µ(p′) + νe(k′) . (14.89)

This process is very important because it provides an indirect way of detecting
muon-neutrinos by detecting the muon produced in the final state. Of course,
this is an endergonic reaction, and therefore the muon-neutrino must have
sufficiently high energy in order that this reaction takes place in the FT frame
where the electrons are kept at rest.

2 Exercise 14.9 Find the threshold energy of the muon-neutrinos that
is necessary for this reaction to take place in the rest frame of the
electron. Use the masses of the electron and the muon from TableB.2
(p 720), and assume the neutrinos to be massless.

In the four-fermion interaction, the muon will naturally tie up with the
muon-neutrino, and the electron with the electron-neutrino.The interaction
will therefore have the form

Lint = −GF√
2

[
ψ(µ)γ

λ(1− γ5)ψ(νµ)

][
ψ(νe)γλ(1 − γ5)ψ(e)

]
. (14.90)

Since each bilinear contains a neutrino field, we use the combination (1− γ5),
as discussed in §14.2.4. The amplitude, with the notations for the momenta
given in Eq. (14.89), is given by

M = −GF√
2

[
up′γλ(1− γ5)uk

][
uk′γλ(1− γ5)up

]
. (14.91)

This gives

|M |2 =
1

2

∑

spins

∣∣∣M
∣∣∣
2

=
G2

F

4
EλρM

λρ , (14.92)

where Eλρ comes from the bilinear containing the spinors for the electron and
the νe fields, and Mλρ from the bilinear containing the muon and the νµ.
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Thus,

Eλρ =
[
uk′γλ(1 − γ5)up

][
uk′γρ(1− γ5)up

]∗

= Tr
[
k/′γλ(1− γ5)(p/+me)γρ(1− γ5)

]
. (14.93)

The term containing the electron mass is traceless because it contains an odd
number of Dirac matrices. The rest looks very similar to the expression of
Nµν that appears in Eq. (14.81), and we can borrow the result from what we
did there:

Eλρ = 8
(
k′λpρ + pλk

′
ρ − p · k′gλρ − iεαλβρk

′αpβ
)
. (14.94)

The traces involved in Mλρ are similar, and the result is

Mλρ = 8
(
p′λkρ + kλp′ρ − k · p′gλρ − iεκλτρp′κkτ

)
. (14.95)

Therefore,

EλρM
λρ = 64

[(
k′λpρ + pλk

′
ρ − p · k′gλρ

)(
p′λkρ + kλp′ρ − k · p′gλρ

)

−
(
εαλβρk

′αpβ
)(
εκλτρp′κkτ

)]

= 64× 2

[
(k · k′ p · p′ + k · p k′ · p′)

−(k · k′ p · p′ − k · p k′ · p′)
]
. (14.96)

This gives

|M |2 = 64G2
Fk · p k′ · p′ . (14.97)

Note that relations of the type given in Eq. (14.86) are not valid here since
the initial state particles and the final state particles have different masses. If
we analyze the process in the rest frame of the electron, we obtain

k · p = meω , k′ · p′ =
(
E′ −

√
E′2 −m2

µ cos θ
)
ω′ , (14.98)

where ω and ω′ are the energies of the initial νµ and final νe, E′ is the energy
of the muon, and θ is the angle between k′ and p′. The scattering cross-section
can be obtained by putting these expressions into Eq. (4.224, p 109).

14.6 Muon and tau decay

The products obtained in muon decay have been described in §14.1:

µ
−(p)→ e−(k) + νµ(q1) + ν̂e(q2) , (14.99)
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where, as usual, after each particle we have put the notations for its momenta
in parentheses. Since the muon goes naturally with its neutrino, and so does
the electron, we write the interaction Lagrangian as

Lint = −GF√
2

[
ψ(νµ)γ

λ(1− γ5)ψ(µ)

][
ψ(e)γλ(1 − γ5)ψ(νe)

]
. (14.100)

This is just the hermitian conjugate of the interaction term presented in Eq.
(14.90). The amplitude of the decay process is then given by

M = −GF√
2

[
uq1

γλ(1− γ5)up

][
ukγλ(1− γ5)vq2

]
, (14.101)

where, as in the previous sections, we have used the momenta to indicate the
field corresponding to each spinor. Squaring this, averaging over the initial
muon spins and summing over all final spins, we obtain

|M |2 =
1

2

∑

spins

∣∣∣M
∣∣∣
2

. (14.102)

The evaluation of this quantity is very much similar to what has been done
in the previous sections, so we omit the details. The result is

|M |2 = 64G2
F p · q1 k · q2 . (14.103)

Using this expression in the general formula for calculating decay rates, Eq.
(4.156, p 95), we can write, in the rest frame of the decaying particle,

Γ =
G2

F

π5mµ

∫
d3k

2k0

∫
d3q1
2q10

∫
d3q2
2q20

δ4(p− k − q1 − q2)p · q1 k · q2 .

(14.104)

The integration is much more complicated than those in earlier examples
in this chapter because this process contains three particles in the final state.
Let us tackle it first by performing the integrations over q1 and q2. Notice
that the involvement of these momenta can be summarized in the form

Iλρ(q) ≡
∫
d3q1
2q10

∫
d3q2
2q20

δ4(q − q1 − q2)qλ
1 q

ρ
2 , (14.105)

where

Γ =
G2

F

π5mµ

∫
d3k

2k0
Iλρ(p− k)pλkρ . (14.106)

As argued earlier in Eq. (4.158, p 96), the integration measures in the form∫
d3p/2p0 is Lorentz invariant for any on-shell 4-momentum p. Thus, the

expression for Iλρ clearly shows that it is a rank-2 tensor. It can depend
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only on the 4-vector q that appears in its definition. Thus, we write the most
general rank-2 tensor that we can write as the result, which is

Iλρ(q) = Aq2gλρ +Bqλqρ , (14.107)

where A and B must be invariant functions of q. To evaluate these functions,
we write the results obtained by contracting Eq. (14.107), once by gλρ and
again by qλqρ. The results are

(4A+B)q2 =

∫
d3q1
2q10

∫
d3q2
2q20

δ4(q − q1 − q2)q1 · q2 ,

(A+B)q4 =

∫
d3q1
2q10

∫
d3q2
2q20

δ4(q − q1 − q2)
(
q1 · q2

)2

. (14.108)

It should be noted that we have used a crucial property of neutrinos in writing
the last factor in the second integral. From the contraction proposed before
the equation, the factor comes out to be q · q1 q · q2. But, because of the delta
function in the integrand, we can replace q by q1 + q2. After that, we use
q21 = q22 = 0, since we take the neutrinos to be massless.

The last set of integrals is Lorentz invariant, and can therefore depend only
on q2. Note that the delta function implies qµ = qµ

1 + qµ
2 , and by squaring it

we obtain

q2 = 2q1 · q2 , (14.109)

using the masslessness of the neutrinos once again. Thus, we can replace
q1 · q2 in the previous integrals by 1

2q
2, bring it outside the integration sign

and obtain

4A+B =
1

2

∫
d3q1
2q10

∫
d3q2
2q20

δ4(q − q1 − q2) ,

A+B =
1

4

∫
d3q1
2q10

∫
d3q2
2q20

δ4(q − q1 − q2) . (14.110)

The integrals on both lines are the same, and they are also identical to the
integral that we had encountered in Eq. (4.185, p 101). Using the result from
there and solving for A and B, we obtain

Iλρ(q) =
π

24

(
q2gλρ + 2qλqρ

)
. (14.111)

Putting this back into Eq. (14.106), we obtain

Γ =
G2

F

24π4mµ

∫
d3k

2k0

(
q2p · k + 2q · p q · k

)
, (14.112)

where now q = p − k. In the rest frame of the muon, denoting the electron
energy by Ee, we obtain

p · k = mµEe ,

q · k = mµEe −m2
e ,

q · p = mµ(mµ− Ee) ,

q2 = m2
µ +m2

e − 2mµEe . (14.113)
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Figure 14.3: Electron energy spectrum in muon decay.

None of these things depends on the direction of k, so we can trivially perform
the angular integrations and obtain

Γ =
G2

F

12π3

∫
dEe k

[
(m2

µ
+m2

e − 2mµEe)Ee

+2(mµ− Ee)(mµEe −m2
e)

]
. (14.114)

This can be written as a differential decay rate with respect to the electron
energy Ee:

dΓ

dEe
=

G2
F

12π3

√
E2

e −m2
e

[
(m2

µ
+m2

e − 2mµEe)Ee

+2(mµ− Ee)(mµEe −m2
e)

]
. (14.115)

The function on the right hand side has been plotted in Fig. 14.3.
In order to obtain the total decay rate, we need to integrate over Ee.

With the expression shown above, this integration is not easy. However, since
the muon, with a mass of 106 MeV, is more than 200 times heavier than the
electron, the electron mass can be neglected as a first approximation. This
gives

dΓ

dEe
=
G2

Fmµ

12π3
E2

e

(
3mµ− 4Ee

)
. (14.116)

The lower limit of integration is zero, which corresponds to the situation where
the two neutrinos are emitted back to back, and carry away all the energy.
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The maximum possible value of Ee corresponds to the situation when the two
neutrinos are emitted in the same direction, and the electron balances their
momenta by going in the opposite direction. The electron takes half the total
available energy in this case. Thus the total decay rate is given by

Γ =
G2

Fmµ

12π3

∫ mµ/2

0

dEe E
2
e

(
3mµ− 4Ee

)
=
G2

Fm
5
µ

192π3
. (14.117)

This is the relation which is used to ascertain the value of the Fermi
constant. Since the measured value of the muon lifetime is

Γ−1 = 2.2× 10−6 s (14.118)

and the mass is 106 MeV, one obtains

GF = 1.166× 10−5 GeV−2 . (14.119)

We can similarly discuss the decay of the tau lepton. In this case, there
will be two possible decay modes, viz.,

τ
− → µ

− + ν̂µ + ντ ,

τ
− → e− + ν̂e + ντ . (14.120)

If we ignore the masses of the muon and the electron compared to that of the
tau, the rates to both channels would be the same. In reality, the muon mass,
though small, is not completely negligible, so the process involving the muon
gets a little less phase space compared to the other one, and is marginally
slower. The branching ratios of the two channels are about 17.36% and 17.84%
respectively. And notice that the two branching ratios, added together, do
not reach anywhere near 100%, because the τ-lepton is heavy enough to have
many other decay channels, involving some hadrons in the final states.

14.7 Parity violation

The interactions that we have been using contain both polar and axial vector
currents. A mixture of these currents produces parity violating interactions,
as noted in the context of Ex. 6.7 (p 158). It would therefore be interesting to
find out what sort of signals of parity violation can be obtained from four-fermi
interactions.

In §6.9, we noted that signatures of parity violation can be obtained if
we take spin-polarized particles in the initial state, and observe whether the
directions of the momenta of final particles show any correlation with the
direction of that spin. With that in mind, let us revisit the problem of muon
decay, but this time with polarized muons.

The interaction Lagrangian is still the same as in Eq. (14.100), and so is
the amplitude. The only difference is that now we should not sum over both



§14.7. Parity violation 435

spin orientations for the muon. If all muon spins are aligned in one direction,
we should take the spinor corresponding to that value of spin.

As discussed in §6.9.4, an alternative is to sum over both spins, but intro-
duce a spin projection matrix in the amplitude which will select out only one
spin orientation. The spin projection operator was given in Eq. (6.153, p 183).
Using it, we now write the amplitude as

M = −GF√
2

[
uq1γ

λ(1 − γ5)
1

2
(1 + γ5s/)up

][
ukγλ(1− γ5)vq2

]
,(14.121)

where s µ is a 4-vector which has the components

s
µ = (0, ŝ) (14.122)

in the rest frame of the muon, ŝ being a unit 3-vector along the direction in
which the spins of the muons have been aligned.

The amplitude can be written as

M =
1

2

(
M0 + Ms

)
, (14.123)

where M0 is the amplitude for unpolarized muons that was written down in
Eq. (14.101), and

Ms = +
GF√

2

[
uq1

γλ(1− γ5)s/up

][
ukγλ(1− γ5)vq2

]
, (14.124)

using the fact that (1 − γ5)γ5 = γ5 − 1. While squaring the amplitude and
summing over the spins, we can use the result of Eq. (14.103) for the square
of M0. As for the square of Ms, note that the bilinear containing the electron
and the electron-neutrinostill gives the same factors. Writing this part as Eλρ,
we get

∑

spins

∣∣∣Ms

∣∣∣
2

=
∑

s

[
uq1

γλ(1− γ5)s/up

][
uq1

γρ(1− γ5)s/up

]∗
Eλρ

= Tr
[
q/1γ

λ(1− γ5)s/(p/+mµ)s/γρ(1− γ5)
]
Eλρ . (14.125)

The term involving muon mass is traceless because it contains an odd number
of Dirac matrices. Also, note that

s/p/s/ = 2s · ps/− p/s/s/ . (14.126)

From the components of s µ given in Eq. (14.122), it is clear that s · p = 0.
Moreover, s/s/ = s µ

s µ = −1. Thus, the expression of Eq. (14.125) gives
the same value with or without the factor s/ present in it, which means that∑ |Ms|2 =

∑ |M0|2, the sum being over spins. In the absolute square of the
amplitude of Eq. (14.123), the two direct terms taken together would then
contribute an amount equal to 1

2

∑ |M0|2, i.e., equal to the amount shown in
Eq. (14.103).
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Now for the crossed terms.
∑

spins

M0M
∗
s = −Tr

[
q/1γ

λ(1− γ5)(p/ +mµ)s/γρ(1− γ5)
]
Eλρ . (14.127)

This time, only the term proportional to mµ has a non-zero trace. And this
term is

∑

spins

M0M
∗
s = −mµ Tr

[
q/1γ

λ(1− γ5)s/γρ(1− γ5)
]
Eλρ . (14.128)

Had the s/ term not been there in Eq. (14.127), we would have obtained p/
within the trace. Now, we have −mµs/ in its place. Thus the final evaluation
of the traces would contain −mµ times the 4-vector s where we obtained the
vector p in the direct squared terms. Adding the crossed terms and the direct
terms, we then obtain

|M |2 = 64G2
F (p−mµs ) · q1 k · q2 . (14.129)

Compared to Eq. (14.103), there is an overall factor of 1
2 , and p has been

replaced by p−mµs . The expression for the decay rate for this case can also
be written by making the same changes on the result in Eq. (14.112):

Γ =
G2

F

24π4mµ

∫
d3k

2k0

(
q2(p−mµs ) · k + 2q · (p−mµs ) q · k

)
, (14.130)

where q = p − k as in §14.6. We will use the various dot products evaluated
in Eq. (14.113). In addition, we will need these:

s · k = −kŝ · k̂ = −k cos θ ,

s · q = −s · k = k cos θ , (14.131)

where θ is the angle between ŝ and k. Working in the approximation where
the electron mass can be neglected, we can write Eq. (14.130) as

dΓ

dΩ
=
G2

Fmµ

48π4

∫
dEe E

2
e

(
3mµ− 4Ee + (mµ− 4Ee) cos θ

)
. (14.132)

The limits of integration for Ee have been discussed in §14.6. Integration over
Ee gives

dΓ

dΩ
=

G2
Fm

5
µ

3× 28π4

(
1− 1

3
cos θ

)
. (14.133)

We see, first of all, that if we integrate overall the solid angle, the cos θ
term gives no contribution. In fact, the total rate obtained in this case is equal
to the total rate for unpolarized muons that was obtained in Eq. (14.117).
But the cos θ term makes the differential decay rate non-uniform, unlike the
situation encountered in §14.6. There is an angle dependence, and the angle
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in question is the one between the spin of the muon and the momentum of
the final electron. In particular, this angle enters the differential decay rate
through the function cos θ = ŝ · k̂. This kind of terms signal parity violation,
as explained in §6.9. Precisely this kind of correlation was obtained in the
earliest experiments of parity violation. Those experiments did not study the
decay of the muon, but beta decay of some nucleus, as described in §6.9.1.

2 Exercise 14.10 Show that if the muon is not fully polarized but rather
has a net polarization P along a certain direction, the angular depen-
dence of electrons is given by the formula

dΓ

dΩ
=

G2
Fm

5
µ

3 × 28π4

„

1 − 1

3
P cos θ

«

. (14.134)

Study of polarized muon decay played a crucial role in determining the
V − A nature of the interaction. To understand how this was done, we can
go back to Eq. (14.132) and rewrite it in the form

dΓ

dx dΩ
=

G2
Fm

5
µ

3× 27π4
x2
(

3− 2x+ (1− 2x) cos θ
)
, (14.135)

where

x = Ee/(Ee)max = 2Ee/mµ . (14.136)

More generally, taking the net muon polarization to be P and without assum-
ing that the interaction is V − A type, one can parametrize the differential
decay rate in the form

dΓ

dx dΩ
=

G2
Fm

5
µ

3× 27π4
x2
[
6(1− x)− 4

3
(3− 4x)ρ

−
(

2(1− x)− 4

3
(3− 4x)δ

)
ξP cos θ

]
, (14.137)

which contains the three parameters ρ, δ and ξ. These are called Michel
parameters after the name of the scientist who pioneered such analysis. There
can be a few more parameters if we include the effects of a non-zero electron
mass. Notice that there is no parameter attached to the first term in the
square bracket. The reason is that this is the only term that contributes to
the total decay rate, and is therefore determined by the lifetime of the muon.
The Michel parameters have been experimentally determined by measuring
the energy dependence of electrons as a function of the angle made with the
direction of muon polarization. The results, to a very good accuracy, give the
values

ρ =
3

4
, δ =

3

4
, ξ = 1 , (14.138)

which are the values obtained in a V −A theory.
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2 Exercise 14.11 Consider the most general form for the Feynman am-
plitude for the muon decay with four-fermion interaction:

Lint =
X

I

»

u(e)OIu(µ)

–»

uνµ
OI(CI +C′

Iγ5)v(νe)

–

, (14.139)

where I can take five different values corresponding to the bilinears
shown in Eq. (4.93, p 79). Note that the bilinears can always be put
into this form by applying Fierz transformations if necessary. Define
the quantities

aI = |CI |2 + |C′
I |2 ,

a′ = 2
“

CSC
′∗
P + C′

SC
∗
P

”

,

b′ = 2
“

CV C
′∗
A + C′

V C
∗
A

”

,

c′ = 2
“

CTC
′∗
T

”

. (14.140)

Find the differential muon decay rate, dΓ/dx dΩ. Show that it is of
the form given in Eq. (14.137) with

8G2
F = aS + 4aV + 6aT + 4aA + aP , (14.141a)

8G2
F ρ = 3aV + 6aT + 3aA , (14.141b)

8G2
F ξ = −3a′ − 4b′ + 14c′ , (14.141c)

8G2
F ξδ = −3b′ + 6c′ . (14.141d)

[Note : Actually, this is a lot of work. If you are not prepared for it, just take only
one of the aI ’s to be non-zero and check that your results are consistent with the
general results for the Michel parameters given in Eq. (14.141).]

14.8 Problems with Fermi theory

The Fermi theory is very successful in describing low-energy weak interac-
tions. And yet, it cannot possibly qualify as the fundamental theory of weak
interactions. Let us discuss why.

The first reason is that the Fermi constant, GF , has mass dimension equal
to −2. According to the general rules put down in §4.3, this theory is non-
renormalizable. It means that, if we take this theory and calculate loop pro-
cesses with it, we will obtain infinite results for so many things that we will
not be able to absorb all these infinities into the redefinitions of the fields and
constants of the Lagrangian. Thus, calculation of loop diagrams cannot be
performed with the Fermi Lagrangian.

Even if we stick to tree-level diagrams, we encounter difficulties. To ap-
preciate this, let us look at the cross-sections obtained in earlier sections of
this chapter. In each case, the total cross-section can be seen to be propor-
tional to G2

F s. So, Fermi theory would predict that the cross-sections should
monotonically increase with the Mandelstam variable s, i.e., with the center
of mass energy available for the process.
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This is unacceptable from some very basic grounds. In a scattering process,
we can write the wavefunction in the form

ψtot = ψin + f(θ)
eikr

r
, (14.142)

where the first term on the right hand side is in the wavefunction of an inci-
dent plane wave, and the second term represents spherically outgoing waves
centered at the point r = 0 which is the point of interaction. The function
denoted by f(θ) is called the scattering amplitude, where the angle θ is mea-
sured with respect to the direction of the incident wave. For interactions that
do not violate isotropy of space, the scattering amplitude cannot depend on
the azimuthal angle φ. With this general characterization, the differential
cross-section comes out to be

dσ

dΩ
=
∣∣f(θ)

∣∣2 . (14.143)

Further, the scattering amplitude, being a function of θ, can be expanded in
terms of the Legendre polynomials Pl(cos θ) in the form

f(θ) =
1

k

∑

l

(2l+ 1)alPl(cos θ) , (14.144)

where l can take any integral value including zero. The quantities al are di-
mensionless. From the requirement that the number of scattered particles
cannot be more than the number of incident particles, one obtains the con-
straint

|al| < 1 ∀l . (14.145)

This is called the partial wave unitarity condition.
Compare this expression with the angular dependence of cross-section in

the CM frame as given in Eq. (4.207, p 106). Specializing to elastic scattering
for the sake of notational convenience, we find that

∣∣f(θ)
∣∣2 =

1

64π2s
|M |2 , (14.146)

where s is the Mandelstam variable whose square root gives the total incident
energy in the two particles. Look, e.g., at the Feynman amplitude squared for
neutrino–electron elastic scattering, given in Eq. (14.85). The largest power
of cos θ that appears in this expression is cos2 θ. Then f(θ) must have only
up to linear terms in cos θ, which means that only the l = 0 and l = 1 partial
waves contribute. In other words, for this case we can write

dσ

dΩ
=

1

k2

∣∣a0 + 3a1 cos θ
∣∣2 , (14.147)

where both a0 and a1 must obey the constraint of Eq. (14.145). Obviously,∣∣a0 + 3a1 cos θ
∣∣ < 4. Also, we assume that this bound is to be checked for
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energies which are large so that the masses of interacting particles can be
neglected, we can put k2 ≈ E2 = 1

4s. Then we get

dσ

dΩ
<

64

s
. (14.148)

As mentioned before, the cross-sections that come out of Fermi theory are
of the form G2

F s times some factor of order unity. This means that the
calculations make sense provided

G2
F s< (some constant)× 1

s
. (14.149)

It implies that at energies much larger than G
−1/2
F , the cross-sections derived

from Fermi theory cannot be valid.
It is therefore clear that the Fermi theory can be used only as a low-energy

approximation of some more complete theory. In this low energy regime, cross-
sections will of course be proportional to s, but this state of affairs will not
continue to hold for arbitrarily high energies. After some value of s, the more
fundamental theory will produce results which would be significantly different
from those of the Fermi theory. And, if this new theory is truly fundamental,
the results derived from it should have no problem with renormalizability and
unitarity.

14.9 Intermediate vector bosons

There is an easy way to get rid of the Fermi constant which has a negative mass
dimension. Instead of thinking of a basic vertex consisting of four fermion
fields, we can try to construct a closer analogy of QED. After all, electron–
electron or electron–positron elastic scattering also involves four fermions: two
in the initial state and two in the final state. But this was obtained from two
vertices, each of which contains the basic interaction between two fermion
lines and a photon line.

To extend this analogy to the realm of weak interactions, we notice that the
Fermi interaction Lagrangian consists of two currents. If, instead of a current
coupling to another current, we have a theory where the current couples to a
vector boson which in turn couples to the other current, we obtain diagrams
which would be analogous to the QED diagrams. The idea, developed in the
1950s, has been illustrated in Fig. 14.4 for a generic process. The vector boson
in the intermediate line was first called just the intermediate vector boson.
Gradually, the name W boson became popular because of its association with
weak processes.

It is clear that the W boson has to be complex. For example, consider
beta decay. The basic process involves the conversion of one neutron to a
proton, which should be on one side of the intermediate boson line. The
vertex therefore involves the neutron, the proton and a W boson. Since the
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(a) (b)

Figure 14.4: On the right panel, we see an interaction between four fermion fields
being mediated by an intermediate vector boson. Under certain conditions discussed in
the text, this can reduce to the four-fermion interactions shown on the left panel.

neutron is uncharged, the W boson will have to be charged in order that
electric charge is conserved. The magnitude of the electric charge must be 1
in units of the proton charge. The W boson with charge +1 can be called
W+. Its antiparticle will have charge −1 and can be denoted by W−. Because
they are obviously different, the W boson field must be complex.

To see how the intermediate vector boson can duplicate the successes of
the Fermi theory, let us consider the amplitude for the diagram involving the
vector boson. Let the vector boson interactions with the fermions be written
as

Lint = −gJµW †
µ + h.c. , (14.150)

where Jµ is a superposition of fermion field bilinears and g is a coupling
constant. The amplitude of Fig. 14.4b is given by

iM = (ig)2Jµ† iDµν J
ν , (14.151)

where in this formula, Jµ means the expression for the current, with the
fields substituted by spinors. The symbol Dµν stands for the propagator of
the intermediate vector boson. Assume, for the moment, that the vector
boson is massive, and its free Lagrangian is given by the Proca Lagrangian
given in Eq. (4.150, p 92) or its suitable generalization if W is complex. As
commented in Ex. 4.20 (p 92), the propagator for such a field can be obtained
in a straightforward manner, and the result is

Dµν(q) =
1

q2 −M2
W

(
−gµν +

qµqν
M2

W

)
. (14.152)

If we work in a regime where the components of the 4-vector q are much much
smaller compared to MW , we can take the leading term in the propagator only,
which is gµν/M

2
W . Putting this into Eq. (14.151), we find that in this regime,

the amplitude is of the form

g2

M2
W

Jµ†Jµ , (14.153)
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which is exactly how Fermi interactions look. In other words, in the interme-
diate vector boson theory, the Fermi constant appears as a combination of the
coupling constant and the vector boson mass, and the Fermi theory emerges
as an approximation for momentum transfers small compared to the vector
boson mass. When the momentum becomes high enough, we cannot use the
Fermi theory any longer, but rather should use the full form of the propagator
given in Eq. (14.152).

The coupling constant g is dimensionless in this theory, and so, by the naive
rule given in §4.3, this theory might appear to be renormalizable, just like QED
and QCD are. But the rule given earlier was not complete. There are two
conditions which need to be satisfied in order a theory to be renormalizable:

1. The propagator of any bosonic field falls off like 1/p2 for large momenta
and the propagator of any fermion field falls off like 1/p.

2. There is no coupling constant with negative mass dimension.

In the intermediate vector boson theory, the second condition is satisfied, but
the first condition is not. The term containing qµqν in the propagator of Eq.
(14.152) does not fall at all for large momenta. Recall that the problem with
UV divergences arises from high values of 4-momenta in the loops. The W
propagator does not decrease when the momentum becomes very high, so its
ultraviolet consequences are much worse. As a result, the infinities cannot be
tamed and the theory cannot be renormalized.

One might wonder at this point about why the qµqν term should matter.
After all, in Eq. (4.148, p 92) we obtained such a term in the photon propa-
gator as well, but commented that this term does not contribute to physical
amplitudes. Shouldn’t it be the same with massive vector fields as well?

The answer is no. The qµqν terms in the photon propagator vanish in the
amplitude because these are arbitrary due to the gauge invariance. This is
clearly seen from the expression for the photon propagator in Eq. (4.148, p 92):
the said terms can be altered arbitrarily by changing the gauge parameter ξ.
When we put in a mass term for the gauge boson, the gauge symmetry is lost.
In other words, presence of a gauge symmetry could make the offending terms
of the vector boson propagator irrelevant and make the theory renormalizable,
but the mass term is not gauge invariant. And we definitely need a mass
for the vector boson in order that we obtain Fermi theory as a low energy
approximation. This is the problem that confronted weak interaction theories
in the beginning of the 1960s.



Chapter 15

Spontaneous symmetry breaking

At the end of Ch. 14, we saw that we want some kind of gauge symmetry
associated with vector bosons in order that the theory is renormalizable. The
problem that comes with it is the mass of the vector boson, which ought to
vanish as a consequence of gauge symmetry. In this chapter, we will discuss
some scenarios where the consequences of a symmetry are not realized on the
physical observables. Such a phenomenon can happen because of a feature of
the ground state of the system, and is called spontaneous symmetry breaking.

15.1 Examples of spontaneous symmetry
breaking

In this section, we present several examples of spontaneous symmetry break-
ing. First, a general comment. If spontaneous symmetry breaking occurs
due to the expectation value of a vector field, the ground state must prefer a
certain direction in spacetime, which would mean a breaking of Lorentz in-
variance as well. The same is true if, instead of a vector field, any non-trivial
representation of the Lorentz group is used. We want to deal with Lorentz
invariant theories. In this case, we can consider non-trivial ground state con-
figuration for scalar fields only. All examples that we present in this section
contain only scalar fields.

15.1.1 Breaking a Z2 symmetry

Consider the following Lagrangian involving a real scalar field φ:

L =
1

2
(∂µφ)(∂µφ)− 1

2
µ2φ2 − λ

4
φ4 . (15.1)

The Lagrangian is obviously invariant under a transformation

φ→ −φ . (15.2)

443
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µ2 > 0µ2 < 0

V (φ)

φ

Figure 15.1: Shape of the potential of Eq. (15.4).

Along with the identity transformation, this forms a Z2 symmetry.
Let us look at the parameters in the Lagrangians. There are two of them,

which we have called µ2 and λ. Both need to be real in order that the
Lagrangian is hermitian. To obtain more information about these parameters,
let us write Eq. (15.1) as

L =
1

2
(∂µφ)(∂µφ) − V (φ) , (15.3)

where all non-derivative terms have been dumped into a collection

V (φ) =
1

2
µ2φ2 +

λ

4
φ4 . (15.4)

This collection is usually called the potential of the theory. To complete
the analogy, the derivative terms are sometimes called the kinetic terms, in
analogy with the fact that the time derivative terms represent the kinetic
energy of a non-relativistic particle where the potential energy usually does
not contain derivatives of the co-ordinates.

From the exercise leading to Eq. (4.119, p 84), we can conclude that the
Hamiltonian is given by

H =
1

2

(
∂φ

∂t

)2

+
1

2

(
∇φ
)2

+ V (φ) . (15.5)

If λ were negative, the Hamiltonian would become more and more negative
with increasing values of φ. Classically speaking, the value of the Hamilto-
nian would go all the way down to the negative infinity. This would be an
impossible system to deal with, because it would not have any ground state.
Thus, for a physically viable system, we must have λ > 0.
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There is no such constraint on the other parameter in the Lagrangian. We
have called it µ2 in order to indicate that its dimension is that of squared mass.
It does not imply that it is the square of a real parameter µ. Therefore µ2,
the parameter in the Lagrangian, can be positive or negative. If µ2 happens
to be positive, it can be interpreted as the square of the mass µ of the particle
whose field is φ, as we have done before while introducing field theoretical
Lagrangians in Ch. 4. What happens if µ2 is negative?

Let us try to answer this question by first finding the value of φ in the
ground state. Looking at Eq. (15.5), we see that the derivative terms are non-
negative, so they can be minimized when they are zero, i.e., in a configuration
where φ is independent of the spacetime co-ordinate. The minimum of V (φ)
should occur where

∂V

∂φ
= 0 . (15.6)

For the potential given in Eq. (15.4), this condition is

φ(µ2 + λφ2) = 0 . (15.7)

The solutions of this equation are

〈φ〉 = 0, ±v , (15.8)

where

v =

√
−µ2

λ
. (15.9)

If µ2 > 0, the only real solution is 〈φ〉 = 0. When µ2 < 0, all three are
real solutions, as seen from Fig. 15.1, but the solution at vanishing field value
is really a local maximum. The minima of the system occur for 〈φ〉 = ±v,
which means that there are two degenerate minima, and either of them can
correspond to the ground state of the system. No matter which one it is, we
see that the field φ cannot be treated as a quantum field. Quantum fields
can be expanded in creation and annihilation operators, as in Eq. (4.12, p 64)
for example. The vacuum expectation value (VEV) of such a field is always
zero, because, as defined in Eq. (4.129, p 86), the annihilation operator acting
on the vacuum to the right produces zero, and the creation operator does the
same by acting on the vacuum state to the left. So the field φ that appears
in the Lagrangian of Eq. (15.1) cannot be a quantum field.

Suppose we find the system in the vacuum at φ = +v. We now define a
field H(x) through the relation

φ(x) = v +H(x) . (15.10)

Obviously, VEV of the field H(x) vanishes, so that it can be a quantum field.
We can say that it represents the fluctuation of the field φ(x) around its
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minima denoted by v. In order to use the machinery of quantum field theory
with the field H(x), we should rewrite the Lagrangian of Eq. (15.1) in terms
of this field. Eliminating the parameter µ2 with the use of the definition of v,
we obtain

L =
1

2
(∂µH)(∂µH)− λv2H2 − λvH3 − λ

4
H4 , (15.11)

apart from a constant proportional to v4 which is of no importance. Note that
the terms linear in H have canceled because of the minimization condition,
and the co-efficient of the quadratic term indicates that the quantum of the
field H has a mass MH given by

M2
H = 2λv2 . (15.12)

But more importantly, notice that there is a cubic term in the Lagrangian,
which means that the Lagrangian is not invariant under the transformation

H → −H . (15.13)

It is easy to guess why this happens. As soon as we select one of the two
minima and denote the fluctuations around this one as the quantum field, we
lose the symmetry. Choice of the vacuum thus results in a lower symmetry
in the Lagrangian. This is the essence of the phenomenon called spontaneous
symmetry breaking.

One might ask, if the Z2 symmetry is not there in the Lagrangian of Eq.
(15.11) involving the quantum field H(x), what is the point of talking about
it? What difference would it make if we started with a Lagrangian of the field
H(x) without paying attention to any symmetry at all? The answer lies in
the fact that the symmetry of the Lagrangian of Eq. (15.3) contained only
two parameters, µ2 and λ, because of the Z2 symmetry. The Lagrangian of
Eq. (15.11) contains only those two parameters, sometimes in the disguise
of the VEV v. Had we tried to write down a Lagrangian of H(x) without
paying attention to any symmetry, the co-efficients of the quadratic, cubic
and quartic terms would have been independent of each other, and therefore
the Lagrangian would have contained three parameters. In the Lagrangian
of the model after spontaneous symmetry breaking, the three parameters are
related. Thus, even though the original Z2 symmetry has been broken and
therefore absent in Eq. (15.11), it has left its marks in the relation between
various parameters of the model.

15.1.2 Breaking a U(1) symmetry

Let us now discuss another example involving a complex scalar field φ(x), and
a Lagrangian

L = (∂µφ)†(∂µφ)− V (φ) , (15.14)
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Figure 15.2: Shape of the potential of a complex scalar field.

where

V (φ) = µ2φ†φ+ λ(φ†φ)2 . (15.15)

Clearly, this Lagrangian has a U(1) symmetry, corresponding to phase rota-
tions of the complex scalar field:

φ(x)→ eiθφ(x) . (15.16)

As for the Lagrangian of §15.1.1, the parameter λ has to be real and positive.
The other parameter, µ2, has to be real but not necessarily positive. If it
happens to be negative, the minima of the potential is obtained at

∣∣∣ 〈φ〉
∣∣∣ =

v√
2
, (15.17)

where v is given by Eq. (15.9). As we see, there are an infinite number of
degenerate minima, related by the phase rotation of Eq. (15.16). The shape
of the potential has been shown in Fig. 15.2.

Suppose the system chooses the minimum at 〈φ〉 = v/
√

2. If we write

φ(x) =
1√
2

(
v +H(x) + iζ(x)

)
, (15.18)

the fields H(x) and ζ(x) will be quantum fields with zero vacuum expecta-
tion values. We can rewrite the Lagrangian of Eq. (15.14) in terms of these
quantum fields. Ignoring constant terms proportional to v4, we obtain

L =
1

2
(∂µH)(∂µH) +

1

2
(∂µζ)(∂

µζ)

−λv2H2 − λvH(H2 + ζ2)− λ

4
(H2 + ζ2)2 . (15.19)

Obviously, this Lagrangian does not have the U(1) symmetry because it rep-
resents the fluctuations around a minimum along the real axis. Choice of this
minimum breaks the symmetry spontaneously.
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15.1.3 Breaking a non-abelian symmetry

We now try the same thing with a Lagrangian having a bigger symmetry.
The mathematical steps are more or less the same. The difference is that,
non-abelian symmetries admit matrix representations of various different di-
mensions. Depending on which representation of fields develop a VEV, we
can expect to see different patterns of symmetry breaking.

As an example, consider three real scalar fields φ1, φ2 and φ3 which trans-
form like a triplet of an SU(2) symmetry. Introducing the notation

Φ =



φ1

φ2

φ3


 , (15.20)

we can write the Lagrangian as

L =
1

2
(∂µΦ⊤)(∂µΦ)− V (Φ) , (15.21)

with

V (Φ) =
1

2
µ2Φ⊤Φ +

λ

4

(
Φ⊤Φ

)2

. (15.22)

For µ2 < 0, the minimum of the potential occurs for

〈
Φ⊤Φ

〉
= v2 , (15.23)

where v is still given by the same expression as in Eq. (15.9). Suppose the
system settles down at the minimum

〈φ3〉 = v , 〈φ1〉 = 〈φ2〉 = 0 . (15.24)

We can then use φ1 and φ2 as quantum fields, and define

φ3(x) = v +H(x) (15.25)

so that H(x) can be used as a quantum field. In terms of the quantum fields,
the Lagrangian is

L =
1

2
(∂µφ1)(∂µφ1) +

1

2
(∂µφ2)(∂µφ2) +

1

2
(∂µH)(∂µH)

+
1

2
λv2
(
φ2

1 + φ2
2 + (v +H)2

)
− 1

4
λ
(
φ2

1 + φ2
2 + (v + H)2

)2

. (15.26)

Even without expanding the terms out, we see one feature in what we have
written. The Lagrangian is certainly not symmetric in the full SU(2) trans-
formations involving the three quantum fields. However, the fields φ1 and φ2

always appear in the combination φ2
1 +φ2

2, which means that even after spon-
taneous symmetry breaking, there is a remnant symmetry in the Lagrangian,
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corresponding to rotations in the φ1-φ2 plane, or equivalently a phase trans-
formation of the form

φ1 + iφ2 → eiθ(φ1 + iφ2) . (15.27)

In other words, in this case the symmetry SU(2) breaks to a U(1) symmetry.

2 Exercise 15.1 Complete the calculation for the terms in the potential
in Eq. (15.26) and show that the fields φ1 and φ2 are massless in the
broken theory. Find also the mass of the field H.

2 Exercise 15.2 Consider an SU(2) invariant theory involving a dou-
blet ϕ of complex scalar fields, and

V (ϕ) = µ2ϕ†ϕ+ λ
“

ϕ†ϕ
”2

. (15.28)

Show that in this case, there is no remnant symmetry of the La-
grangian, and that three of the four real fields that appear in the two
complex components of ϕ are massless.

2 Exercise 15.3 Consider a set of N scalar fields, and a Lagrangian
having an O(N) symmetry. Show that a non-trivial vacuum expecta-
tion value can break the symmetry to O(N − 1).

15.2 Goldstone theorem

We now turn the attention of the reader to a feature of the Lagrangians
obtained after spontaneous symmetry breaking. Start with Eq. (15.19). Note
that it has a mass term for the field H , but none for the field ζ: the latter is
massless after spontaneous symmetry breaking. Massless particles appeared
in other examples as well. As we mentioned, in the model of §15.1.3, the fields
φ1 and φ2 turned out to be massless. In Ex. 15.2, we commented that there
should be three massless bosons.

All of these are examples of Goldstone theorem. The theorem states that,
if a Lagrangian is invariant under a continuous symmetry group that has
n generators, and if its ground state is symmetric under a continuous group
containing n′ generators, there should be n−n′ massless states in the spectrum
of the theory.

2 Exercise 15.4 Identify the massless scalars in the problem of
Ex. 15.3. Verify that their number is indeed equal to the difference of
the numbers of generators of the groups O(N) and O(N − 1). [Hint :

The number of generators of an orthogonal group was given in Ex. 3.9 (p 43).]

Let us give a simple (but incomplete) proof of the theorem. Suppose we
have a theory with a number of scalar fields which we denote by φk. The
scalar potential is denoted by V (φ), where φ in parentheses symbolizes all
the scalar fields. If the potential is invariant under some continuous group, it
means that there exist infinitesimal changes in the fields, δφk, which keep the
potential invariant:

∂V

∂φk
δφk = 0 . (15.29)
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In terms of generators, the changes in the fields can be written as

δφk = −i(Ta)klθaφl , (15.30)

where θa are the parameters that generate the change, and Ta are the ma-
trix representations of the generators. Since the invariance is guaranteed for
arbitrary values of θa, Eq. (15.29) implies

∂V

∂φk
(Ta)klφl = 0 . (15.31)

Taking another derivative of this equation with respect to φk′ , we obtain

∂V

∂φk
(Ta)kk′ +

∂2V

∂φk∂φk′

(Ta)klφl = 0 . (15.32)

Let us now ask ourselves what this equation implies at the minimum of
the scalar potential, 〈φ〉. The first term is zero there. Thus, if

(
Ta 〈φ〉

)
k
6= 0 (15.33)

for some generator Ta, we must have

∂2V

∂φk∂φk′

∣∣∣∣
φ=〈φ〉

= 0 (15.34)

for any value of k′. That means that the matrix of second derivatives would
have a null row, and accordingly a null eigenvalue. The second derivative of
the potential is the mass. So, if we write the quadratic terms involving all
scalar fields in the form of a matrix, it has a zero eigenvalue corresponding to
any generator for which the inequality of Eq. (15.33) is valid.

Note that if the ground state had the same symmetry as the original
Lagrangian, i.e., group elements acting on the ground state would have kept
it invariant, we should have had

Ta 〈φ〉 = 0 . (15.35)

This relation is still true for the generators of the part of the original symmetry
group which would remain unbroken. For these generators, Eq. (15.34) does
not hold. This means that we obtain a zero mass field corresponding to any
generator that is not the part of the symmetry group of the ground state.

This is Goldstone theorem, but, as we said, this proof is incomplete. It
really does not show the full strength of the theorem. Goldstone theorem
predicts that if a continuous symmetry is spontaneously broken, there will
be states whose energies go to zero when the 3-momentum goes to zero. If
we stick to theories where Lorentz symmetry is not broken, such states must
be scalars, as explained earlier. They are called Goldstone bosons . But the
strength of the theorem lies in the fact that such scalar states would emerge
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in the spectrum even if the Lagrangian contains no scalar or an insufficient
number of scalars. We do not attempt to give a proof for this more general
state of affairs.

One should also note that Goldstone theorem says nothing about dis-
crete symmetries. The crucial step in our proof is the use of small changes
of the fields characterized by Eq. (15.30), which does not work for discrete
transformations. One should not expect any massless modes when discrete
symmetries are spontaneously broken. Indeed, in the example of §15.1.1, we
did not encounter any massless particle.

2 Exercise 15.5 Consider the examples of symmetry breaking given in
§15.1. For each case, explain the number of Goldstone bosons by
counting the generators of the original symmetry group and the group
that remains intact after spontaneous symmetry breaking.

15.3 Interaction of Goldstone bosons

We have noticed that, after symmetry breaking, the Lagrangian does not
contain any mass term for Goldstone bosons. We now point out a stronger
statement about Goldstone bosons. To make the point, we go back to the
model of §15.1.2 as an example. We expressed the complex scalar field φ in
terms of two real fields through Eq. (15.18). Instead, suppose we take the
representation

φ(x) =
1√
2

(
v + H̃(x)

)
exp

(
iζ̃(x)/v

)
. (15.36)

This is the operator analog of writing a complex number in terms of a mod-
ulus and a phase, whereas Eq. (15.18) gives the representation of a complex
number in terms of its real and imaginary parts. Note that if we expand the
exponential of Eq. (15.36) in a power series, we obtain

φ(x) =
1√
2

(
v + H̃(x) + iζ̃(x) + · · ·

)
, (15.37)

i.e., up to first order in the fields, H̃ = H and ζ̃ = ζ. There is a theorem
in quantum field theory which says that if we have a set of fields ΦA(x) and
we define a new set of fields Φ̃A(x) which are functions of the original fields
ΦA(x), and the functions are of the form

Φ̃A(x) = ΦA(x) + (higher order terms in the fields) , (15.38)

then all on-shell matrix elements calculated in the two representations will be
equal. We will not prove this reparametrization theorem here: we will only
use the present model to provide a compelling example for it.

In the present model, the theorem implies that the fields H̃ and ζ̃ are just
as good in describing the physical implications as the original fields H and ζ.
In view of this, we will omit the tilde sign over the two real fields from now
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on. If we now try to put the expression of Eq. (15.36) into the Lagrangian
given in Eqs. (15.14) and (15.15), we find that the field ζ(x) disappears in the
terms in the potential V . For the kinetic term, we note that

∂µφ =
1√
2

(
∂µH(x) +

v +H(x)

v
i∂µζ

)
exp

(
iζ(x)/v

)
. (15.39)

So the Lagrangian can be written as

L =
1

2
(∂µH)(∂µH) +

(v +H)2

2v2
(∂µζ)(∂

µζ)− λv2H2 − λvH3 − 1

4
λH4 .

(15.40)

Note what has happened! In this form, the field ζ appears in the Lagrangian
only through its derivatives.

We could have guessed it earlier. The Lagrangian has a global U(1) sym-
metry, which means that any constant phase of a field is irrelevant. Our
representation of Eq. (15.36) treats the field ζ as a phase. So, if ζ were really
constant throughout the spacetime, it should have disappeared altogether be-
cause of the U(1) symmetry. Of course ζ is not a constant; it is a field. So
its derivatives can contribute to the Lagrangian, but the overall constant part
cannot.

This is the stronger statement indicated earlier. The field ζ, which is
the Goldstone boson, not only lacks a mass term; it lacks all non-derivative
interaction terms as well. There are only terms involving the derivative of ζ,
which include the usual kinetic term for the Goldstone boson. In addition,
there are the following interactions involving the Goldstone boson:

L
(ζ)
int =

(
H

v
+
H2

2v2

)
(∂µζ)(∂

µζ) . (15.41)

No matter which process we consider involving the Goldstone bosons, the
derivatives on the fields will deliver momentum factors to the amplitude. In
other words, we find the important result that the amplitude of any process
involving a Goldstone boson contains factors of momentum and vanishes in
the limit where the 4-momentum vanishes.

This is obvious in a representation like that in Eq. (15.36). By the
reparametrization theorem, it should also be true in the representation of
Eq. (15.18), though not so obvious. To provide an example of how the
reparametrization theorem works, consider the decay of the H particle into
two Goldstone bosons:

H(p)→ ζ(p1) + ζ(p2) , (15.42)

where in parentheses, we have written the notations for the 4-momenta of the
different particles that we are going to use. In the polar representation of
the field φ, this process occurs at the tree-level through the first interaction
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Figure 15.3: Tree-level diagrams contributing to the decay of H into two Goldstone
bosons. For the sake of convenience, we have denoted the H line with longer dashes
and the ζ lines with shorter dashes.

term appearing in Eq. (15.41). The diagram is shown in Fig. 15.3, and the
amplitude is given by

iM = − 2ip1 · p2

v
. (15.43)

The momentum factors appear in the Feynman rule of the Hζζ vertex from
the derivatives, as discussed in §4.10. The factor of 2 appears because there
are two ζ fields in the interaction term, both of which can create or annihilate
the same particle.

Now let us find the same amplitude in the linear representation of the
field given in Eq. (15.18). The Lagrangian in terms of the fields H and ζ,
given in Eq. (15.19), contains an interaction term −λvHζ2, which should be
responsible for the decay in question. Noting that there are two factors of
the field ζ, the Feynman rule for the vertex can be written as −2iλv, i.e., the
Feynman amplitude is

iM = −2iλv . (15.44)

On the face of it, it does not appear to depend on the 4-momenta of the
Goldstone bosons until we recall a few things. First, Eq. (15.19) shows that
the H boson has a mass:

M2
H = 2λv2 . (15.45)

Secondly, the on-shell conditions for the particles are given by

p2 = M2
H , p2

1 = p2
2 = 0 . (15.46)

Combining these two conditions, we obtain

2λv =
1

v
M2

H =
1

v
(p1 + p2)2 =

2

v
p1 · p2 . (15.47)

This shows that the expressions for the amplitude given in Eqs. (15.43) and
(15.44) are equal, vindicating the reparametrization theorem.
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(A) (B) (C) (D)

Figure 15.4: Tree-level diagrams contributing to the process of Eq. (15.48). The
convention of long and short dashes has been explained in Fig. 15.3. The arrows help
us identify which particles are incoming and which are outgoing.

2 Exercise 15.6 Consider the elastic scattering of the Goldstone bosons
against the bosons represented by the field H, i.e., the process

H(p) + ζ(k) → H(p′) + ζ(k′) . (15.48)

At the tree level, there are four diagrams that contribute to this pro-
cess, as shown in Fig. 15.4. Calculate the amplitude in both repre-
sentations and show that they are equal.

15.4 Higgs mechanism

So far in this chapter, we have talked only about global symmetries. What
happens if a theory with a local (or gauge) invariance experiences spontaneous
symmetry breaking? Let us try to answer the question by considering a gauge
theory with a U(1) symmetry, i.e., a gauged version of the model of §15.1.2.

15.4.1 Gauge boson mass

The scalar potential of this model is the same as that given in Eq. (15.15).
The Lagrangian is given by

L = (Dµφ)†(Dµφ)− V (φ) − 1

4
FµνF

µν , (15.49)

where Dµ is the gauge covariant derivative,

Dµ = ∂µ + ieAµ , (15.50)

and Fµν is the field-strength tensor constructed out of the gauge field Aµ.
Let us now say that the scalar potential develops a minimum given by Eq.

(15.17), and once again we rewrite everything in terms of the quantum fields
shown in Eq. (15.18). The term involving covariant derivatives will now look
like

(Dµ 〈φ〉)†(Dµ 〈φ〉) + · · · , (15.51)



§15.4. Higgs mechanism 455

where the other terms involve the quantum fields. Of course ∂µ 〈φ〉 = 0, since
〈φ〉 is defined through the parameters µ2 and λ and is therefore independent
of the spacetime co-ordinates. So this expression can be written as

1

2
e2v2AµAµ + · · · . (15.52)

This is a non-derivative quadratic term in the gauge field, and should therefore
indicate a non-zero mass for the gauge field. In fact, the quadratic terms
involving only the gauge field are given by

−1

4
FµνF

µν +
1

2
e2v2AµAµ . (15.53)

This is exactly the Proca Lagrangian, introduced in Eq. (4.150, p 92), that
applies to a vector field of mass

MA = ev . (15.54)

We then reach the conclusion that when spontaneous symmetry breaking
takes place, the gauge boson obtains a mass. Earlier, in Ch. 14, we men-
tioned that a direct mass term for a gauge boson is problematic. Here we are
faced with a different situation: the gauge invariant Lagrangian of Eq. (15.49)
does not have a mass term for the gauge boson, but the ground state after
spontaneous symmetry breaking contains such a term. This consequence of
spontaneous symmetry breaking of gauge theories was noticed by a number
of people around the same time: Englert, Brout, Higgs, Kibble, Guralnik,
Hagen. Commonly, from this long list, only the name of Higgs is used to
call this phenomenon the Higgs mechanism. The physical consequences of
this mechanism are different from those of having a mass term in the original
Lagrangian, as we will gradually see in this section.

15.4.2 Gauge fixing

So far, we have described only one term of the symmetry-broken Lagrangian,
viz., where we used the vacuum expectation value of the scalar field for both
occurrences of φ in the covariant derivative term. Let us now consider another
set of terms, where we take the vacuum expectation value on one side and the
derivative terms which act only on the quantum fields on the other. In other
words, we are considering the terms

1

2

(
Dµv

)†(
∂µ(H + iζ)

)
+

1

2

(
∂µ(H + iζ)

)†(
Dµv

)
. (15.55)

Since Dµv = ieAµv, as argued above, these terms can be written as

−1

2
ievAµ

(
∂µ(H + iζ)

)
+ h.c. = MAAµ∂

µζ , (15.56)

using Eq. (15.54) in the last step. This is a strange term indeed! In a quantum
field theoretic interpretation, this term can annihilate the gauge boson field
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and create the ζ field. But it is a quadratic term, so it should be part of the
free Lagrangian. We seem to have a problem to determine whether it belongs
to the free Lagrangian of Aµ or that of ζ. As it stands, it cannot be either.

However, already in Ch. 4 we mentioned that the free Lagrangian of the
gauge boson field is problematic, and we must add a gauge-fixing term in
order to make it work. Suppose, in this case, we add the gauge-fixing term

Lgf = − 1

2ξ
(∂µA

µ − ξMAζ)
2 (15.57)

to the Lagrangian given in Eq. (15.49). The parameter ξ is similar to the
parameter introduced in Eq. (4.106, p 82). It can have arbitrary values, and
the physical amplitudes should be free of this parameter. It can be called a
gauge parameter .

Let us now look at the cross term from Eq. (15.57) along with the patho-
logical quadratic term encountered in Eq. (15.56). Together, they give

MA∂
µ(Aµζ) . (15.58)

This is a total derivative term, and is therefore of no consequence. This is
good news: we have solved the problem of quadratic terms involving different
fields.

Let us now look at the quadratic terms involving the gauge field only.
These are:

L
(A)
0 = −1

4
FµνF

µν − 1

2ξ
(∂µA

µ)2 +
1

2
M2

AA
µAµ . (15.59)

We can follow the method of §4.10.2 to find the propagator of the gauge boson
field, and obtain

iDµλ(p) = − i

p2 −M2
A

(
gµλ −

(1− ξ)pµpλ

p2 − ξM2
A

)
. (15.60)

And let us also look at the quadratic terms involving in the scalar field ζ,
which was involved with the gauge field in the pathological combination of
Eq. (15.56). These terms are

L
(ζ)
0 =

1

2
(∂µζ)(∂

µζ)− 1

2
ξM2

Aζ
2 . (15.61)

The first of these terms comes from the derivative term of the scalar field in
Eq. (15.49), and the second term comes from the gauge-fixing term of Eq.
(15.57). Together, they imply the following propagator for the scalar field:

i∆(ζ)(p) =
i

p2 − ξM2
A

. (15.62)

2 Exercise 15.7 Verify Eqs. (15.60) and (15.62).
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15.4.3 Unitary gauge

The gauge parameter ξ introduced in Eq. (15.57) is arbitrary. We can use
different values of it to gain insight into the physics of spontaneous symmetry
breaking. Here we consider the limit ξ → ∞, which is called the unitary
gauge. Notice that in this limit, the gauge boson propagator assumes the
form of the propagator obtained from the Proca Lagrangian which was given
in Eq. (4.151, p 92). Also notice that the propagator for the ζ field becomes
zero, which means that any Feynman diagram containing the ζ field as an
internal line has a vanishing amplitude.

The situation is easily understood if, instead of the representation of the
quantum fields given in Eq. (15.18), we consider the polar representation

φ(x) =
1√
2

(
v +H(x)

)
exp

(
iζ(x)/v

)
. (15.63)

This is the same as that given in Eq. (15.36), except that we have omitted
the tilde signs in view of the reparametrization theorem. Local symmetry
means that we change the phase of the field φ by any spacetime dependent
function without having any effect on the physical consequences of the theory.
So suppose we change the phase by exp(−iζ(x)/v). With this choice, we can
write

φ(x) =
1√
2

(
v +H(x)

)
. (15.64)

If we substitute this into the Lagrangian, the field ζ would completely disap-
pear from the Lagrangian.

Recall that ζ is the field that would have become the Goldstone boson
if we were talking of a global symmetry. For the global symmetry case, we
found that the Goldstone bosons can appear in the Lagrangian only through
their derivatives. In the case of local symmetry, we find that the restrictions
become more severe: the field that could have been the Goldstone boson if
the symmetry were global has no physical consequences at all. In the unitary
gauge that we have been considering, it does not appear anywhere in the
Lagrangian.

There is a connection between the disappearance of one of the scalar fields
and the appearance of mass of the gauge boson. A massless gauge boson
such as the photon has only two degrees of polarization, as explained in §a).
But a vector boson has spin equal to 1, so one should expect three indepen-
dent components of it. Because of the gauge symmetry, only the components
transverse to the direction of the 3-momentum are allowed, the longitudinal
component does not exist. Once the gauge symmetry is broken and the gauge
boson acquires mass, there is nothing to prevent the longitudinal component.
The massive gauge boson has indeed three independent degrees of freedom, or
three polarization states. But if the parameter µ2 appearing in the scalar po-
tential happened to be positive, the gauge boson would have had two degrees
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of freedom. Imagine that we can somehow change the parameter µ2 contin-
uously. As it changes from positive to negative, the gauge boson becomes
massive and therefore needs three degrees of freedom. Where would it obtain
the extra degree of freedom? The answer lies in the disappearance of the
would-be Goldstone boson field: it disappears, thereby reducing one degree
of freedom in the scalar sector. We can say that one scalar field supplies the
longitudinal polarization component of the gauge boson. Figuratively, one
says that the gauge boson eats up one scalar field.

15.4.4 Renormalizablity

This figurative speech works only in the unitary gauge, i.e., when the gauge
parameter ξ is infinitely large. For any finite value of ξ, the propagator of
the ζ field does not vanish, and therefore diagrams with internal ζ lines must
be taken into account. As Eq. (15.62) shows, the mass parameter appearing
in this propagator is ξM2

A. Since ξ is an unphysical parameter, this is an
unphysical mass. Hence, in any gauge with finite ξ, the field ζ is called the
unphysical Higgs. The field is unphysical because it does not represent any
physical particle, and therefore cannot appear as external legs of any Feynman
diagrams representing a physical process. Some people also prefer to call this
mode the would-be Goldstone boson, alluding to the fact that this field would
have been the Goldstone boson if the symmetry were global rather than local.

It almost seems that the gauges with finite ξ are more complicated be-
cause we need to deal with unphysical internal lines in Feynman diagrams.
But there is a pay-off. Notice that for any finite ξ, the gauge boson propagator
indeed falls off as 1/p2 for large momenta. So does, in fact, the propagator
of the unphysical Higgs. Added to the fact that there is no coupling with
negative mass dimension in the Lagrangian, we see that this theory satisfies
both conditions needed for renormalizability stated on page 442. That is why
the gauge condition with an arbitrary finite value of ξ is called the renormal-
izable ξ-gauge or the Rξ-gauge. For the purpose of performing calculations,
it is therefore easier to use these gauges. Unless otherwise stated, we would
always use the value ξ = 1, which is called the ’t Hooft–Feynman gauge.

We thus see this dual aspect of these theories. For finite ξ, the theory is
renormalizable, although the particle interpretations are somewhat obscure
because of the presence of unphysical bosons. On the other hand, for infinite
ξ, the particle spectrum is clear, although renormalizability is not obvious.
But since the physical amplitudes do not depend on ξ, the theory must be
both. This means that we have found a renormalizable theory with massive
gauge bosons through spontaneous symmetry breaking.



Chapter 16

Standard electroweak model with

leptons

At the end of Ch. 14, we commented that it is necessary to have massive
vector particles in order to describe weak interactions. We also commented
that without a gauge symmetry, a theory with a massive vector boson is not
renormalizable. On the other hand, gauge theory precludes any mass term
for gauge bosons. The way out of this apparent impasse was sought through
spontaneously broken gauge theories: a gauge symmetry would ensure renor-
malizability, but it would be broken spontaneously so that the gauge bosons
would be massive. The idea was successfully employed by Weinberg and
Salam in 1967–68, and ’t Hooft proved the renormalizability of such models
in 1971. The model that grew out of these ideas is now known as the stan-
dard electroweak model , because it described both weak and electromagnetic
interactions. Along with the theory of strong interactions in the form of quan-
tum chromodynamics or QCD, it provides the standard model of all particle
interactions except gravity. In this chapter, we will describe the standard
electroweak theory in the form that it was originally proposed — involving
only the leptons and considering neutrinos to be massless. Quarks will be
accommodated in this theory in Ch. 17, and the question of neutrino mass
will be discussed in Ch. 22.

16.1 Chiral fermions and internal symmetries

One novel aspect of the standard electroweak theory is spontaneous symmetry
breaking, which has been introduced in general terms in Ch. 15 and will be
discussed in this particular context in §16.3. The other novel aspect is the
subject of this section.

We have introduced chiral projections of fermion fields in §14.2.2. We have
shown that any term involving a number of fermion fields can be rewritten in
terms of chiral projections by using Eq. (14.19, p 416). Example of the mass
term was shown in Eq. (14.24, p 417).

459
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It was also shown there that a left-chiral or a right-chiral field retains its
chirality under Lorentz transformations. Thus, a fermion field with a given
chirality forms an irreducible representation of the proper Lorentz group. In
fact, these are the irreducible representations (1

2 , 0) and (0, 1
2 ) mentioned in

Ch. 3. If a left-chiral field is said to transform like the (1
2 , 0) representation, a

right-chiral field would transform like the (0, 1
2 ) representation.

An internal symmetry is said to be one which commutes with the Poincaré
group. Since the Lorentz group is a subgroup of the Poincaré group, an
internal symmetry must commute with the proper Lorentz group. This means
that internal symmetry operations should not change the property of any
object under Lorentz transformations, and vice versa. For example, if we
perform a Lorentz transformation, the electric charge of a particle should not
change. By the same token, if we have a multiplet of some non-abelian internal
symmetry, each of its components must transform like the same irreducible
representation of the proper Lorentz group.

A corollary of this statement is that if we have two different irreducible
representations of the proper Lorentz group, there is no reason that they
should transform the same way under an internal symmetry. Given a fermion
field ψ(x), there is no fundamental requirement that tells us that its left-chiral
projection ψL(x) and the right-chiral projection ψR(x) should transform the
same way under an internal symmetry.

In gauge theories, internal symmetries govern the interactions. Thus, if
ψL(x) and ψR(x) have different transformations under an internal symmetry,
they will have different interactions.

To see why this is of paramount importance, let us recall the parity trans-
formation property of fermion fields described in §6.2.4. Using linearity of the
parity operator and Eq. (6.23, p 155), we find

PψL(x)P−1 = PLψ(x)P−1 = LPψ(x)P−1

= LηP γ0ψ(x̃) = ηP γ0ψR(x̃) . (16.1)

This equation means that ψR is the parity transform of ψL. Thus, if ψR and
ψL possess different interactions, it signals parity violation. So, if we consider
an internal symmetry under which ψR and ψL have different transformation
properties, the theory would be parity violating. This is the kind of theory
we need for weak interactions.

16.2 Leptons and the gauge group

In order to introduce the basic idea without getting into a lot of details,
we will consider just one generation of leptons here. The first generation
contains the electron and the electron-neutrino.As mentioned in Ch. 14, the
measured neutrino helicity is −1, within experimental error bars. Thus we
can take the neutrinos to be left-chiral. The electron of course has mass, so
we need both chiralities in order to write the mass term in the Lagrangian
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in the manner shown in Eq. (14.24, p 417). In short, in the first generation
of leptons, we have the three chiral fields, νL, eL and eR, writing the fields
by the standard notations for the particles involved. Since we are discussing
only one generation of fermions in this section, we are not putting a subscript
on the neutrino to indicate that it is the electron-neutrinoor νe. That extra
subscript is implicit.

In a non-abelian gauge theory, gauge interactions can change one member
of a multiplet to another. This is shown, e.g., in the gauge interaction vertex
of Fig. 11.4 (p 316), where the ith member changes to the jth member through
the interaction with a gauge boson. Since gauge interactions cannot change
chirality, eR cannot be in the same multiplet with either eL or νL. On the
other hand, eL and νL can be in a multiplet, and in fact they should be,
because we know that in processes like the beta decay, the electron and the
antineutrino are both produced, which means that the interaction involves
both the electron and the neutrino.

Having decided this far, let us now wonder what the gauge bosons might
be. We have already seen, in Ch. 14, that the W+ and the W− bosons can be
thought of as mediators of weak interactions. We therefore already have two
candidate gauge bosons. The problem is that there is no non-abelian group
which has only two generators. If we are willing to go up to three gauge
bosons, we can have the gauge group SU(2). But then, what will be the third
gauge boson?

Leptons, of course, have electromagnetic interactions as well, which are
mediated by photons. So we can think of building a model that will describe
both electromagnetic and weak interactions of leptons, with the W± and the
photon as the gauge bosons. But this option has a serious problem, and that
comes with the leptonic fields. As we said, eL and νL can belong to a multiplet.
Suppose the multiplet contains only these two fields, i.e., is a doublet. If we
now write the gauge interactions in the standard way mentioned in Ch. 11, we
will find that there will be an interaction of the form νLγ

µ
νLAµ, i.e., it will

imply that the neutrino couples to the photon field directly. We know that
the neutrinos have no electric charge, and therefore such interaction terms
should not be present. Thus, this possibility is obviously ruled out unless the
fermion multiplets are bigger. For example, if the fermions appear in a triplet
whose T3 = 0 component is the neutrino, the neutrino does not couple to the
photon. However, we then need extra unknown fermions to fill the triplet.
This option was viable in the 1960s, but has been ruled out since then by
experimental results.

We therefore have to try a gauge group with four gauge bosons. Three of
the gauge bosons can be associated with the generators of an SU(2) group,
and the fourth one to the generator of a U(1) group, i.e., the gauge group
would be SU(2)×U(1). Some people call it U(2). Group theoretically, there
is nothing wrong in calling it so, as we have noted in Eq. (3.9, p 39). But it
has to be remembered that transformations in the SU(2) part do not affect
the U(1) phase, and similarly phase transformations in the U(1) part do not
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have any implications on the SU(2) properties of an object. The two parts
of the group commute, and are therefore independent. Among other things,
it means that the two parts can have independent gauge coupling constants,
and all components of an entire SU(2) multiplet must have the same value of
the U(1) charge.

Under the SU(2) part of the gauge group, the left-chiral leptons would
form a doublet representation and the right-chiral one, being alone, will have
to be a singlet. All fields will also have a quantum number that would indicate
how they transform under the U(1) part of the gauge group. Obviously this
quantum number cannot be the electric charge, because it must be the same
for νL and eL, which belong to the same SU(2) multiplet. This quantum
number, in general, is denoted by Y , and is called weak hypercharge for reasons
that will be explained later. To make this suggestion explicit, sometimes this
part of the gauge group is called U(1)Y. On the other hand, the SU(2) part
of the gauge group is sometimes called weak isospin and denoted by SU(2)L

to indicate the fact that only left-chiral fields transform non-trivially under
it. Taking the two factors together, the gauge group is called SU(2)L×U(1)Y
in this more explicit nomenclature.

16.3 Symmetry breaking

16.3.1 Gauge bosons and their masses

The SU(2) part of the gauge group has the W± as its gauge bosons. And,
these bosons should be massive, as argued in §14.9. In order to provide masses
to these bosons without making the theory non-renormalizable, we need the
gauge group to be spontaneously broken.

In order to accomplish this, we need some scalar fields in the theory. They
must come in a non-trivial representation of SU(2) in order that their vacuum
expectation values can break SU(2) and give mass to the W boson. We take
the simplest possibility, viz., an SU(2) doublet of scalars, and we denote it as
follows:

φ ≡
(
φ1

φ2

)
: (2, Yφ) . (16.2)

At the extreme right, we have denoted the group transformation property of
this multiplet: the first number in the parentheses denotes the multiplet of
SU(2) that the fields belong to, and the second number, which has been kept
unspecified for the moment, is the U(1) quantum number.

There will be terms in the Lagrangian which will look like this:

L = (Dµφ)†(Dµφ) − V (φ) , (16.3)

where Dµ, as usual, denotes the gauge covariant derivative and V (φ) denotes
the scalar potential.
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The gauge covariant derivative Dµ will contain the ordinary derivative,
of course. In addition, it will have terms involving the gauge bosons. If we
denote the SU(2) gauge bosons by W a

µ , with a = 1, 2, 3, and the U(1) gauge
boson by Bµ, we can write

Dµφ =
(
∂µ + ig

τa

2
W a

µ + ig′YφBµ

)
φ . (16.4)

Note that in the term involving the SU(2) gauge bosons, we have put in the
Pauli matrices τa, because 1

2τ
a are the generators of SU(2) in the doublet

representation. The coupling constant for this part of the gauge group is
called g. For the U(1) part, the term involving the gauge boson is exactly like
the photon term in the gauge covariant derivative of QED given in Eq. (5.8,
p 114). The gauge coupling constant for this part of the gauge group has been
named g′, and Yφ is the weak hypercharge of the multiplet φ, as introduced
in Eq. (16.2).

Let us now turn to the scalar potential. The most general renormalizable
potential with the scalar multiplet φ is of the form

V (φ) = µ2φ†φ+ λ(φ†φ)2 . (16.5)

If µ2 < 0, the minimum of this potential is obtained for
∣∣∣ 〈φ1〉

∣∣∣
2

+
∣∣∣ 〈φ2〉

∣∣∣
2

=
1

2
v2 , (16.6)

where the angular brackets denote the value at the minimum, and

v =

√
−µ2

λ
. (16.7)

Clearly, this corresponds to an infinity of degenerate minima. Suppose our
system is in the minimum where

〈φ〉 =

(
0

v/
√

2

)
, (16.8)

i.e.,

〈φ1〉 = 0 , 〈 φ2〉 =
v√
2
, 〈 φ2〉 = 0 . (16.9)

As shown in various examples of Ch. 15, we can now expand around this
minimum. The expansion will involve some terms which represent mass terms
for various gauge bosons. We can identify these terms easily by following the
example of §15.4. For this, we write Eq. (16.4) as

Dµφ = ∂µφ+ iGµφ , (16.10)

where Gµ is a matrix whose form can be easily found out by inserting the
expressions for the Pauli matrices:

Gµ =

(
1
2gW

3
µ + g′YφBµ

1
2g(W 1

µ − iW 2
µ)

1
2g(W 1

µ + iW 2
µ) − 1

2gW
3
µ + g′YφBµ

)
. (16.11)



464 Chapter 16. Standard electroweak model with leptons

The gauge boson mass terms are then of the form

Lmass =
(
Gµ 〈φ〉

)†(
Gµ 〈φ〉

)
. (16.12)

From Eqs. (16.11) and (16.8), we obtain

Gµ 〈φ〉 =
v√
2

(
1
2g(W 1

µ − iW 2
µ)

− 1
2gW

3
µ + g′YφBµ

)
. (16.13)

which gives

Lmass =
1

4
g2v2W+µW−

µ +
1

8
v2(−gW 3

µ + 2g′YφBµ)2 , (16.14)

where we have defined

W±
µ =

1√
2

(
W 1

µ ∓ iW 2
µ

)
. (16.15)

These are obviously complex fields, appropriate for charged particles.
We see that the charged gauge bosons, W±, have acquired a mass:

MW =
1

2
gv . (16.16)

The other term in Eq. (16.14) implies that one combination of the neutral
gauge bosons W 3

µ and Bµ has become massive because of spontaneous sym-
metry breaking. We will denote this combination by Zµ. The combination
orthogonal to Zµ remains massless, and can be identified with the photon.
Thus, the symmetry breaking process leaves one subgroup of the original
gauge group intact. This is the U(1) group of QED, which we can denote by
writing U(1)em. The process of symmetry breaking can then be summarized
into the statement

SU(2)L ×U(1)Y → U(1)em . (16.17)

This U(1) group, of electromagnetism, remains unbroken. Recalling that the
QCD gauge group is also unbroken, the unbroken gauge symmetry of the
standard model is SU(3)c ×U(1)em.

It was inevitable that there will be a residual symmetry group after spon-
taneous symmetry breaking. We have broken the symmetry by choosing the
vacuum denoted in Eq. (16.7), which has a non-zero lower component. This
component has the eigenvalue t3 = − 1

2 for the neutral generator T3 of the
SU(2) part of the gauge group. Its vacuum expectation value therefore breaks
the symmetry associated with the generator T3. Similarly, it has a non-zero
value of the weak hypercharge Y , which is why it breaks U(1)Y . But there
must be a linear combination of T3 and Y for which this lower component of
φ has the eigenvalue zero. The symmetry associated with this combination
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cannot be broken by the vacuum expectation value shown in Eq. (16.8). We
denote this combination by

Q = T3 + Y . (16.18)

There is no loss of generalization in writing the equation in this manner,
without any non-trivial co-efficients in front of the two generators on the right
hand side. The reason is that there is a multiplicative arbitrariness in defining
U(1) quantum numbers, as discussed in §5.1.1. We can use this freedom on
Q and Y , both of which are U(1) generators, such that Eq. (16.18) is valid as
it is. Once we have fixed this convention, we see that we must have Yφ = 1

2
so that the lower component has zero electric charge. The upper component
has one unit of positive charge, and henceforth we will write Eq. (16.2) as

φ ≡
(
φ+

φ0

)
: (2,

1

2
) , (16.19)

where the subscripts on the components denote their electric charges.

In passing, we should note that Eq. (16.18) looks very much like the Gell-Mann–Nishijima rela-
tion of Eq. (10.4, p 255). The only difference is in a factor of 1

2
accompanying the hypercharge in

Eq. (10.4, p 255). But this is inconsequential, because we could have easily defined hypercharge
as (B+S)/2 instead of what we did in Eq. (10.9, p 256). Alternatively, we could have used the
multiplicative arbitrariness of U(1) couplings to redefine the Y appearing in Eq. (16.18) so that
it could look exactly like Eq. (10.4, p 255). The point is that these two equations look the same,
and it is this similarity which prompted the names “weak isospin” and “weak hypercharge” for
the SU(2)L part and the U(1)Y part of the gauge group.

While the formal similarity is important, it is also important to realize that the physical
contents of Eqs. (10.4) and (16.18) are very different, because the properties mentioned in
the two equations are different. Usual isospin symmetry (which might be called strong isospin
in the light of the new avatar that has now appeared on the scene) applies on hadrons only,
whereas leptons also transform under the weak isospin, as we will see in §16.4. The weak isospin
distinguishes different chiralities of fermions, which the strong isospin does not. In other words,
the formal similarity between the two formulas exists, but that’s where the similarity ends.

2 Exercise 16.1 From Eq. (16.14), argue that the mass of the Z boson
is given by

MZ =
1

2
(g2 + g′2)

1/2 v . (16.20)

[Note : Remember that the Z boson is a real field, as opposed to the W boson
which is complex. Therefore the mass term for the Z boson should have an extra
factor of 1

2
.]

2 Exercise 16.2 � Use Eq. (16.18) to answer the following questions.

a) Which one, among νL and eL, should be the upper (i.e., T3 =
+ 1

2
) component of the SU(2)L doublet?

b) What should be the weak hypercharge of the left-chiral lepton
doublet?

c) What should be the weak hypercharge of eR?
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16.3.2 Couplings of photon

Now that we have fixed the value of Yφ, we know that the combination of
neutral gauge bosons that acquires a mass is given by

Zµ ∝ −gW 3
µ + g′Bµ . (16.21)

Normalizing properly, we can write

Zµ = cos θW W 3
µ − sin θW Bµ , (16.22)

where θW , called Weinberg angle, is defined by the relation

tan θW =
g′

g
. (16.23)

Photon will then be given by the orthogonal combination of W 3
µ and Bµ, i.e.,

Aµ = sin θW W 3
µ + cos θW Bµ . (16.24)

Let us now check the couplings of the photon. Consider, for example, a
fermion field ψ which has a U(1)Y quantum number Y and whose T3 eigenvalue
is T3. (We are using the same notation for the operator and the eigenvalue,
and assuming that it will be understood from the context which one is used
in any particular formula.) Its coupling with the neutral gauge bosons will
then be given by

Lneutral = ψγµ
(
− gT3W

3
µ − g′Y Bµ

)
ψ . (16.25)

Inverting Eqs. (16.22) and (16.24), we can write

Lneutral = −ψγµ
(
gT3 sin θW + g′Y cos θW

)
Aµψ + Zµ-coupling. (16.26)

From Eq. (16.23), we see that g sin θW = g′ cos θW . Hence, combining the two
terms in the photon coupling, we obtain

Lem−int = −g sin θWψγµ
(
T3 + Y

)
Aµψ

= −g sin θWQψγµAµψ , (16.27)

using Eq. (16.18) in the last step. This is exactly the QED interaction provided
we identify the gauge coupling constant of QED by the relation

e = g sin θW . (16.28)

2 Exercise 16.3 Take a scalar particle and write its interaction with
the neutral gauge bosons of SU(2)L×U(1)Y. Make the identification of
Eq. (16.28) and show that the resulting interactions with the photon
are exactly the same as those in scalar QED.
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2 Exercise 16.4 Show that

MW = MZ cos θW . (16.29)

2 Exercise 16.5 Use Eqs. (16.16) and (16.28) to express the vacuum
expectation value v in terms of MW , e and sin θW . Using sin2 θW = 0.23,
show that v = 246 GeV.

2 Exercise 16.6 Suppose the symmetry is broken by a number of mul-
tiplets obtaining non-zero vacuum expectation values. The I-th of
these multiplets transforms like a 2TI + 1 dimensional representation
of the SU(2)L part of the gauge group, and has weak hypercharge equal
to YI. If the neutral component obtains a VEV vI, show that the mass
relation between the gauge bosons is given by

M2
W

M2
Z cos2 θW

=

P

I

“

TI(TI + 1) − Y 2
I

”

v2
I

P

I 2Y 2
I v

2
I

. (16.30)

16.3.3 Gauge fixing

In §15.4, we have discussed the question of gauge fixing in great detail. We
can therefore cut down on the explanation and write the gauge-fixing terms
that we are going to use:

Lgf = − 1

ξW

∣∣∣∂µW
µ
+ + iξWMWw+

∣∣∣
2

− 1

2ξZ
(∂µZ

µ + ξZMZz)2 − 1

2ξ
(∂µA

µ)2 . (16.31)

Here, ξW , ξZ and ξA are gauge parameters. In principle they can be all
different, and they define the most general Rξ gauge for the SU(2)L ×U(1)Y
gauge theory. The symbols w+ and z stand for the scalar fields that are eaten
up by the W+ and the Z boson in the process of symmetry breaking. A
little reflection shows that w+ must be φ+, since there is no other positively
charged scalar field in the model. And z must be the imaginary part of the
uncharged component of φ since we have taken the vacuum expectation value
to be real. In other words, the quantum fields after symmetry breaking are
being represented in the following notation:

φ =


 w+

1√
2

(
v +H + iz

)

 . (16.32)

It should be noted that the gauge-fixing term for the photon field is the
same as that introduced in Eq. (4.106, p 82). The photon propagator, there-
fore, should have the form given in Eq. (4.148, p 92). The propagators for
the W and the Z bosons can easily be seen to have the form given in Eq.
(15.60, p 456), and the unphysical Higgs bosons should have propagators as
given in Eq. (15.62, p 456). For the sake of convenience, we summarize all
these propagators in Fig. 16.1.
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W± Feynman rule:

i

k2 −M2
W

(
−gµν +

kµkν

M2
W

)
− kµkν

M2
W

(
i

k2 − ξWM2
W

)

Z
Feynman rule:

i

k2 −M2
Z

(
−gµν +

kµkν

M2
Z

)
− kµkν

M2
Z

(
i

k2 − ξZM2
Z

)

A
Feynman rule:

i

k2

(
−gµν + (1 − ξA)

kµkν

k2

)

w± Feynman rule:

i

k2 − ξWM2
W

z
Feynman rule:

i

k2 − ξZM2
Z

Figure 16.1: Propagators of gauge bosons and unphysical Higgs bosons in Rξ gauge.
The momentum has been taken to be k for each line.

In practice, one scarcely uses the freedom of choosing different values for
the gauge parameters ξW , ξZ and ξA. A convenient gauge is obtained by
taking all of them to be equal to 1, which is called the ’t Hooft–Feynman
gauge for the present model.

2 Exercise 16.7 In the terms of the Lagrangian shown in Eq. (16.3),
put φ as given in Eq. (16.32). Identify the terms which contain only
a vector field and the derivative of a scalar field. Show that these
terms pair with some of the terms from the gauge-fixing Lagrangian
of Eq. (16.31) to produce total derivative terms which are irrelevant.

16.4 Gauge interaction of fermions

We have already discussed the couplings of fermions with the photon. Let us
now look at the couplings of fermions with the other three gauge bosons, i.e.
of the W± and Z.

First of all, let us write the representations of the leptonic fields under the
gauge group. Their SU(2) properties have already been discussed, and their
U(1) quantum number can be fixed by Eq. (16.18). This gives the following
representations:

ΨL ≡
(

νL

eL

)
: (2,−1

2
) ,

eR : (1,−1) . (16.33)
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Wµ
Feynman rule:

− ig√
2
γµL

Zµ
Feynman rule:

− ig

cos θW
γµ(T3L−Q sin2 θW )

Figure 16.2: Feynman rules for fermion interactions with W and Z bosons. In the
upper diagram, the incoming particle can be either the electron or the neutrino, and the
outgoing particle would be the other one of the two. The Feynman rule is the same.
The notation for the coupling with the Z boson has been explained in connection with
Eq. (16.39).

Thus, the gauge covariant derivatives would act on these multiplets as follows:

DµΨL =
(
∂µ + ig

τa

2
W a

µ + ig′(−1

2
)Bµ

)
ΨL ,

DµeR =
(
∂µ + ig′(−1)Bµ

)
eR . (16.34)

For each fermion multiplet Ψ, right-chiral or left-chiral, the gauge covariant
kinetic energy term is of the form ΨiγµDµΨ. The ordinary derivative term
present in Dµ includes the kinetic term for the field. The rest are interactions
with the gauge fields. Let us write these interaction terms for the leptonic
fields.

Lint = −1

2
(νL eL) γµ

(
gW 3

µ − g′Bµ g(W 1
µ − iW 2

µ)
g(W 1

µ + iW 2
µ) −gW 3

µ − g′Bµ

)(
νL

eL

)

+eRg
′γµBµeR . (16.35)

This expression contains the interaction of the fermions with the photon,
which we have already discussed. In addition, it contains the interaction of
fermions with the W± and the Z bosons. Let us first write the interactions
with the charged gauge bosons, the W±. These terms are called the charged-
current interaction terms. Using Eq. (16.15), these terms can be written as

Lcc = − g√
2

(
νLγ

µW+
µ eL + eLγ

µW−
µ νL

)
. (16.36)

Note that the charged currents are purely left-chiral. This is because the
right-chiral lepton field is an SU(2) singlet. The charged gauge bosons are
purely SU(2) gauge bosons, and do not interact with anything that is an
SU(2) singlet.
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Let us now turn to the neutral current interactions, i.e., interactions of
the Z boson. We can extract them from Eq. (16.35) by writing W 3

µ and Bµ in
terms of the mass eigenstates Zµ and Aµ by using Eqs. (16.22) and (16.24).
This gives

Lnc =
√
g2 + g′2

(
− 1

2
νLγ

µ
νL

+(
1

2
− sin2 θW )eLγ

µeL − sin2 θW eRγ
µeR

)
Zµ . (16.37)

Noting that
√
g2 + g′2 = g/cos θW and using identities involving the projec-

tion operators L and R, we can rewrite this part of the Lagrangian as

Lnc = − g

cos θW

(1

2
νγµLν− eγµ(

1

2
L− sin2 θW )e

)
Zµ . (16.38)

Feynman rules for both charged and neutral current vertices of fermions have
been shown in Fig. 16.2.

2 Exercise 16.8 Consider a fermion field ψ which has a charge Q. Its
right-chiral projection is a singlet under SU(2) and the left-chiral
projection has an eigenvalue T3 under the neutral SU(2) gauge boson.

a) What is the weak hypercharge of ψR?

b) Show that the interaction of ψ with the Z boson is given by

Lnc = − g

cos θW
ψγµ

„

T3L −Q sin2 θW

«

ψZµ . (16.39)

2 Exercise 16.9 Show that the gauge interactions of the standard
model, both charged and neutral currents,

a) Violate parity invariance

b) Violate charge conjugation invariance

c) Conserve CP

We can now discuss how to include other generations of leptons into the
model. In fact, it is straightforward. All generations behave exactly the same
way under the gauge group. We can write, in a notation generalized from
that of Eq. (16.33), the leptonic multiplets as:

ΨℓL ≡
(

νℓL

ℓL

)
: (2,−1

2
) ,

ℓR : (1,−1) , (16.40)

where ℓ stands for either the electron or the muon or the tau. Obviously,
interactions of fermions in other generations are also expressed by Eqs. (16.36)
and (16.38) with trivial changes in notation of the fermion fields.
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16.5 Yukawa sector

The model, so far, has gauge bosons, leptons and scalars. We have discussed
the interactions of the gauge bosons with both leptons and scalars. Now we
note that there are also gauge invariant interactions involving leptons and
scalars only. Such interactions are generically called Yukawa interactions or
Yukawa couplings because they were inspired by Yukawa’s theory of strong
interactions, described in §8.8.

Let us write down the scalar-lepton interactions in the present model.
They are given by the following terms:

LY = −
∑

ℓ

(
hℓΨℓLφℓR + h∗ℓℓRφ

†ΨℓL

)
. (16.41)

The Lagrangian can contain such terms because they are gauge invariant. To
see this, consider the first term on the right hand side. Since ΨℓL and φ are
both doublets of SU(2), there is a combination of the two that is an SU(2)
singlet, which is the combination written here. The field ℓR is an SU(2) singlet
anyway, so overall the term written is an SU(2) singlet. As far as the U(1)
part of the gauge group is concerned, we see that ΨℓL has Y = − 1

2 , so ΨℓL has
Y = + 1

2 . Adding the weak hypercharge of φ and ℓR as given in Eqs. (16.19)
and (16.40), we see that the total weak hypercharge of the combination is
zero, which means that the combination of operators present in the term does
not violate weak hypercharge. Hence the interaction is invariant under the
gauge group SU(2)L ×U(1)Y.

2 Exercise 16.10 In Eq. (16.41), there are two terms on the right hand
side. Show that one is the hermitian conjugate of the other.

The coupling constant h that appears in Eq. (16.41) can be taken to be
real without loss of generality. What we mean is that whatever the phase of
the constant h, it can always be absorbed by a redefinition of the multiplet φ
or the field ℓR or the multiplet ΨℓL. Henceforth we will take h to be real.

On the face of it, the terms in Eq. (16.41) are cubic interaction terms.
However, in the broken symmetry state, the multiplet φ can be written in
terms of the quantum fields through the expression given in Eq. (16.32). Once
we put this expression in, we find that there are also terms which are quadratic
in fields and proportional to v:

LY = − v√
2

∑

ℓ

hℓ

(
ℓLℓR + ℓRℓL

)
+ · · · , (16.42)

where the dots indicate all other terms. As shown in Eq. (14.24, p 417), these
are the mass terms for the charged leptons. The masses are given by

mℓ =
hℓv√

2
. (16.43)

This is a very interesting aspect of the model. The left-chiral part of the elec-
tron field is part of an SU(2) doublet and the right-chiral is an SU(2) singlet.
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e

νe

φ+ Feynman rule:

−i
√

2me

v
R = −i gme√

2MW
R

e

νe

φ−
Feynman rule:

−i
√

2me

v
L = −i gme√

2MW
L

e

e

H
Feynman rule:

−i me

v
= −i g

2 cos θW

me

MZ

e

e

ζ Feynman rule:

me

v
γ5 =

g

2 cos θW

me

MZ
γ5

Figure 16.3: Feynman rules for fermion interactions with the unphysical and physical
Higgs bosons.

Together, they cannot form a singlet, and so the gauge invariant Lagrangian
cannot contain a mass term for the electron. The mass is generated through
symmetry breaking.

However, even with symmetry breaking, there is no mass term for the
neutrino, because there is no right-chiral component of the neutrino. Thus,
in the standard model, the neutrino is massless. Experiments indicate tiny
masses of neutrinos. In Ch. 22 we will discuss how to modify the standard
model to take neutrino masses into account.

Of course, Eq. (16.41) also contains interaction terms. These can be writ-
ten easily by using the matrix representations of the lepton doublet ΨL and
the scalar doublet φ. Using the representation of φ given in Eq. (16.32), we
obtain the following terms for the electron field:

Lint = −
√

2me

v

(
νLeRw+ + eRνLw−

)
− me

v

(
eeH + ieγ5ez

)
. (16.44)

There are similar terms for interactions involving other charged leptons. Note
that in writing this expression, we have eliminated the coupling constant he

by using Eq. (16.43). We have also used identities involving the chirality
projection operators, which were introduced earlier in §14.2.

We see that the physical Higgs boson H has intrinsic scalar couplings
with fermions, and the coupling is proportional to the fermion mass. The
unphysical Higgs boson couplings can be written in a slightly different manner
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µ
−(p)

νµ(q1)

W−

e−(k)

ν̂e(−q2)

(a) µ−(p)

νµ(q1)

w−

e−(k)

ν̂e(−q2)

(b)

Figure 16.4: Tree-level diagrams for muon decay.

using the expressions for the gauge boson masses:

Lw,z = − gme√
2MW

(
νLeRw+ + eRνLw−

)
− gme

2MZ cos θW
ieγ5ez . (16.45)

It can be shown that, irrespective of the nature of the scalar multiplet that is
responsible for symmetry breaking, the unphysical Higgs boson couplings with
fermions must be of this form. This statement will be explained in Ch. 17 in a
somewhat more general setting. The Feynman rules of all coupling discussed
in this section have been summarized in Fig. 16.3.

One might wonder why we did not include cross terms like ΨℓLφℓ
′
R
, where ℓ′ 6= ℓ, in the Yukawa

Lagrangian of Eq. (16.41). Of course such terms would have been gauge invariant just as the
ℓ′ = ℓ terms, because all generations transform the same way under the gauge group. Our
excuse is that there is really no need to write the cross terms. The different left-chiral multiplets
all transform the same way under the gauge group. Therefore, any linear combination of them
would also transform the same way. The same can be said about the right-chiral fields. We can
always make suitable combinations such that all cross couplings vanish. That is what we have
done in writing Eq. (16.41). In other words, we have not compromised generality in writing Eq.
(16.41). We have merely used the freedom available to write it in a convenient basis.

16.6 Connection with Fermi theory

Fermi interactions, as described in detail in Ch. 14, involve four fermionic
field operators. In §14.9, we showed how such interactions can arise in the
low energy limit of a theory with vector boson interchange between fermions.
Here we discuss such low energy limits of various processes involving leptons
that occur in the standard model.

16.6.1 Charged-current induced processes

We first discuss muon decay. The muon and the muon-neutrino will have
the same kind of interactions that the electron and the electron-neutrinohas.
Muon decay can occur at the tree level through the diagrams of Fig. 16.4.
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The tau decay occurs through similar diagrams, and need not be discussed
separately.

Let us write the amplitude of the W -mediated diagram in the ’t Hooft–
Feynman gauge. We maintain the notation for different 4-momenta that was
used in §14.6. Using the couplings and the propagator deduced earlier, we
obtain

iM =

(
− ig√

2

)2 [
uq1

γλLup

] −igλρ

(p− q1)2 −M2
W

[
ukγ

ρLvq2

]
. (16.46)

We have put the momenta as the subscript of the spinors. The notations for
momenta introduced in Fig. 16.4 tell us which mass should be involved in each
spinor.

Note that the term M2
W in the propagator is accompanied by (p − q1)2,

which can be evaluated in the muon rest-frame, taking the neutrino to be
massless:

(p− q1)2 = m2
µ− 2mµEνµ

. (16.47)

Clearly, the value of this expression is smaller than m2
µ, and therefore negli-

gibly small compared to M2
W . Ignoring the momentum-dependent term, we

can write

M = −g
2

2

[
uq1

γλLup

] 1

M2
W

[
ukγλLvq2

]
. (16.48)

Compare this expression with Eq. (14.101, p 431). Remembering that L =
1
2 (1−γ5), we see that in the limit of low energy, the standard model produces
Fermi interactions, with the Fermi constant identified by

GF√
2

=
g2

8M2
W

. (16.49)

The resulting differential energy spectrum and total decay rate have already
been discussed in §14.6, and there is no need to repeat them here.

The exercise is not quite complete yet, because we have not shown that
this result is gauge invariant. This is easy to see. In a general gauge, we will
obtain two types of extra contributions over what has been presented already.
First of all, there are extra terms in the gauge boson propagator. All these
terms contain the factor qλqρ, where q is the 4-momentum of the virtual W
line. Thus, the contribution coming from these terms will contain the factors

[
uq1

γλLup

]
qλqρ

[
ukγ

ρLvq2

]
. (16.50)

Since q = k + q2, we find

qρ

[
ukγ

ρLvq2

]
=
[
uk(k/+ q/2)Lvq2

]
. (16.51)
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νµ(k)

νµ(k′)

Z

e−(p)

e−(p′)

Figure 16.5: Tree level diagram for elastic scattering of muon-neutrinos off electrons.
Unlike the case of muon decay, there is no additional diagram mediated by neutral scalars,
because the neutrinos do not couple to neutral scalars.

We can now use the Dirac equation for the spinors to show that this expression
contains a factor of the electron masses. Since the electron mass is negligible
compared to the muon mass, these contributions have to be neglected.

The second type of extra contribution to the amplitude comes from the
diagram of Fig. 16.4b, where a charged scalar boson is mediated. But cou-
plings of fermions with charged scalars are proportional to fermion masses, as
shown in Fig. 16.3. Therefore, this contribution is also negligible for the same
reason.

2 Exercise 16.11 Suppose we do not neglect the electron mass. The
gauge-dependent terms must still cancel in the amplitude. Show that
this is indeed true for the diagrams of Fig. 16.4.

2 Exercise 16.12 Give an example of a scattering process that occurs
through charged current only.

16.6.2 Neutral-current induced processes

Note that only the charged current contributes to the amplitude of muon
decay. There cannot be any neutral current contribution, because for there
to be one, the muon and the electron will have to be involved in the same
vertex, which is impossible, since they belong to different multiplets of the
gauge group. Gauge interactions can change only one member of a multiplet
to another of the same multiplet, as emphasized earlier.

For the same reason, there cannot be any charged current that connects
the electron and the muon-neutrino. The partner of the electron in the SU(2)
doublet is, by definition, the electron-neutrinoor νe. The muon-neutrino or
the νµ is the partner of the muon in the same way. If only charged currents
existed, there could not have been any interaction between the electron and
the muon-neutrino at the tree level.
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With the presence of neutral currents, the situation is different. In
Fig. 16.5, we have shown how the elastic scattering process,

νµ(k) + e−(p)→ νµ(k′) + e−(p′) , (16.52)

can be mediated by the Z boson. In this case, there is no diagram mediated by
the neutral scalars, because neutrinos do not couple to them. The amplitude
of this process can be written down easily by using the couplings of the Z
boson derived earlier. Using the ’t Hooft–Feynman gauge, we obtain

iM =

(
− ig

cos θW

)2 [
up′γλ

(
− 1

2
L + sin2 θW

)
up

]

× −igλρ

(p− q1)2 −M2
Z

[
uk′γρ 1

2
Luk

]
. (16.53)

At low energies, when all momenta can be neglected in comparison with MZ ,
this expression reduces to

M = −
(

g2

2M2
Z cos2 θW

)[
up′γλ

(
− 1

2
L + sin2 θW

)
up

]

[
uk′γλLuk

]
. (16.54)

Using the mass relation between the W and the Z bosons, given in Eq. (16.29),
we can write this expression in the form

M = −4GF√
2

[
up′γλ

(
− 1

2
L + sin2 θW

)
up

][
uk′γλLuk

]
, (16.55)

where we have introduced the Fermi constant through Eq. (16.49). This is
exactly the form taken in Eq. (14.79, p 426), where we used two parameters
for the electron bilinear part. Those parameters can now be identified as

cV = −1

2
+ 2 sin2 θW , cA = −1

2
. (16.56)

The consequences of this amplitude have already been described in §14.4.

16.6.3 Processes induced by both types of currents

There can also be processes where both neutral and charged currents con-
tribute. As an example, consider the elastic scattering of electron-neutrinos
with electrons. The diagrams have been shown in Fig. 16.6. As we see, di-
agram (a) is the neutral current contribution, whereas diagram (b) is the
charged current contribution.

Let us write the amplitudes of the two diagrams in the limit where the
gauge boson masses are much larger compared to the 4-momenta of all other
particles. Employing the ’t Hooft–Feynman gauge, we find that the neutral
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νe(k)

νe(k′)
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e−(p)
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e−(p′)

W+

e−(p)
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Figure 16.6: Gauge-boson mediated tree-level diagrams for elastic scattering of
electron-neutrinos off electrons.

current contribution to the amplitude, Ma, is equal to the expression given
in Eq. (16.54). And the charged current contribution is given by

Mb =
g2

2M2
W

[
uk′γλLup

][
up′γλLuk

]
. (16.57)

Note that the expression looks very similar to that in Eq. (16.48). There
are, of course, some notational differences. But more importantly, there is
a difference in the overall sign of the expression. This is because, as far as
the external lines are concerned, the two diagrams of Fig. 16.6 differ by an
exchange of a pair of lines.

The total amplitude is the sum of Ma and Mb. Before adding them up,
we should notice that the orderings of the spinors are not the same in Eqs.
(16.54) and (16.57), and they can be made the same if we perform a Fierz
transformation on any one of them. In Eq. (14.75, p 425), we noticed that
the V −A combinations are invariant under Fierz transformations. Since the
charged current amplitude has a V − A form, it is more convenient to apply
Fierz transformation on it. It has to be remembered that in §14.3 we dealt
with field operators, for which an extra minus sign appears while performing
the Fierz transformation on it. For spinors, whose components are ordinary
numbers, this sign does not appear, so the result of Fierz transformation will
be

[
u1γ

µLu2

][
u3γµLu4

]
= −

[
u1γ

µLu4

][
u3γµLu2

]
, (16.58)

where u1, · · · , u4 are arbitrary spinors. Applying this, we can write

Mb = − g2

2M2
W

[
up′γλLup

][
uk′γλLuk

]
. (16.59)

Adding this with the neutral current contribution, we obtain

M = −4GF√
2

[
up′γλ

(1

2
L + sin2 θW

)
up

][
uk′γλLuk

]
. (16.60)
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Figure 16.7: Diagram for muon–antimuon production mediated by the Z boson and
the neutral scalars.

Again, this is of the form taken in Eq. (14.79, p 426) whose consequences have
already been discussed, but with the identifications

cV =
1

2
+ 2 sin2 θW , cA =

1

2
. (16.61)

16.7 Forward-backward asymmetry

In §16.6, we considered scattering and decay processes which are purely weak
interaction processes. Now we discuss an interesting class of phenomena for
which the dominant contribution is electromagnetic, but where weak interac-
tion effects induce qualitative changes in the final effect.

The process that we consider is muon pair production. The electromag-
netic contribution to the rate of this process was discussed in §5.4.2. The
angular distribution of the scattering, given in Eq. (5.94, p 133), has the in-
teresting feature of being forward-backward symmetric, as was commented
during the discussion.

In the electroweak theory, there are other tree-level diagrams which con-
tribute to this process: they have been shown in Fig. 16.7. We will assume
that the energies involved are much higher than the muon mass, so that the
masses of all external particles can be neglected. Since the couplings with the
scalar fields are proportional to fermion masses, we can disregard the diagrams
of Fig. 16.7b altogether. The amplitude is then the sum of two contributions.
One of them is the photon contribution that was written in Eq. (5.87, p 132),
and is quoted here for the sake of convenience:

Mγ =
e2

s
[vp2

γµup1
][up′

1
γµvp′

2
] . (16.62)

The other is the contribution from the Z-mediated diagram. Using Eq.
(16.28), let us write the Z boson interaction with charged leptons ℓ in the
form

Lint = − e

sin 2θW
ℓγµ(cV + cAγ5)ℓ , (16.63)
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with cV and cA given by Eq. (16.56). Then the amplitude for the Z boson
mediated diagram is given by

MZ =
e2fZ

s
[vp2

γµ(cV + cAγ5)up1
][vp′

1
γµ(cV + cAγ5)up′

2
] , (16.64)

where

fZ =
s

(s−M2
Z) sin2 2θW

. (16.65)

The expression for the cross-section will contain the quantity

|M |2 =
1

4

∑

spins

∣∣∣Mγ + MZ

∣∣∣
2

= |Mγ |2 + |MZ |2 + M ∗
γ MZ + c.c. . (16.66)

The calculation for determining |Mγ |2 was shown in some detail in §5.4.2.
Since here we are neglecting the mass of the muon, Eq. (5.93, p 133) reduces
to

|Mγ |2 = e4(1 + cos2 θ) , (16.67)

where θ is the scattering angle. Going through similar-looking steps, we obtain

|MZ |2 = e4f2
Z

[
(c2V + c2A)2(1 + cos2 θ) + 8c2V c

2
A cos θ

]
. (16.68)

The cross terms can also be evaluated easily, and we obtain

M ∗
γ MZ + c.c. = 2e4fZ

[
c2V (1 + cos2 θ) + 2c2A cos θ

]
. (16.69)

Adding all contributions, we obtain

|M |2 = e4
[
(1 + a1)(1 + cos2 θ) + a2 cos θ

]
, (16.70)

where

a1 = f2
Z(c2V + c2A)2 + 2fZc

2
V ,

a2 = 8f2
Zc

2
V c

2
A + 4fZc

2
A . (16.71)

Note that the a1 term has the same angular distribution as the original
QED contribution. The a2 term, on the other hand, generates a forward-
backward asymmetry. Formally, the amount of forward-backward asymmetry
can be defined as the difference between the scattering in the forward hemi-
sphere (0 < θ < π/2) and in the backward hemisphere (π/2 < θ < π),
normalized by the sum of the two quantities.

A =

∫ π/2

0

dθ sin θ
dσ

dΩ
−
∫ π

π/2

dθ sin θ
dσ

dΩ∫ π

0

dθ sin θ
dσ

dΩ

. (16.72)
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It is straightforward to check that with the angular dependence given by Eq.
(16.70), one obtains

A =
3

8

a2

1 + a1
. (16.73)

The forward-backward asymmetry, therefore, is induced by a non-zero
value of a2. Looking at the expression for a2, we find that it vanishes when
cA = 0. Hence, it is the axial vector coupling which is responsible for forward-
backward asymmetry.

We might wonder whether there is a symmetry of the amplitude that en-
sures forward-backward asymmetry. In Ex. 6.7 (p 158), we pointed out that the
simultaneous presence of polar and axial vector currents violates parity and
charge conjugation symmetries. But forward-backward asymmetry cannot be
caused by a violation of either of these symmetries, because the asymmetric
term is proportional to cos θ, i.e., p1 ·p′

1, which is invariant under both of these
symmetries. Looking back at the electromagnetic amplitude of the process
given in Eq. (16.62), we find that it has polar vector bilinears of the electron
spinors and the muon spinors. Now suppose we consider a transformation

u(e) → v(e) , (16.74)

where the subscripted letter denotes that the transformation is applied only
to the electron spinors and not to the muon spinors. This can be seen as
a charge conjugation on the electron field only, leaving all other fields un-
changed. Under this transformation, the electron spinor bilinear changes as
follows:

vp2
γµup1

→ up2
γµvp1

. (16.75)

But

up2γ
µvp1 = v⊤p2

C−1γµγ0Cu∗p1
(16.76)

because of the conjugation relations between the u- and the v-spinors, as given
in Eq. (F.80, p 746). Since the object is a number, we can take the transpose
of the right hand side and obtain

up2γ
µvp1 = u†p1

Cγ⊤0 (γµ)⊤C−1vp2 , (16.77)

using the antisymmetry of the matrix C. Using the defining property of C,
Eq. (F.17, p 738), we can now write

up2
γµvp1

= − up1
γµvp2

. (16.78)

Since the Mandelstam variable s is symmetric under the interchange of p1 and
p2, we find that, under the transformation of Eq. (16.74), the electromagnetic
amplitude changes by an overall minus sign, which has no effect in the cross-
section.
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Let us now see what is the effect of this statement on forward-backward
asymmetry. Eq. (16.74) basically implies interchanging the electron with the
positron. Under this transformation, p1 will change to p2, i.e., to −p1 in the
CM frame, whereas p′

1 and p′
2 will remain unaffected. The quantity p1 · p′

1

will then change sign, which means that cos θ will change sign. Thus, if Eq.
(16.74) is a symmetry of the cross-section formula, there cannot be any linear
term in cos θ in the angular distribution. This guarantees forward-backward
symmetry.

The symmetry is lost if there is an axial vector contribution to the am-
plitude, because, under the transformation of Eq. (16.74), the axial vector
current transforms as

up2γ
µγ5vp1 = + up1γ

µγ5vp2 , (16.79)

which can be easily checked. Thus, the amplitude does not change by an
overall sign in presence of both polar and axial vector currents, and forward-
backward asymmetry is generated.

2 Exercise 16.13 Follow steps similar to those used for obtaining Eq.
(16.78) to prove Eq. (16.79).



Chapter 17

Electroweak interaction of hadrons

In Ch. 16, we have introduced the standard electroweak theory, discussing only
processes involving leptons. In this chapter, we want to extend the discussion
to processes involving hadrons as well. Since hadrons are made of quarks, we
start with the status of quarks in the standard electroweak model.

17.1 Quarks in standard model

Like leptons, quarks also come in three generations. As mentioned earlier in
the book, there are three quarks with charge + 2

3 , which are represented by
the letters u, c and t. And then there are the three quarks d, s and b, each of
which carries a charge − 1

3 .
Like leptons, we will take the left-chiral quarks in doublets, and the right-

chiral quarks in singlets of the SU(2)L part of the standard model gauge
group. The weak hypercharges of these multiplets can be determined from
Eq. (16.18, p 465). These representations of the quarks under the gauge group
are summarized in this equation:

(
uL

d′
L

)
,

(
cL

s′
L

)
,

(
tL
b′

L

)
: (2, 1

6 ) ,

uR, cR, tR : (1, 2
3 ) ,

d′
R
, s′

R
, b′

R
: (1,− 1

3 ) .

(17.1)

Note that we have added primes while writing the down-type quarks, i.e.,
quarks with charges − 1

3 , because we do not want to commit at this stage who
the partners are in the doublets. As we will see, this is an important issue.

There is nothing new about the gauge bosons or the scalar fields: this part
of the model has already been described in Ch. 16. The mechanism of symme-
try breaking, the masses of gauge bosons, are all still given by the expressions
in that chapter. The main difference occurs in the Yukawa sector, i.e., of the
interaction of quarks with the scalar multiplet. Using the gauge properties of

482
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the quark fields, we find that the following interactions are allowed:

LY = −
∑

A,B

(
h

(d)
ABqALφd

′
BR + h

(u)
ABqALφ̃uBR

)
+ h.c. (17.2)

We owe the reader a lot of explanation regarding the notation used in this
equation. The indices A,B are generation indices which run from 1 to 3. The
quantities h

(d)
AB and h

(u)
AB, for each value of A and B, represent a coupling

constant. The notation qL represents a left-chiral quark doublet. Along with
the generational index, it can stand for one of the three doublets shown in
Eq. (17.1). For example, q1L will be the first doublet shown there, and so on.
Similarly, uBR for B = 1 is the first right-chiral up-type quark, i.e., quark of
charge + 2

3 . By the same token, d′2R
means s′

R
, whereas d′3R

means b′
R

. And

finally, we need to explain what is φ̃. As mentioned in §8.7.2, for any doublet
ψ of an SU(2), the object εψ∗ also transforms as a doublet, where ε is the
completely antisymmetric 2×2 matrix. Thus, from the scalar doublet φ given
in Eq. (16.19, p 465), we can define the object

φ̃ ≡
(

0 1
−1 0

)(
φ+

φ0

)∗
=

(
φ∗0
−φ−

)
, (17.3)

which will also be a doublet under the SU(2) part of the gauge group. Because
it involves a conjugation, its properties under the U(1) part of the gauge group
will be opposite to that of φ, i.e., the representation of φ̃ will be given by

φ̃ ≡
(

φ∗0
−φ−

)
: (2,−1

2
) . (17.4)

It can now easily be checked that the interactions given in Eq. (17.2) are gauge
invariant.

As we have seen for the case of leptons, spontaneous symmetry breaking
produces mass terms for fermions. This is also true for quarks. Using the vac-
uum expectation value of the component φ0, we find the following quadratic
terms in the quark fields that arise out of the gauge invariant Yukawa inter-
actions:

Lmass = − v√
2

∑

A,B

(
h

(d)
ABd

′
ALd

′
BR + h

(u)
ABuALuBR

)
+ h.c. . (17.5)

In the generation indices, h(u) and h(d) are matrices. We can choose a basis in
which one of these matrices, say h(u), is diagonal. By adjusting the phases of
the fields uAR, we can also make sure that the diagonal entries of this matrix
are real and positive. (This choice does not affect any other part of the theory
since the right-chiral quarks are stand-alone singlet fields, which means that
their definitions are independent of the definitions of anything else.) Once
this is done, we obtain the mass terms for the three up-type quarks.
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But there is no guarantee that h(d) will be diagonal in this basis. In fact,
there is no reason for it to be so. Therefore, for the down-type quarks, the
mass terms that we obtain are of the form

−
∑

A,B

d
′
ALMABd

′
BR + h.c. , (17.6)

where

MAB = h
(d)
ABv/

√
2 . (17.7)

In the generation space, this is a matrix. It can be called the mass matrix for
down-type quarks in this basis. Because this matrix is not diagonal, there are
cross terms of the form d

′
Ls

′
R

and so on, which should not be there if we are
dealing with fields of physical particles.

And this is precisely the point of putting the primes on the down-type
fields in Eq. (17.1): the fields d′, s′ and b′ do not correspond to physical
particles. To identify the physical fields, we have to diagonalize the matrix
MAB.

Usually, we use similarity transformations involving unitary matrices in order to diagonalize
Hamiltonians in quantum mechanics. This is a special case, which works for the so-called
normal matrices, i.e., matrices which commute with their hermitian conjugates: [M,M†] = 0.
This class includes hermitian matrices, unitary matrices, and many others.

In the case at hand, however, there is no guarantee that the matrix is normal, so we need
to find a method of diagonalization that works in more general cases. And to this end, we use
the following theorem:

Theorem 1 For any matrix A, we can find two unitary matrices UL and UR such that U†
LAUR

is diagonal, with real non-negative entries along the diagonal.

The proof is simple. For any matrix A, the matrix A†A must be hermitian. Therefore, there
exists a unitary matrix U such that

U†A†AU = D2 , (17.8)

where D2 is diagonal. The diagonal elements are given by
“

D2
”

aa
=
X

b

˛

˛

˛

“

AU
”

ba

˛

˛

˛

2
, (17.9)

and are therefore real and non-negative. Let us now define a matrix D, any element of which
is the positive square root of the corresponding element of D2, and define the matrix

H ≡ UDU† . (17.10)

Clearly, H is hermitian, and

H2 = UD2U† = A†A , (17.11)

using Eq. (17.8) in the last step. From this relation, it is easy to see that AH−1 is a unitary
matrix, which we will call U ′. Then A = U ′H = U ′UDU†. Renaming U ′U = UL and U = UR,
we can rewrite this relation as

U†
LAUR = D , (17.12)

which proves the theorem. In the derivation, we have assumed that the matrix H has an inverse.
If not, i.e., if H is singular, the result is still true although the proof is a little more complicated.
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The diagonalization involves two different unitary matrices at the two
ends, and is therefore called a bi-unitary transformation. Physically, it means
changing the basis for left-chiral and right-chiral fields by different amounts,
so that the matrix that they sandwich is diagonal. More explicitly, identifying
M to be the matrix A in Eq. (17.12), we can write

M = ULDU
†
R . (17.13)

The mass terms for the down-type quarks, given in Eq. (17.6), can then be
rewritten as

−
∑

A,B

d
′
AL

(
ULDU

†
R

)
AB
d′BR + h.c. ,= −

∑

A

dALDAAdAR + h.c. ,(17.14)

where we have defined a new set of fields, dubbed dA, by the relations

dAL =
(
U †

L

)
AB
d′BL , dAR =

(
U †

R

)
AB
d′BR . (17.15)

These unprimed fields would then be the mass eigenstates, because their mass
terms do not mix. This also means that the partners of u, c and t quarks in
the SU(2)L doublets shown in Eq. (17.1) are not mass eigenstates, which is
why we started by marking them with primes.

It should be obvious that there is nothing sacred about the up-type quarks
that we do not have to use primed fields for them. We could have started with
linear combinations of the doublets shown in Eq. (17.1) such that the down-
type quarks appearing the doublets were the mass eigenstates, whereas the
up-type quarks were superpositions of mass eigenstates. It is only a matter
of convention or a choice of basis in the generation space. We could have
also started with a most general basis where neither up-type nor down-type
quarks in a doublet would have been a mass eigenstate. Then we would
have needed to diagonalize both up-type and down-type mass matrices by
bi-unitary transformations. We would have gained nothing by doing this: we
would only have to wrestle more with the notations.

17.2 Gauge interaction of quarks

Let us now discuss the interaction of quarks with the electroweak gauge
bosons. These come from the terms containing the action of the gauge co-
variant derivative on the fermion fields. For leptons, the covariant derivatives
were given in Eq. (16.34, p 469). For quarks, we can write a similar set of
equations, substituting the appropriate values of the weak hypercharges:

DµqAL =
(
∂µ + ig

τa

2
W a

µ + ig′(−1

6
)Bµ

)
qAL ,

DµuAR =
(
∂µ + ig′(+

2

3
)Bµ

)
uAR ,

Dµd
′
AR =

(
∂µ + ig′(−1

3
)Bµ

)
d′AR . (17.16)
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Note that the same formulas apply for fields in all generations.
Let us first look at the interactions of the charged gauge bosons, which

come from the gauge covariant derivative of qL only. These terms will be given
by

Lcc = − g√
2

∑

A

(
uALγ

µW+
µ d

′
AL + d

′
ALγ

µW−
µ uAL

)
. (17.17)

As mentioned earlier, the partners of the uA quarks in the doublets are not
eigenstates of mass. It would be more useful to write these interactions in
terms of fields of physical particles. This can be easily done by using Eq.
(17.15), and the result is

Lcc = − g√
2

∑

A,B

(
uALγ

µW+
µ VABdBL + dBLV

∗
ABγ

µW−
µ uAL

)
, (17.18)

where V = UL. This shows that the charged current couples any up-type
quark to a down-type quark of any generation. This phenomenon is known
as quark mixing, and was first discussed by Cabibbo. Later, Kobayashi and
Maskawa noticed that this matrix can be responsible for CP violation, a sub-
ject that will be discussed in Ch. 21. Using the initials of these three scientists,
the quark mixing matrix is often called the CKM matrix .

The phrase quark mixing implies that the charged current gauge interac-
tions mix between quarks of different generations. As a result, there cannot be
any generational quantum number for quarks which is conserved. Quantum
numbers like strangeness, which are associated with a single flavor of quark,
are also violated because of the charged current interactions.

Let us look at the neutral current interactions now. It is easy to see that
the matrices UL and UR will not appear in the final expressions in this sector.
The reason is easy to understand. Consider the gauge interactions of the field
d′AR

. These are,

1

3
g′
∑

A

d
′
ARγ

µBµd
′
AR . (17.19)

But this can also be written as
1

3
g′
∑

A

dARγ
µBµdAR , (17.20)

because the extra factors of the matrix UR that appear through the relation
of Eq. (17.15) disappear due to unitarity of the matrix UR. The same thing
happens while we deal with the gauge interaction terms of the left-chiral fields.
So finally, the interactions of the photon appear in the standard form, with
the appropriate charges of the quarks, and the interactions of the Z boson
also have the form given in Fig. 16.2 (p 469). Neutral current interactions are
therefore flavor diagonal, i.e., do not change quark flavor. This is called the
absence of flavor-changing neutral current , or FCNC for short. Of course, the
statement about the absence of FCNC pertains only to the tree level. FCNC
can arise from loop interactions, as we will see later in §17.9.5.
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17.3 CKM matrix and its parametrization

It is important to reassess the results that we have obtained. In the leptonic
sector, we found that the gauge interactions contain only two parameters, the
gauge coupling constants g and g′. In the quark sector, this is no more the
case. The gauge interactions involve, apart from the gauge coupling constants,
the elements of the unitary CKM matrix V that appears from the diagonal-
ization of the quark masses. The elements of this matrix can be parametrized
as follows:

V =




c1 −s1c3 −s1s3
s1c2 c1c2c3 − s2s3eiδ c1c2s3 + s2c3e

iδ

s1s2 c1s2c3 + c2s3e
iδ c1s2s3 − c2c3eiδ


 . (17.21)

where ca ≡ cos θa and sa ≡ sin θa. It should be realized that the parametriza-
tion is not unique: other useful ones will be discussed in Ch. 21. The angle
θ1 is called the Cabibbo angle, because Cabibbo introduced it in 1963 to de-
scribe mixing between two generations of quarks. The other two angles and
the phase δ were necessary because of Kobayashi and Maskawa’s conjecture
about the existence of a third generation of quarks.

A most general unitary 3×3 matrix can have more parameters according to
our counting in §3.4.1, but those other parameters can all be absorbed in the
definitions of the quark fields, an issue that will be taken up in detail in Ch. 21.
The interesting thing is that, even after utilizing all phase redefinitions, one
phase cannot be removed. This can be responsible for CP violation, as was
noticed by Kobayashi and Maskawa.

The phase need not be restricted to the lower-right 2×2 block of the CKM
matrix, as it does in the original parametrization of Kobayashi and Maskawa
presented in Eq. (17.21). By redefining the phases of the quark fields, we can
move the phase around within the matrix. Here is another parametrization
which has proved to be quite useful:

V =




c12c13 s12c13 s13e
−iδ0

−s12c23 − c12s23s13eiδ0 c12c23 − s12s23s13eiδ0 s23c13
s12s23 − c12c23s13eiδ0 −c12s23 − s12c23s13eiδ0 c23c13


 .

(17.22)

Many other parametrizations are possible.
The elements of the CKM matrix modify the strength of charged current

interactions, as seen from Eq. (17.18). Studying various charged current pro-
cesses, it is therefore possible to estimate the magnitudes of the elements. We
summarize such estimates here:

|V | =




0.97418±0.00027 0.2255±0.0019 (3.93±0.36)× 10−3

0.230±0.011 1.04±0.06 (41.2±1.1)× 10−3

(8.1±0.6)× 10−3 (38.7±2.3)× 10−3 > 0.74


 .

(17.23)
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Note that the matrix is almost the unit matrix, in the sense that the diago-
nal elements are almost equal to unity and the off-diagonal elements are all
small. Moreover, the off-diagonal elements involving the first two generations
are much larger than all other off-diagonal elements. More explicitly, in the
parametrization of Eq. (17.22), we can write s13 ≪ s23 ≪ s12 ≪ 1. Wolfen-
stein proposed to make this hierarchy explicit in the notation by introducing
a parameter λ = s12 to denote the smallness of all elements of the mixing
matrix. Then s23, which should be another order of smallness down from s12,
can be written as Aλ2. The element Vub can be called Aλ3(ρ − iη): cubic in
λ because s13 is smaller than s23, and the factor ρ − iη to ensure that this
element is complex. The rest of the elements can now be found from unitar-
ity of the matrix. Of course this parametrization is approximate, so we can
retain terms only up to O

(
λ2
)
, except where the leading term of any element

is O
(
λ3
)
. The form of the matrix is

V =




1− 1
2λ

2 λ Aλ3(ρ− iη)
−λ 1− 1

2λ
2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1


 . (17.24)

Note that we have four parameters in this parametrization, as is there in
any other one such as the matrices in Eq. (17.21) and Eq. (17.22). The
advantage of this phenomenological parametrization is that all CP-violating
effects, characterized by the parameter η without which the matrix would have
been real, arise from the 13 and the 31 elements of the matrix. This is a big
contrast with the parametrization of Eq. (17.22) from which the Wolfenstein
parametrization has been derived. As we see, five of the nine elements of the
matrix of Eq. (17.22) contain the CP-violating phase δ0. However, note for
example the 22 element. Here, the phase factor eiδ0 is multiplied by s12s23s13.
This product of the three sines is of order λ6, and hence this term is too small
to be of any phenomenological importance. Similar arguments apply to 21,
23 and 32 elements, leaving only two complex elements.

2 Exercise 17.1 Verify that the phase δ0 does not contribute to the 21,
23 and 32 elements of the CKM matrix at O

`

λ3
´

.

There was no analog of the CKM matrix in the leptonic sector because
the standard model did not have any right-handed neutrino field. Therefore,
there was only one kind of mass terms, viz., those of the charged leptons, and
we could work in a basis of generations in which these terms were diagonal.
For quarks, this freedom was lost because there is no fundamental reason to
guarantee that we can take a basis in which both up-type and down-type
quark masses are diagonal.

Let us now look at the flip side of the issue. We had to introduce two
matrices in Eq. (17.15), UL and UR, in the process of applying the bi-unitary
transformation to diagonalize quark matrices. Of these, UL appeared in the
charged current. But UR seems to have vanished! It has not occurred any-
where in the currents. The reason is that we started with an unnecessarily
complicated notation. The d′

R
, s′

R
and b′

R
, mentioned in Eq. (17.1), all trans-

form the same way under the gauge group, so any linear combination of them
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f1

f2

W+

f4
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f2

w+

f4

f3

(b)

Figure 17.1: Tree-level diagrams for the process of Eq. (17.25).

would also transform the same way. Thus, we could have started with the
fields dR, sR and bR in that equation, the fields that would finally appear in
the diagonal mass terms. That way, we never would have encountered the
matrix UR. This says that the matrix UR is unphysical: it should not appear
in any physical formula. The matrix UL, or V , on the other hand, cannot be
dispensed with even while writing the representations of the quark fields. If
we choose to write the doublets using dL, sL and bL, the upper components
of the doublets would be superpositions of physical up-type quark fields, and
this superposition would again involve the same matrix V .

Be it as it may, there are only a few parameters in the quark interactions,
and all properties of hadrons should be expressible in terms of these few
parameters in principle. In fact, in this chapter, we will further reduce the
number of parameters by taking δ = 0 and postponing the discussion of all CP-
violating effects until Ch. 21. Even then, the main difficulty lies in evaluating
the hadronic matrix elements. One has to make approximations and depend
on symmetries only. The procedures introduce form factors in the calculation.
We will see examples later in the chapter.

17.4 Yukawa interaction of quarks

As mentioned in Ch. 16, Yukawa interactions mean the interaction of fermions
with spinless particles. There is really only one physical scalar in the standard
model: all other three degrees of freedom present in the complex doublet are
eaten up by the gauge bosons. Nevertheless, one often performs calculations
in the gauges where the physical spectrum is not apparent, and in such gauges
one has to deal with the unphysical modes as well. The propagators of the
unphysical bosons have been given in Fig. 16.1 (p 468). Here, we discuss the
coupling of the unphysical bosons, as well as the physical Higgs boson, with
the quarks.

We start with the unphysical Higgs bosons. Their propagators are deter-
mined by gauge invariance, as shown in §16.3. Hence, it might be suspected
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that their couplings should also be somehow governed by gauge invariance.
And indeed, they are. To see this in some generality, consider two chiral
fermions f1 and f2 which belong to the same multiplet of some gauge group,
so that there is a coupling with f1 coming in and f2W going out of a vertex,
W being a gauge boson. Suppose the Feynman rule for this coupling is iaµ

12,
which, for any value of the Lorentz index µ, is a matrix. The same applies to
the two fermions f3 and f4, for which the Feynman rule for the coupling is
iaµ

34. Then there would be a W boson mediated diagram for the process

f1 + f4 → f2 + f3 , (17.25)

which has been shown in Fig. 17.1a. The amplitude of this diagram can be
written as

iMa =
[
u2ia

µ
12u1

]
iD(W )

µν (k)
[
u3ia

ν
34u4

]
, (17.26)

where D
(W )
µν denotes the propagator for the gauge boson. In this formula, u1

signifies the positive energy spinor with 4-momentum pµ
1 of the particle f1

whose mass is m1, and so on for u2, u3 and u4. The momentum of the gauge
boson is obviously given by

k = p1 − p2 = p3 − p4 (17.27)

through energy-momentum conservation. Now, suppose we use the general
Rξ-gauge propagator for the W boson, as given in Fig. 16.1 (p 468). In this
propagator, there are terms with the denominator k2 −M2

W , which have no
dependence on the gauge parameter ξ. We don’t worry about them. But then
there is one part of the propagator that has a denominator k2 − ξM2

W . Let
us write the part of Ma that contains this part of the propagator:

M (ξ)
a =

[
u2a

µ
12u1

]kµkν

M2
W

1

k2 − ξM2
W

[
u3a

ν
34u4

]
. (17.28)

This is, of course, a gauge-dependent contribution, and must vanish in the final
amplitude. The cancellation must occur against the contribution of Fig. 17.1b,
mediated by the unphysical charged Higgs boson w+. Using the propagator
of w+ given in Fig. 16.1 (p 468), this latter contribution can be written as

Mb = −
[
u2b12u1

] 1

k2 − ξM2
W

[
u3b34u4

]
, (17.29)

where b12 and b34 denotes the coupling of the w with the spinors. Looking at
these formulas, we see that the cancellation is achieved if, between the spinors,

b12 =
kµ

MW
aµ
12 , (17.30)

and a similar formula involving the other pair of fermions.
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f2

f1

w+
Feynman rule:

−ig√
2MW

(m1R−m2L)

f1

f2

w+
Feynman rule:

−ig√
2MW

(m2R−m1L)

f

f

z
Feynman rule:

g

2 cos θW

mf

MZ
γ5

Figure 17.2: Feynman rules for fermion interactions with the unphysical Higgs bosons.
As explained in the text, f1 and f2 are two fermion fields whose left-chiral projections
form a doublet of SU(2)L, and f denotes either one of them.

This is the general formula which applies for the coupling of an unphysical
Higgs boson in any spontaneously broken gauge theory. For the SU(2)L ×
U(1)Y theory, aµ

12 = −(g/
√

2)γµL. Note that Eq. (17.27) implies

[
u2γ

µLu1

]
kµ = u2(p/1 − p/2)Lu1 = u2(Rp/1 − p/2L)u1

= u2(m1R−m2L)u1 , (17.31)

by the use of the Dirac equation for the spinors at the last step. The resulting
Feynman rule for the f1 → f2w

+ vertex is presented in Fig. 17.2. Couplings of
the unphysical neutral Higgs boson can also be determined through a similar
argument. They also appear in Fig. 17.2.

A few comments. First, the couplings are really determined up to an
overall sign. Had we defined b12 to be the negative of what we have shown
in Eq. (17.30), the ξ-dependence in Ma + Mb would have still canceled. This
ambiguity is true, and is irrelevant. The field that is called w+ could also be
called −w+, thus reversing the signs of all its couplings.

Secondly, we see that the rules given for leptons in Fig. 16.3 (p 472) are
special cases of these general rules, as can be easily seen by putting m1 = 0
and m2 = me. And thirdly, it should be acknowledged that we have not
invoked any details of the scalar sector in deriving these couplings. We have
not assumed that there is one doublet of scalars in our model. More than
one doublet may develop VEV and induce spontaneous symmetry breaking.
There may be other kinds of multiplets responsible for driving the symmetry
breaking. Whatever be the mechanism of symmetry breaking, we have shown
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f

f

H
Feynman rule:

−ig
2 cos θW

mf

MZ

Figure 17.3: Feynman rule for fermion interactions with the physical Higgs boson of
the standard model.

that the gauge boson couplings to fermions and the unphysical Higgs couplings
to fermions are related through Eq. (17.30).

2 Exercise 17.2 Find the coupling of fermions to the unphysical neu-
tral Higgs boson, taking the coupling with the Z boson from Fig. 16.2
(p 469).

2 Exercise 17.3 In deriving the Feynman rules for the unphysical Higgs
bosons, we assumed that the coupling with the gauge boson W is purely
left-chiral. This is not a necessity in a general gauge theory. If there
are fermions whose right-chiral fields also transform non-trivially un-
der the SU(2)L part of the gauge group, the gauge coupling can have
the more general form iγµ(aL + bR). Find the corresponding coupling
for the unphysical charged Higgs boson.

The coupling of the physical Higgs boson H , on the other hand, is not
necessarily determined by the gauge coupling and the fermion masses. In a
model with a more elaborate choice of scalar multiplets, there can be other
parameters that would enter this coupling. What we have shown in Fig. 17.3
is the coupling in the standard model with one Higgs doublet which we have
been considering since Ch. 16.

Our results show that all Yukawa couplings in the standard model in-
volve a ratio of a fermion mass and a gauge boson mass. This means that
while computing physical amplitudes, the contributions of diagrams involving
Yukawa couplings can be neglected in comparison with those involving gauge
couplings, so far as we are dealing with fermions which are much lighter com-
pared to the gauge bosons. In fact, this condition is satisfied for all known
fundamental quarks and leptons except the top quark. So, in the processes
mentioned in the rest of the chapter and in forthcoming chapters as well, we
will often not even mention the Higgs boson mediated diagrams.

17.5 Leptonic decays of mesons

The main problem with hadronic processes, as described above, is the evalua-
tion of the hadronic matrix elements. The difficulty increases with the number
of hadrons in a process. So we first discuss the simplest possible processes
containing only one hadron, the remaining particles being leptons.
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u

d

π+

{
⇒

µ
+(−k)

νµ(q)

W

Figure 17.4: Quark-level Feynman diagram for charged pion decay. The fermion lines
on the left side of the diagram correspond to one incoming u quark line and an incoming
d antiquark, which together represent an incoming π

+.

17.5.1 Decay of charged pions

As discussed in §10.9, the charged pion is the lightest hadron that decays
through weak interactions. The dominant decay mode of π

+ is given by

π
+(p)→ µ

+(k)νµ(q) , (17.32)

where we have put a notation for the 4-momenta of all particles that will be
used in the calculations below.

Clearly, at the quark level, the process of Eq. (17.32) means

ud̂→ µ
+

νµ . (17.33)

The tree-level diagram for the process is shown in Fig. 17.4. If we disregard
the momentum dependence of the W propagator, the effective four-fermion
interaction can be written as

Leff =
GF√

2
V ∗

ud

[
dγλ(1− γ5)u

][
νµγλ(1− γ5)µ

]
. (17.34)

Note that the CKM matrix element Vud occurs in this effective Lagrangian,
because the quark current between the d and the u quark is multiplied by
that element in the interaction Lagrangian, as shown in Eq. (17.18).

We now have to take the matrix element of this effective Lagrangian be-
tween the initial and the final states of the process given in Eq. (17.32). For
the leptonic part, this is trivial. Let us denote the leptonic current appearing
in the second square bracket of Eq. (17.34) by jλ(x), where the co-ordinate
dependence comes from the field operators. This dependence can be fac-
tored out in the form of an exponential, as shown in §5.7.1. This exponential
does not enter the Feynman amplitude, but rather contributes to an energy-
momentum conserving delta function. Once this factor is taken out, we are left
with the matrix element of jλ(0), and for this, we can just use the u-spinors
and v-spinors, as prescribed in Table 4.1 (p 91). This gives

〈
µ

+(k)νµ(q)
∣∣jλ(0)

∣∣ 0
〉

= u(νµ)(q)γλ(1 − γ5)v(µ)(k) . (17.35)
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Note that in writing this matrix element, we have put the initial state to be
the vacuum state. This is because the initial state contains no leptons, and is
therefore the same as the vacuum state as far as the leptons are concerned.

Let us now look at the quark current that appears in a square bracket
in Eq. (17.34), which we will call Jλ(x). The co-ordinate dependence gives
another exponential factor, as before, and we are faced with the task of finding
the matrix element of Jλ(0) between an initial pion state and a final vacuum
state. The vacuum state appears in this discussion for the same reason it
appeared in the context of leptons: as far as hadrons are concerned, the final
state is no different from the vacuum state.

The problem is in finding the matrix element of this current, because the
initial state does not contain free quarks: it contains a meson. The matrix
element can be calculated only if we could solve the field theory with interact-
ing quarks exactly, which would tell us how the quarks bind within the pion.
But we don’t know how to do that. So the best thing that we can do is to
parametrize the matrix element.

We note that the current transforms like a vector under Lorentz trans-
formations. The hadronic matrix element should then also transform as a
vector, because the pion is a scalar state (i.e., the pion field transforms like a
scalar), and so is the vacuum. Moreover, the matrix element should depend
on the parameters of the states, and the only 4-vector relevant to the state is
p. Thus, we can write

〈
0
∣∣Jλ(0)

∣∣π+(p)
〉

= −√2ifπp
λ , (17.36)

where fπ is a constant. It is called the pion decay constant.

2 Exercise 17.4 What is the mass dimension of fπ? [Hint : Recall the
dimension of one-particle states from §4.8.]

Combining Eqs. (17.35) and (17.36), we can now write the amplitude for
the pion decay process:

M = −GFV
∗
udfπp

λ u(νµ)(q)γλ(1− γ5)v(µ)(k) . (17.37)

Using the momentum conservation equation p = q+k and the Dirac equations
for the spinors, we can write it as

M = −GFV
∗
udfπ u(νµ)(q)

(
q/+ k/

)
(1− γ5)v(µ)(k)

= GFV
∗
udfπmµ u(νµ)(q)(1 + γ5)v(µ)(k) . (17.38)

This gives

|M |2 = 8G2
F |Vud|2f2

πm
2
µ q · k . (17.39)

From kinematics, q · k = 1
2 (m2

π
−m2

µ
). So, putting the expression for |M |2

into the formula for the two-body decay rate of Eq. (4.168, p 97), we obtain

Γ =
1

4π
G2

F |Vud|2f2
πm

2
µmπ

(
1−

m2
µ

m2
π

)2

. (17.40)
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From the measurement of charged pion lifetime, one can find the value of the
pion decay constant fπ.

2 Exercise 17.5 The measured lifetime for charged pion is 2.60× 10−8 s.
Using the value of the Fermi constant and the masses of the pion and
the muon and assuming Vud ≈ 1, show that

fπ = 93 MeV . (17.41)

This is a cautionary note to point out that there are different conventions of defining fπ which
differ by a factor of

√
2. Some people do not put the factor of

√
2 on the right hand side of Eq.

(17.36), so for them fπ turns out to be about 130 MeV. The factor of
√

2 appears arbitrary
and whimsical in the definition of the pion decay constant. Later in Eq. (18.38, p 536), we will
write this definition in an alternative form which will make the factor of

√
2 look more natural.

The factor of i that appears in Eq. (17.36) is just a convention, adopted so that the Feynman
amplitude if Eq. (17.38) does not have any explicit factor of i.

The phenomenological part of the analysis is done, but we want to spend
some time on some issues in the derivation. First, look at the definition of fπ

in Eq. (17.36). The current Jλ has a polar vector part and an axial vector
part, as seen in Eq. (17.34). Now, the pion is a pseudoscalar, i.e., its intrinsic
parity is −1, whereas the vacuum state must have intrinsic parity equal to
+1. The polar vector current behaves like any polar vector, so its spatial part
has a negative intrinsic parity. The matrix element of this part between the
pion and the vacuum should have positive intrinsic parity. But the expression
on the right hand side involves pλ, whose spatial part has negative intrinsic
parity. This argument shows that the polar vector current does not contribute
to the matrix element at all. It is only the axial vector current which does,
and the matrix element is given in Eq. (17.36).

To get to the second interesting point, let us mention that the decay

π
+(p)→ e+(k)νe(q) (17.42)

is also kinematically allowed. In fact, since the electron is much lighter than
the muon, the available phase space to this channel is much larger than that to
the channel µ

+
νµ. The analysis for the process of Eq. (17.42) is exactly sim-

ilar, with electron mass occurring in place of muon mass in the final formula.
Thus we obtain

Γ(π+ → e+νe)

Γ(π+ → µ+νµ)
=
m2

e

m2
µ

(
m2

π
−m2

e

m2
π
−m2

µ

)2

, (17.43)

which is about 1.3 × 10−4. Why such a small branching ratio for a channel
which is kinematically favored? The reason is the occurrence of the factor
proportional to the charged lepton mass in the amplitude, which produces
the suppression factor m2

e/m
2
µ in the branching ratio. The factor can be

understood by helicity arguments discussed in §14.2.1. We recall that the
helicity of both the final state fermions should be the same. Since the neutrino
helicity is always −1, the helicity of the charged antilepton, µ

+ or e+, should
also be the same. However, the gauge current has only left-chiral fields. It
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can create a left-chiral neutrino if it annihilates a left-chiral charged lepton.
Turning things around, we can say that if it creates a left-chiral neutrino, it
can also create a right-chiral antilepton with it. We thus reach an apparent
impasse: helicity of the created antilepton has to be negative, but its chirality
has to be right, i.e., positive. In the massless limit, helicity coincides with
chirality, so this is not possible. It becomes possible if the charged lepton
is massive, through the mismatch of helicity and chirality. This mismatch is
bigger if the mass is bigger, so the amplitude is proportional to the charged
lepton mass.

2 Exercise 17.6 Use the helicity argument to conclude that the rate for
the decay π

0 → νbν should vanish if the neutrinos are massless. Verify
this by writing the matrix element and evaluating it in the manner
shown for charged pion decay.

2 Exercise 17.7 The neutral pion decays almost always into two pho-
tons, as mentioned in §10.9. It also has some rare decay modes,
shown below with the branching ratio of each mode:

B(π0 → e+e−) = 6.2 × 10−8 ,

B(π0 → e+e−γ) = 1.2 × 10−2 ,

B(π0 → e+e−e+e−) = 3.1 × 10−5 . (17.44)

All these decays are purely electromagnetic. Explain qualitatively
their relative magnitudes.

17.5.2 Decay of charged kaons

Charged kaons, just like charged pions, can decay leptonically through the
channels

K+ → µ
+

νµ ,

K+ → e+νe . (17.45)

Take the first process, for instance. It is governed by the quark-level process

uŝ→ µ
+

νµ . (17.46)

The analysis is more or less the same as that for charged pion decay, except
that the CKM matrix element that appears in the amplitude is Vus, and that
the analog of Eq. (17.36) is now

〈
0
∣∣sγλ(1 − γ5)u

∣∣K+(p)
〉

=
√

2ifKp
λ , (17.47)

where fK , like fπ, is a phenomenological constant which is predictably called
the kaon decay constant . From the observed decay rate of charged kaons into
this channel, one can find the value of this constant:

fK = 110 MeV . (17.48)
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2 Exercise 17.8 Check the value of fK quoted above, given that |Vus| =
0.225. The lifetime of the K+, the branching ratio to the said channel,
the masses of various particles, and the Fermi constant can all be
found in various appendices.

2 Exercise 17.9 Find the numerical value for Γ(K+ → e+νe)/Γ(K+ →
µ

+
νµ).

But we must remember a very important difference between the leptonic
K decays and leptonic π decays. For kaons, there are also purely hadronic
decay modes, which are not possible for the pion because of its low mass. For
example, K+ can decay to π

+
π

0, which has a substantial branching ratio.

17.5.3 Related processes

We can, of course, discuss the decays of many other mesons in the same way.
The arguments are similar, so we need not get into details. Rather, here we
discuss another class of decay processes in which only one meson is involved.

We are talking about the decay of the tau. The purely leptonic decay
modes of the tau were discussed in §14.6. We found that these decay modes
comprise about 35% of the total decay width of the tau. The rest involve
hadrons in the final state. The tau lepton is heavier than the pion, the kaon
and many other mesons, so these can appear in the final state of tau decay.
In particular, there are modes which involve only one meson in the final state,
e.g., τ → π

−
ντ or τ → K−

ντ. The quark-level processes contributing to
such decays can be obtained by invoking crossing symmetry on the processes
shown in Eqs. (17.33) and (17.46), with the muon replaced by tau and the
muon-neutrino replaced by the tau-neutrino. The calculation of the matrix
element is therefore similar to what we have done for charged pion and kaon
decay. The expression for |M |2 would now have an extra factor of 1

2 because
of averaging over initial spin, and also the quantity q · k appearing in Eq.
(17.39) would be equal to 1

2 (m2
τ
− m2

π
) from kinematics, so that we would

obtain

Γ(τ− → π
−

ντ) =
G2

F

8π
|Vud|2f2

πm
3
τ

(
1− m2

π

m2
τ

)2

. (17.49)

The calculation for the decay mode to K−
ντ should be similar, with fπ and

mπ replaced by fK and mK respectively. This means that

Γ(τ− → K−
ντ)

Γ(τ− → π−ντ)
=

∣∣∣∣
Vus

Vud

∣∣∣∣
2
f2

K

f2
π

(
m2

τ−m2
K

m2
τ−m2

π

)2

. (17.50)

Thus, the decay mode into kaons is weaker because Vus is small. Experimen-
tally, the ratio of the two branching ratios is about 0.065.
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17.6 Spin and parity of hadronic currents

It might be worthwhile to have some general discussion of hadronic currents
like those which appeared in the discussion of decays of pions and kaons. We
restrict our discussion to the gauge currents which contain polar and axial
vector bilinears of fermion fields. We will denote the two types of currents
generically by Vµ and Aµ, respectively.

Under parity, a vector current transforms as

V0 → V0 , V → −V , (17.51)

as has been shown in Eq. (6.26, p 156). So far as spatial rotations are con-
cerned, V0 behaves like a scalar, whereas V behaves like a vector. Hence, we
can summarize the spin and parity properties of a polar vector current by
writing

JP (V0) = 0+ , JP (V) = 1− . (17.52)

For axial vector currents, the rotation properties are the same but parity
properties are opposite, i.e.,

JP (A0) = 0− , JP (A) = 1+ . (17.53)

One can use these properties to find the general form for the matrix el-
ements of quark currents between different kinds of states. For example,
consider matrix elements of the type

〈
0
∣∣Vµ

∣∣M
〉
, where M is any meson in the

0− octet. The time component of this matrix element should have JP = 0−,
since the vacuum is a 0+ state. On the other hand, the JP of the spatial
components of the matrix element should transform like a combination of 0+

(for the vacuum), 1− (for the current) and 0− (for the meson), i.e., should
have JP = 1+. So the matrix element should be some quantity whose time
and space components transform like 0− and 1+ respectively. The matrix
element can depend only on the meson 4-momentum pµ. One cannot con-
struct any quantity that depends only on one 4-vector and transforms like
JP = (0−, 1+). Hence this matrix element must be zero.

For the axial vector current, the same arguments show that the time and
space components of the matrix element should have JP = (0+, 1−). Indeed,
the components of pµ itself have the same properties. Therefore the matrix
element can be proportional to pµ, and that is exactly the form in which we
had written down the matrix element in Eq. (17.36), for example. Analysis of
parity properties of the currents provided us with the extra information that
in leptonic decays of 0− mesons, only the axial vector current contributes: the
polar vector current does not. In summary, Eq. (17.36) and its analogs for
kaon etc can equivalently be written as

〈
0
∣∣Vλ(0)

∣∣M(p)
〉

= 0 ,〈
0
∣∣Aλ(0)

∣∣M(p)
〉

=
√

2ifMp
λ , (17.54)
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where fM is the decay constant of the meson M .
If we want to consider decay of one meson into another meson plus leptons,

the hadronic matrix elements will be of the form
〈
Mb(k)

∣∣Jµ

∣∣Ma(p)
〉
, where

we take both Ma and Mb to be 0− mesons, and Jµ stands for either Vµ or Aµ.
In this case, the time and space components of the matrix element of the polar
vector current should transform like (0+, 1−), which is the way 4-momentum
vectors transform. So we can write

〈Mb(k) |Vµ(0)|Ma(p)〉 = f1pµ + f2kµ , (17.55)

where f1 and f2 are form factors. On the other hand,

〈Mb(k) |Aµ(0)|Ma(p)〉 = 0 , (17.56)

which can be proved with very little effort. Matrix elements involving three
0− mesons can also be parametrized through similar arguments.

There is an important difference between fπ that appears in Eq. (17.54)
and the objects f1 and f2 that appear in Eq. (17.55). From the Lorentz
transformation property of both sides of these equations, we deduce that all
of them should be Lorentz scalars. For the pion decay, the only scalar that
can be constructed from the parameters of the problem is p2, which is equal
to m2

π
, i.e., is a constant. On the other hand, in the matrix element involving

two mesons, we can define three Lorentz invariants, viz., p2, k2 and k · p.
The first two are constants, related to the masses of the two mesons. The
third one, which can be traded with q2 = (p − k)2, is a dynamical variable.
Therefore, f1 and f2 that appear in Eq. (17.55) are two form factors which
depend on the momentum transfer between the mesons, i.e., on q2.

2 Exercise 17.10 If Ma, Mb and Mc are all 0− mesons, show that

〈Mb(k)Mc(q) |Aµ|Ma(p)〉 = fapµ + fbkµ + fcqµ ,

〈Mb(k)Mc(q) |Vµ|Ma(p)〉 = fεµαβγp
αkβqγ , (17.57)

represent the most general parametrization consistent with angular
momentum and parity symmetries.

We now show that there is an interesting property of the charged current
involving the u and the d quarks which also helps constrain some matrix
elements. This involves G-parity, that was introduced in §8.5. Note that the
results of a half-rotation around the I2 axis on the up and the down quarks
are the following:

u→ d , d→ −u . (17.58)

Charge conjugation changes each quark field to its conjugate field, with the
prescription given in Eqs. (6.48) and (6.49). Thus, the effect of G-parity
transformation on these quark fields is given by

Gu(x)G−1 = γ0Cd∗(x) , Gd(x)G−1 = −γ0Cu∗(x) . (17.59)
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It can then be easily shown that

G
(
uFd

)
G−1 = −uCF⊤C−1d , (17.60)

where F is any numerical 4× 4 matrix, e.g., a Dirac matrix. For any of the
sixteen basic 4 × 4 matrices that we introduced in Eq. (4.93, p 79), the effect
of G-parity is to change it to −FC , where FC was tabulated in Eq. (6.68,
p 163). From the table, it is seen that the polar vector current is unchanged
by G-parity, whereas the axial vector current changes by a sign.

This helps explain why some processes are unobserved, or have very small
rates. For example, let us ask whether the decay

τ → ηπ−
ντ (17.61)

is possible. The hadronic part of the matrix element involves two 0− meson
states. A little variation of the argument leading to Eq. (17.56) would show us
that the axial current cannot contribute to this matrix element. The matrix
element of the polar vector current also vanishes in the case in question, which
can be best seen from a consideration of G-parity. The η particle has positive
G-parity, the pions have negative G-parity, so together they have negative G-
parity. The polar vector current, which is positive under G-parity, therefore
cannot create ηπ from the hadronic vacuum. Gauge currents therefore cannot
induce this decay. If such a decay is observed, it would imply the existence of
some second-class current , involving other type of fermion field bilinears which
have different G-parity properties from the vector currents. Any bilinear that
does not contain γ5 and has the same G-parity property as the polar vector
current is called a first-class current . The same name applies to currents which
contain γ5 and is negative under G-parity, just as the axial vector current is.

2 Exercise 17.11 Find the matrix for exp(iπI2) in the 2 × 2 representa-
tion. Apply it on the isospin doublet

`

u
d

´

and verify Eq. (17.58).

2 Exercise 17.12 Prove Eq. (17.60).

When we introduced G-parity in Ch. 8, we mentioned that it is a symmetry of the strong
interaction only, and is not obeyed by weak, or even electromagnetic, interactions. One might
wonder why then we invoke it in the discussion of weak decays? The reason is that only the
polar vector current between the up and the down quarks can be responsible for the said process,
and this part of the interaction, taken in isolation, has a well-defined G-parity, as shown in Eq.
(17.60). It is true that by ‘weak interactions’, we do not mean just this one term but many
others which do not have well-defined G-parity properties. However, to the leading order in
perturbation theory, they are irrelevant for the process in question.

We now discuss matrix elements involving vector mesons such as the ρ-
mesons. The simplest matrix elements would be of the form

〈
0
∣∣J µ

∣∣M∗〉,
where M∗ denotes a generic vector meson and J µ can be either the polar or
the axial vector current. We can write

〈0 |J µ(0)|M∗(p, ǫr)〉 =
〈
0
∣∣J µ(0)a†r(p)

∣∣ 0
〉
, (17.62)
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where ǫr denotes the polarization vector of the meson, and a†r is the creation
operator for this polarization. The creation operator appears in the Fourier
expansion of the vector meson field Φµ(x):

Φµ(x) =
∑

r

∫
d3k√

(2π)32Ek

(
a†r(k)ǫµr

∗(k)eik·x + · · ·
)
, (17.63)

where the other term contains the annihilation operator and is not relevant
for the present discussion. From this, it is straightforward to see that

a†r(p) =

√
2Ep

(2π)3
ǫµr (p)

∫
d3x e−ip·xΦµ(x) . (17.64)

If we put this into Eq. (17.62), we encounter an expression involving the vac-
uum expectation value of

∫
d3x e−ip·xJ µ(0)Φν(x). The most general possible

form for this vacuum expectation value can be written as
∫
d3x e−ip·x 〈0 |J µ(0)Φν(x)| 0〉 = Fgµν + F ′pµpν , (17.65)

where F and F ′ are Lorentz invariants.
Consider now any particular combination of the Lorentz indices µ and ν

on both sides of Eq. (17.65). The vector meson is odd under parity. According
to the definition of parity of vector fields introduced in Eq. (6.14, p 153), this
statement means that if ν happens to be a spatial index, the intrinsic parity
of the field is negative. Suppose µ is the time index. Then the right hand side
of Eq. (17.65) reduces to F ′Epp

i, which is negative under parity. Therefore,
on the left hand side we should have a current such that J 0 is even under
parity. The axial vector current does not have this property, and so

〈0 |Aµ|M∗〉 = 0 . (17.66)

The entire matrix element comes from the polar vector current. Putting the
parametrization of Eq. (17.65) back into Eq. (17.62) and using the fact that
ǫµpµ = 0, we obtain

〈0 |Vµ(0)|M∗(p, ǫr)〉 =
√

2fM∗ǫµr . (17.67)

The quantity fM∗ can be called the decay constant of the vector meson. Note
that it has the dimension of squared mass. We have kept a factor of

√
2 to

mimic the corresponding definition for the pseudoscalar mesons.

2 Exercise 17.13 Consider the leptonic decay of a charged vector meson
of mass M. Use the form of the hadronic matrix element given in
Eqs. (17.66) and (17.67) to show that the decay rate is given by

Γ =
1

2π
G2

F f
2M , (17.68)

neglecting the masses of the charged lepton and the neutrino. [Hint :

Use Eq. (4.41, p 69) for the polarization sum.]
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Finally, we discuss the general form of matrix elements of currents within
two baryon states. We only discuss spin- 1

2 baryons, all of which have the
same intrinsic parity, viz., +1. When the current is a polar vector current,
the matrix element should transform like a polar vector. In other words, with
two baryons b and b′, the matrix element should have the form

〈b′(p′) |Vµ| b(p)〉 = u′(p′)Γµu(p) (17.69)

where u and u′ denote the spinors of the baryon fields, and Γµ is something
carrying a Lorentz index such that the combination on the right-hand side
is a polar vector. There can at most be four different independent 4-vectors,
but for expressions in the form that appears here, Gordon identity provides
one relation between them. Therefore, only three independent combinations
are possible, and one takes them in the following form:

〈b′(p′) |Vµ| b(p)〉 = u′(p′)
[
f1γ

µ + if2σ
µνqν + f3q

µ
]
u(p) , (17.70)

where q = p − p′, and f1, f2 and f3 are functions of q2. Similarly, with the
axial vector current, the most general form of the matrix element is

〈b′(p′) |Aµ| b(p)〉 = u′(p′)
[
f̃1γ

µ + if̃2σ
µνqν + f̃3q

µ
]
γ5u(p) , (17.71)

where f̃1, f̃2 and f̃3 are another set of form factors which are functions of q2.

17.7 Selection rules for charged currents

Some quick rules of thumb can be derived by considering the nature of
hadronic currents in the standard model. Suppose we are considering some
strangeness-changing process. It can change only through charged current
weak interaction, i.e., by W exchange, since strong and electromagnetic in-
teractions, and even neutral current weak interactions, conserve strangeness.
Strangeness is a property that is carried only by the s quark and the corre-
sponding antiquark, and by convention the values of strangeness assigned to
them are −1 and +1 respectively.

The charged current can change the s quark to any up-type quark, none
of which carries any strangeness. So, in this way, strangeness can go up from
−1 to zero, i.e., we have a change of strangeness ∆S = 1. But, at the same
time, the electric charge in the quarks has gone up from − 1

3 to + 2
3 , i.e., by

one unit. Of course electric charge is conserved: this increase means that a
W− has carried off the rest. But the W− is not a hadron. If we consider only
the charge in hadrons and call it QH , we can write

∆S = ∆QH . (17.72)

Of course, this rule is not absolute. If the W−, produced as a virtual particle,
produces quarks in the final state, ∆QH in the entire process must vanish,
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and therefore the selection rule of Eq. (17.72) will not hold. The selection
rule will work if the W− produces leptons in the final state. For leptonic
and semi-leptonic decays of mesons, this rule will hold as long as the process
uses only charged current interactions. Examples of this rule can be seen in
the leptonic decays of kaons and semi-leptonic decays of the τ lepton given
earlier, and in the semi-leptonic decays of kaons given later in Eq. (17.74).

Similar rules also hold for hadrons containing heavier quarks. For the
charm quark, the same argument will tell us that

∆C = ∆QH , (17.73)

where C, or charm, is defined to be +1 for the c-quark, −1 for the corre-
sponding antiquark, and zero for everything else. Assignment of the bottom
quantum number is similar to that for the strange quark, i.e., −1 for the
b-quark, and again a similar rule holds.

17.8 Semileptonic decays of mesons

We can now go one step further and consider processes involving two mesons.
These would include semileptonic decay modes of the kaon and other heavier
mesons. The K+, for example, has the following semileptonic decay modes:

mode branching ratio
K+ → π

0e+νe 4.98%
K+ → π

0
µ

+
νµ 3.32%

(17.74)

The first one is usually called K+
e3 decay and the second one K+

µ3 decay. These
processes are driven by the quark level process

ŝ→ ûℓ+νℓ , (17.75)

where ℓ stands for either the muon or the electron. The leptonic part of the
matrix element has the same form as that used for purely leptonic final state
processes discussed in §17.5. But the hadronic part of the matrix element is〈
π0
∣∣sγµLu

∣∣K+
〉
. As shown in Eqs. (17.55) and (17.56), this kind of matrix

element can be parametrized with two form factors, e.g.:

〈
π0(p)

∣∣sγµLu
∣∣K+(k)

〉
= f+(k + p)µ + f−(k − p)µ . (17.76)

Denoting q = k − p, one can argue that the two form factors are functions
of the dynamical variable q2 only. The argument is identical to that given in
§5.7.1 for electromagnetic form factors, and need not be repeated here.

Many other processes can be analyzed through the same machinery. These
include the pion beta decay (π+ → π

0e+νe), as well as decay modes of the
tau lepton containing two mesons in the final state, e.g., τ → π

0
π

−
ντ,

τ → π
0K−

ντ, τ → K0K−
ντ. Of course, the form factors will be different

for different meson states.
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2 Exercise 17.14 What is the mass dimension of the form factors ap-
pearing in Eq. (17.76)?

2 Exercise 17.15 Find the absolute square of the matrix element for
K+

ℓ3 decay and verify that the mass suppression that occurs for purely
leptonic decay modes does not occur in this case.

17.9 Neutral kaons

For many reasons, historical and coincidental, neutral kaons occupy a very
prominent position in the field of particle physics. In this section, we will give
some introduction to the physics issues connected with neutral kaons.

17.9.1 Eigenstates in the neutral kaon sector

When neutral kaons are produced in strong interactions, they are produced
either as K0 or as K̂0. As discussed in Ch. 10, the quark contents of these two
states are dŝ and d̂s respectively. Thus, K0 carries +1 unit of strangeness,
whereas K̂0 carries −1. These are strangeness eigenstates. Since strangeness
is conserved in strong interactions, any particle created from a state of definite
strangeness must be an eigenstate of strangeness.

Strangeness is not violated by electromagnetic interactions as well. In fact,
even neutral current weak interactions are flavor conserving, as we have noted
earlier. However, charged current weak interactions contain terms where the
strange quark couples through the W boson to the up-type quarks, none
of which carry any strangeness. These terms definitely violate strangeness.
Thus, it is expected that when the effects of these interactions are included,
the eigenstates of the Hamiltonian will not be the states

∣∣K0
〉

and
∣∣K̂0

〉
,

but some linear combinations of them. This is a phenomenon called K0-K̂0

mixing.
To discuss the phenomenon in a quantitative manner, let us consider a

state

|ψ(t)〉 = a(t)
∣∣K0

〉
+ b(t)

∣∣∣K̂0
〉
, (17.77)

and represent it through a column vector by writing

|ψ(t)〉 =

(
a(t)
b(t)

)
. (17.78)

The time evolution of
∣∣ψ(t)

〉
is governed by the Schrödinger equation,

i
d

dt
|ψ(t)〉 = H |ψ(t)〉 , (17.79)

where H is some effective Hamiltonian appropriate to this two-state system
whose basis states have been taken as

∣∣K0
〉

and
∣∣K̂0

〉
. Remember that, ac-

cording to Eq. (4.136, p 87), these states are not normalized to unity. We can
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define normalized states

|1〉 =

∣∣K0
〉

√
2mKV

, |2〉 =

∣∣K̂0
〉

√
2mKV

, (17.80)

so that the elements of the effective Hamiltonian can be written as

Hij = 〈i |H| j〉 . (17.81)

We might be tempted to think that the Hamiltonian is hermitian, and therefore its diagonal
elements are real and the off-diagonal ones are complex conjugates of each other. Indeed, in
introductory texts on quantum mechanics, we always discuss Hamiltonians which are hermitian.
With a hermitian H, the time evolution operator exp(−iHt) is unitary, which ensures that the
probability of obtaining the particle in the entire space does not change with time. This means
that the procedure is applicable for stable particles. If, on the other hand, a particle is not
stable but rather decays into something else, the probability of finding it throughout the space
should decrease with time as |ψ|2 ∝ exp(−Γt), where Γ is the decay rate. This means that the
Hamiltonian should contain a non-hermitian part. This part can be taken to be skew-hermitian
without any loss of generality, since any matrix can be written as a sum of a hermitian matrix
and a skew-hermitian one. For the 2 × 2 case at hand, we can therefore write

H = M − i

2
� , (17.82)

where M and � are both 2 × 2 hermitian matrices.

2 Exercise 17.16 Using Eq. (17.79), show that

d

dt
〈ψ(t) |ψ(t) 〉 = −〈ψ(t) |�|ψ(t)〉 , (17.83)

which tells us that the part � is responsible for the decay of the kaons,
which depletes the probability of observing either of the two neutral
kaon states.

It should be understood that this is no deviation from the basic tenets of quantum me-

chanics. The point is that if one starts with a state, say,
˛

˛

˛K0
E

, the time evolution of this state

will not only contain the states
˛

˛

˛K0
E

and
˛

˛

˛

bK0
E

, but also the decay products of the neutral

kaons. Had we considered basis states to span these decay products as well and written the
Hamiltonian in that space, the Hamiltonian would have come out to be hermitian. Here we are
specializing into more restrictive questions where no attention is paid to the decay products:
only K0 and bK0 are measured. This is the reason we got a non-hermitian Hamiltonian, which
should be treated as an effective Hamiltonian of the neutral kaon system.

The effective Hamiltonian H of the neutral kaon sector need not be her-
mitian, but we should find out what constraints does CPT invariance put on
its elements, since we assume throughout that CPT is a good symmetry. For
this, first we see what are the elements of M and �. If weak interactions did
not exist, K0 and K̂0 would have been eigenstates of the Hamiltonian. They
would have been stable, implying � = 0, and their masses would have been
equal by CPT invariance. Let us call this common mass m0. In the presence
of the weak interaction Hamiltonian Hw, we can write, up to terms in the
second order in perturbation theory, the expressions

Mij = m0δij + 〈i |Hw| j〉+
∑

n

P
〈
i
∣∣Hw

∣∣n
〉 〈
n
∣∣Hw

∣∣j
〉

En −m0
,�ij = 2π

∑

n

δ(En −m0) 〈i |Hw|n〉 〈n |Hw| j〉 , (17.84)
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where P denotes the principal value.
Let us now see how CPT transformation affects these elements. Suppose

we choose the phases such that

Θ
∣∣K0

〉
=
∣∣∣K̂0

〉
, Θ

∣∣∣K̂0
〉

=
∣∣K0

〉
, (17.85)

where Θ ≡ C PT . Using Eq. (7.45, p 196) which shows how matrix elements
transform under CPT, we can write, e.g.,

〈
K̂0
∣∣∣Hw

∣∣∣ K̂0
〉

=
〈
K0
∣∣H†

w

∣∣K0
〉
. (17.86)

But of course Hw is hermitian, so we can omit the dagger sign on it. This
equation shows that, so long as only the first order perturbation term is con-
cerned, we obtain M11 = M22.

We now try the same equation on the off-diagonal elements. Here, we
obtain

〈
K̂0
∣∣∣Hw

∣∣∣K0
〉

=
〈

ΘK0
∣∣∣Hw

∣∣∣ΘK̂0
〉

=
〈
K0
∣∣∣Hw

∣∣∣ K̂0
〉

∗ . (17.87)

This is an identity because of the hermiticity of Hw. So we get no restriction
on the off-diagonal elements at first order in perturbation. Continuing the
exercise to second order, the same result repeats, i.e., we obtain

H11 = H22 (17.88)

whereas there is no restriction on H12 and H21. This means that we can
parametrize the matrix H as

H = a1+ b

(
0 p2

q2 0

)
. (17.89)

The parameters p and q can be taken dimensionless, with

|p|2 + |q|2 = 1 , (17.90)

and b can be taken to be real without any loss of generality. The other
parameters, a, p and q are complex. It is easy to see that the eigenvalues of
this Hamiltonian are

a± bpq , (17.91)

and the corresponding eigenvectors
(
p
±q

)
, i.e., p

∣∣K0
〉
± q

∣∣∣K̂0
〉
, (17.92)

which have the same normalization as the states
∣∣K0

〉
and

∣∣K̂0
〉
. The eigen-

values are in general complex. Their real parts give the energy, and imaginary
parts give the decay rates.
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2 Exercise 17.17 Verify Eq. (17.88) on the second order terms in per-
turbation theory.

So far, we have not assumed anything except CPT symmetry. From now
on, let us ignore CP violating effects. If CP is conserved, the states

∣∣K0
〉

and∣∣K̂0
〉

can be defined as CP conjugates of each other, i.e.,

CP
∣∣K0

〉
=
∣∣∣K̂0

〉
, C P

∣∣∣K̂0
〉

=
∣∣K0

〉
. (17.93)

The Hamiltonian is CP invariant, i.e., it commutes with the operator CP:
(CP)−1H(CP) = H. Therefore,

H12 ≡
〈
K0
∣∣∣H
∣∣∣ K̂0

〉
=
〈
K0
∣∣∣(C P)−1H(CP)

∣∣∣ K̂0
〉
. (17.94)

But Eq. (17.93), along with the unitarity of the operator CP, implies that
〈
K0
∣∣∣(C P)−1H(CP)

∣∣∣ K̂0
〉

=
〈
K̂0
∣∣∣H
∣∣∣K0

〉
= H21 . (17.95)

We have thus proved that

H12 = H21 (17.96)

provided CP is conserved. For the parametrization presented in Eq. (17.89),
it means that p = q. So the eigenstates of the Hamiltonian are

K0
(±) ≡

1√
2

( ∣∣K0
〉
±
∣∣∣K̂0

〉)
. (17.97)

Note that a can still be complex, giving complex eigenvalues in Eq. (17.91),
signifying that the two eigenstates can decay even if there is no CP violation,
something that will be discussed in §17.9.2.

We warn the reader a little bit about the notation. We have used K± to
denote kaons carrying a positive or a negative unit of electric charge. Here
in Eq. (17.97), the plus or minus sign in the subscript does not say anything
about the electric charges of the particles. The electric charge is zero: remem-
ber that we are talking of neutral kaons. The subscripted signs in the states
defined in Eq. (17.97) represent the CP eigenvalue of the state, which can be
verified easily by using Eq. (17.93). The eigenstates of the Hamiltonian are
CP eigenstates in this case: something that we should have expected since
the operator CP commutes with the Hamiltonian.

Even with the assumption of CP invariance, the two eigenvalues are not
degenerate, as is shown by the expression for the eigenvalues in Eq. (17.91).
Thus, there will be two different eigenstates in the neutral kaon sector, with
a mass difference between them. The amount of this mass difference will be
estimated in §17.9.4.

2 Exercise 17.18 � Eq. (17.93) assumes a certain phase relation be-

tween the states
˛

˛

˛K0
E

and
˛

˛

˛

bK0
E

. More generally, both states can have
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some extra phase associated with them, so that one obtains a relation
of the form

CP
˛

˛K0
¸

= eiζ
˛

˛

˛

bK0
E

. (17.98)

Show that this implies

CP
˛

˛

˛

bK0
E

= e−iζ
˛

˛K0¸

. (17.99)

As for the conditions of CP invariance, show that Eq. (17.96)
changes, in this convention, to

H12 = e2iζ
H21 . (17.100)

17.9.2 Decays of neutral kaons into pions

The two eigenstates have very different properties regarding decays. To see
this, consider the possibility of a neutral kaon decaying into two pions. Be-
cause of electric charge conservation, the two pions in the final state can be
either π

+
π

− or π
0
π

0. For the ensuing argument, it does not matter which
one of these combinations we are talking about. The two pions must be pro-
duced in a L = 0 state, because the decaying kaon as well as the final pions
are all spinless particles. Thus, the orbital parity of the final state is +1. The
intrinsic parity of two pions is also +1, making the final state a parity eigen-
state with eigenvalue +1. The initial kaon, however, has a negative intrinsic
parity. Therefore, parity must be violated in the process.

This is no big deal, because weak processes violate parity maximally. But
let us now look at the charge conjugation property of the final state. Whether
the final state is π

+
π

− or π
0
π

0, it contains a spinless boson and its antipar-
ticle. As stated in Ex. 6.20 (p 173), this will have to be an eigenstate of charge
conjugation, with eigenvalue (−1)L in general, L being the orbital angular
momentum. In the present case, L = 0, so the final state has an eigenvalue
+1 of charge conjugation.

Consider the combined symmetry CP now. The final state of two pions,
by being an eigenstate of parity as well as charge conjugation, must be an
eigenstate of CP as well. And the eigenvalue will be the product of its parity
eigenvalue and charge conjugation eigenvalue, i.e., +1. If CP is conserved,
it can occur only in the decay of a CP eigenstate with the same eigenvalue.
Thus, if CP is conserved, only K0

(+) can decay into two pions; K0
(−) cannot.

Of course, both K0
(+) and K0

(−) can decay into three pions. For K0
(−), this

will be the dominant decay mode. But notice that the mass of the neutral kaon
is 497 MeV whereas the mass of pions is around 140 MeV. Thus, with three
pions in the final state, there is very little phase space for the decay products.
As a result, the decay will be much slower compared to the decay into two
pions. So K0

(−) will be long-lived, whereas K0
(+) will be much shorter-lived.

In reality, CP is violated, so the eigenstates will be superpositions of K0
(±).

CP violation will be discussed in Ch. 21. We only want to mention here that
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the effects of CP violations are much smaller than the usual weak interaction
effects, so the eigenstates will not change drastically. We will still have one
combination that will be predominantly K0

(−), and it will be much longer-lived

than the other. This combination will be called K0
L, and the other eigenstate

K0
S (here, ‘L’ is for ‘long’, and ‘S’ for ‘short’). Experimental values of their

lifetimes show the huge difference that the two-pion decay mode makes for
one of them:

Γ−1(K0
S) = 0.89× 10−10 s ,

Γ−1(K0
L) = 5.11× 10−8 s . (17.101)

17.9.3 Kaon oscillations

Because of the small difference in mass and large difference in the lifetimes
of the two neutral kaon eigenstates, very interesting phenomena can be ob-
served with kaons. Consider a neutral kaon produced in strong interactions.
This would be an eigenstate of strangeness since strong interactions conserve
strangeness. Let us assume that we have produced a beam of K0 particles.

The beam now moves, and we see its time evolution. The best way to
describe time evolution is to write K0 in terms of the eigenstates, which can
be done by inverting Eq. (17.92). If we ignore CP violation, this relation will
be

∣∣K0
〉

=
1√
2

( ∣∣K0
L

〉
+
∣∣K0

S

〉 )
. (17.102)

After some time t, this beam would evolve to

∣∣K0(t)
〉

=
1√
2

(
e−imLt−γLt

∣∣K0
L

〉
+ e−imSt−γSt

∣∣K0
S

〉 )
, (17.103)

where mL and mS are the masses of the two eigenstates, and γL, γS are
their decay rates. We have assumed that the particles in the beam are non-
relativistic, so that the contribution of the kinetic energy can be neglected.

We notice that the state
∣∣K0(t)

〉
is not the same as the original state. The

relative proportion of K0
L and K0

S varies with time. Thus, at any given time

after the production, the beam will contain a mixture of K0 and K̂0.
It is easy to detect the presence of K̂0’s in the beam. If a target made of

ordinary matter is placed in the path of the beam, the particles in the beam
would interact with the particles in the target. Protons in the target can
produce Λ particles through the reaction

p+ K̂0 → Λ + π , (17.104)

which can be mediated by strong interactions. On the other hand, the K0

cannot produce Λ or any other strange baryon from the proton, because it
has the wrong value of strangeness. Thus, only the elastic scattering channel
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sd

ds W

W

uBuA

(a1)

sd

ds uB

uA

WW

(b1)

Figure 17.5: K0- bK0 transition diagrams arising at the one-loop level in the standard
model. The fermion lines to the left of each diagram represent an incoming d-quark
and an incoming bs, i.e., an incoming K0. The fermion lines to the right represent an
outgoing bK0.

is open for the K0, and the cross-section is much smaller than that for the
K̂0. From the cross-section of scattering, we can then infer the amount of
K̂0 present in the beam at any time. It is seen that it oscillates with time,
because of the mass difference between K0

L and K0
S . The overall probability

of detecting any kind of neutral kaon also goes down with time because the
kaons decay.

2 Exercise 17.19 Neglect CP violation, so that the eigenstates are given
by the combinations given in Eq. (17.97). Show that, from a beam
that was originally purely K0, the probability of finding a bK0 at a
time t is given by

Prob( bK0,K0(t)) =
1

4

»

e−γLt + e−γSt

−2e−
1
2
(γL+γS)t cos(∆mK t)

–

, (17.105)

where ∆mK is the difference in mass of the two eigenstates.

17.9.4 K0
L-K

0
S mass difference

The mass eigenvalues for the neutral kaons have been given in Eq. (17.91).
The formula shows that the mass difference between K0

L and K0
S arises from

the off-diagonal terms in the Hamiltonian of Eq. (17.89), which was written
with K0 and K̂0 as the basis states.

Weak interactions violate strangeness. So, weak interactions can induce
some effective interactions that can result in transitions between K0 and K̂0.
Such transition diagrams have been shown in Fig. 17.5, which are called box
diagrams for obvious reasons. The fermion lines at the left sides of these
diagrams represent an incoming d quark and an outgoing s quark. The latter
can also be interpreted as an incoming antiquark ŝ, so that the two lines
at the left side stand for an incoming K0. Similarly, the two lines at the
right sides of the diagrams represent an outgoing K̂0. The amplitude of such
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diagrams would then provide the off-diagonal elements of the Hamiltonian of
Eq. (17.89). Our task here would be to estimate these amplitudes.

Let us take the diagram of Fig. 17.5a1 first. It gives rise to an effective
[sd][sd] interaction. The effective Lagrangian for this interaction is

iL
(a1)
eff =

(
− ig√

2

)4∑

A,B

∫
d4l

(2π)4

[
sV ∗

A2γ
µL

i(l/+muA
)

l2 −m2
uA

VA1γ
νLd

]

×iD(W )
µρ (l)iD

(W )
νλ (l)

[
sV ∗

B2γ
λL
i(l/+muB

)

l2 −m2
uB

VB1γ
ρLd

]
. (17.106)

Let us explain what we have written. We are looking for effective operators
involving quark fields which can have non-zero matrix elements between an
incoming K0 and an outgoing K̂0 state, or vice versa. We start with the
working assumption that we will be able to obtain simple operators which
contain no derivatives. This is the reason why we took all external quark
lines at zero momentum. Once this is assumed, all internal lines carry the
same loop momentum, l, which has been integrated over. The CKM matrix
elements come through the coupling to the W boson. In denoting the elements
of the CKM matrix, we have used the subscript 2 for the s quark and 1 for
the d quark.

We now notice that the quark mass terms in the numerator of the propa-
gators appearing in Eq. (17.106) do not contribute to the effective Lagrangian
because they contain a string like LγαL, which is zero. Using the ’t Hooft–
Feynman gauge for the W boson propagators, we then obtain

iL
(a1)
eff =

g4

4

[
sγµγαγνLd

][
sγνγβγµLd

]∑

A,B

V ∗
A2VA1V

∗
B2VB1

×
∫

d4l

(2π)4
lαl

β

(l2 −M2
W )2(l2 −m2

uA
)(l2 −m2

uB
)
. (17.107)

Further simplification can be obtained by transforming the integral to an in-
variant integral times δβ

α via Eq. (G.10, p 758). In that case, all Lorentz indices
are contracted between the Dirac matrices appearing in the two fermion field
bilinears. Using the formula for the string of three Dirac matrices, Eq. (F.50,
p 742), one finds

[
sγµγαγνLd

][
sγνγαγµLd

]
= 4
[
sγλLd

][
sγλLd

]
. (17.108)

Putting this back, we obtain

iL
(a1)
eff =

g4

4

[
sγλLd

][
sγλLd

]∑

A,B

V ∗
A2VA1V

∗
B2VB1

×
∫

d4l

(2π)4
l2

(l2 −M2
W )2(l2 −m2

uA
)(l2 −m2

uB
)
. (17.109)
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Notice one thing now. Suppose, for the argument’s sake, that all up-type
quark masses are zero. In that case, the integral is independent of the quark
masses, and can be taken outside the summation over the indices A,B. But
in this case, the sum over A,B vanishes because of the unitarity of the CKM
matrix V . In fact, the vanishing occurs even if we put all masses on one of
the internal quark lines to be zero, without paying attention to the other line.
This means that in the integrand we can make the replacement

1

l2 −mu2
A

−→ 1

l2 −mu2
A

− 1

l2
, (17.110)

since the extra term will not contribute. The same argument applies to the
other line. Hence we can write

iL
(a1)
eff =

g4

4

[
sγλLd

][
sγλLd

]∑

A,B

V ∗
A2VA1V

∗
B2VB1

×
∫

d4l

(2π)4
m2

uA
m2

uB

l2(l2 −M2
W )2(l2 −m2

uA
)(l2 −m2

uB
)

=
g4

4M2
W

[
sγλLd

][
sγλLd

]∑

A,B

V ∗
A2VA1V

∗
B2VB1ruA

ruB

×
∫

d4l′

(2π)4
1

l′2(l′2 − 1)2(l′2 − ruA
)(l′2 − ruB

)
, (17.111)

where in the last step we have used a new integration variable defined by
l′µ = lµ/MW , and introduced the notation

r ≡ m2/M2
W (17.112)

for any particle with mass m.
The implication of this argument is this. If all ruA

≪ 1, i.e., all up-type
quark masses are small compared to the only other mass present in the inte-
gral, MW , then the integral should be suppressed by these mass ratios. This
happens, as we have shown, because of the fact that the r-independent terms
in the integral cancel out. This is called GIM cancellation, after the names
of Glashow, Iliopoulos and Maiani, who first noticed that such cancellation
takes place provided the up-type quarks and the down-type quarks come in
pairs, and the mixing matrix is unitary. We will talk more about it in §17.9.5,
in a different context.

There is a related issue. In writing the expression of Eq. (17.109), we have
used the ’t Hooft–Feynman gauge. In order that our calculation is consistent
and gauge invariant, we should also take into account diagrams where one
or both of the W lines of Fig. 17.5 are replaced by the unphysical charged
Higgs. These extra diagrams corresponding to Fig. 17.5a1 have been shown in
Fig. 17.6. If the masses of the quarks circulating in the loops were very small
and could be neglected altogether, the diagrams containing the unphysical
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sd

ds w

W

uBuA

(a2)

sd

ds W

w

uBuA

(a3)

sd

ds w

w

uBuA

(a4)

Figure 17.6: K0- bK0 transition diagrams containing the unphysical charged Higgs
boson. These diagrams correspond to Fig. 17.5a1. There is a similar set of diagrams
which corresponds to Fig. 17.5b1.

Higgs boson would not have contributed, because the couplings would have
vanished in the limit of vanishing quark masses. But we know that the W
mediated diagrams vanish in the same limit because of GIM cancellation, and
the surviving terms of the gauge boson mediated diagrams contain factors of
r anyway, and can therefore be naively of the same order as the unphysical
Higgs mediated diagrams.

Let us see the general nature of these extra diagrams. To be specific, we
take the diagram of Fig. 17.6a2, where the upper W line of Fig. 17.5 (p 510) is
replaced by the unphysical Higgs boson w. Couplings of quarks with the w
were given in Fig. 17.2 (p 491). In the present case, since we have taken the
external 4-momenta to be zero, we should take the down-type quarks masses
to be zero as well for the sake of consistency. The effective Lagrangian arising
out of this diagram can then be written as

iL
(a2)
eff =

(
ig√

2

)4∑

A,B

∫
d4l

(2π)4

[
sV ∗

A2

muA

MW
R
i(l/+muA

)

l2 −m2
uA

VA1γ
νLd

]

×i∆(w)(l)iD
(W )
νλ (l)

[
sV ∗

B2γ
λL
i(l/+muB

)

l2 −m2
uB

VB1
muB

MW
Ld
]

=
g4

4M2
W

[
sγνLd

][
sγλLd

]∑

A,B

V ∗
A2VA1V

∗
B2VB1ruA

ruB

×
∫

d4l′

(2π)4
1

(l′2 − 1)2(l′2 − ruA
)(l′2 − ruB

)
. (17.113)

Note that the same combination of mixing matrix elements has appeared
in this expression, and also that the field bilinears have the same form as
that obtained from the W mediated diagram. The same comments apply to
other diagrams mediated by the unphysical Higgs, and also to the diagram of
Fig. 17.5b (p 510) plus all its variants involving unphysical Higgs bosons.

We can omit the details of all these other diagrams and summarize the
results in the following way. As described in Appendix G, the integrals can
be transformed by performing Wick rotation of the integration variable, and
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subsequently performing the angular integrations through Eq. (G.26, p 761).
This gives

∫
d4l′

(2π)4
F (l′2) =

i

16π2

∫ ∞

0

dy yF (−y) , (17.114)

where F is any function, and y is the square of Euclidean version of the loop
momentum variable. Thus, the final result can be written as

Leff =
g4

64π2M2
W

[
sγλLd

][
sγλLd

]∑

A,B

ΛAΛBruA
ruB

f(ruA
, ruB

) , (17.115)

where

ΛA = V ∗
A2VA1 , (17.116)

and f(ruA
, ruB

) summarizes the result of the integrations over the magnitude
of the loop momentum from all diagrams.

It does not make much sense to go through the tedious calculation of all
the diagrams here. We present the result of the final integration by giving the
form of the function f :

f(x, y) =
g(x)− g(y)

x− y − 3

4

1

(1− x)(1 − y)
,

g(x) =

(
1

4
+

3

2

1

1− x −
3

4

1

(1− x)2

)
lnx . (17.117)

For x = y, we can take the limit y → x in f(x, y) and obtain

f(x, x) =
1

x

[
1

4
+

9

4

1

1− x −
3

2

1

(1 − x)2

]
− 3

2

x

(1 − x)3
lnx . (17.118)

Because of the factors of r that appear in Eq. (17.115), contributions from
the u quark internal lines will be very small. We can neglect them safely.
Despite the large top quark mass, mt ≈ 175 GeV, contributions involving the
top quark are also quite small because the relevant CKM elements are very
small. The dominant contribution comes from charm quark internal lines.
Since rc ≈ 2.5× 10−4, we can take only the leading term in f(x, x), which is
1/x. Thus

Leff =
G2

FM
2
W

2π2
Λ2

crc

[
sγλLd

][
sγλLd

]
. (17.119)

To evaluate the mass difference ∆mK of the two eigenstates, we first use
Eq. (17.91) to write

∆mK = 2 H12 (17.120)

in the CP conserving case, where the off-diagonal elements are equal. The
elements of the CKM matrix, and hence the combinations Λ defined in Eq.
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(17.116), can be taken to be real. The effective Hamiltonian is related to the
effective Lagrangian by simply a change in sign.

Recall that H denotes the Hamiltonian density really, whereas H has
the dimension of the total Hamiltonian. We have considered the effective
transition element at zero momentum, so that in the co-ordinate space it is a
constant everywhere. Thus, to obtain the relevant element of the total Hamil-
tonian, we can simply multiply the expression of H appearing in Eq. (17.79)
by V , the volume of the system in which we are performing all our calcula-
tions. Putting this into Eq. (17.81) and using the normalization condition of
Eq. (17.80), we obtain

∆mK =
G2

FM
2
W

2π2
Λ2

crc
1

mK

〈
K̂0
∣∣∣
[
sγλLd

][
sγλLd

]∣∣∣K0
〉
. (17.121)

Note that the arbitrary volume V has dropped out.
We are now left with the task of evaluating the matrix element of the quark

field combinations within the states K0 and K̂0. Clearly, this cannot be done
analytically, because we do not know the exact details of strong interactions:
how exactly a quark and an antiquark are combined into a meson. So we need
to take recourse to some approximations or wild guesses.

One thing we can do, without making any compromise, is to insert a
complete set of states in between, and sum over them. But even the relevant
matrix elements cannot be determined, so we make a drastic assumption: the
contribution of the vacuum state dominates the sum. This is the basis of what
is called the vacuum saturation method .

There are two ways that we can obtain a non-zero matrix element in-
volving the vacuum. Note that we have not thought about quark color so
far in this context, because we did not have to. Only weak gauge bosons
and Higgs bosons are being exchanged in the diagrams, none of which can
change the color of a quark. This means that the same color flows along any
fermion line in the diagrams. Thus, if we care to put the color indices on
the quarks, we should write the field bilinear combinations in the effective

operator as
[
sαγ

λLdα

][
sβγλLdβ

]
, where α, β are color indices. But Fierz

transformation tells us that the expression can equally well be written as[
sαγ

λLdβ

][
sβγλLdα

]
. When we make the vacuum insertion, we need to con-

sider both these possibilities. Thus we will write

〈
K̂0
∣∣∣
[
sγλLd

][
sγλLd

]∣∣∣K0
〉

=
〈
K̂0
∣∣∣sαγ

λLdα

∣∣∣ 0
〉〈

0
∣∣sβγλLdβ

∣∣K0
〉

+
〈
K̂0
∣∣∣sαγ

λLdβ

∣∣∣ 0
〉〈

0
∣∣sβγλLdα

∣∣K0
〉
.

(17.122)

How do we find the matrix elements that appear in this equation? Recall
the definition of the charged kaon decay constant from Eq. (17.47). Since
the isospin symmetry is very well respected, this definition also implies the
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relation

〈
0
∣∣sγλ(1− γ5)d

∣∣K0(p)
〉

=
√

2ifKp
λ (17.123)

to a very good approximation. If we want to add the color indices of the
quarks, this should be written as

〈
0
∣∣sαγ

λ(1− γ5)dβ

∣∣K0(p)
〉

=

√
2i

3
δαβfKp

λ , (17.124)

which would give Eq. (17.123) on summing over the three colors, and a van-
ishing matrix element when the colors do not match. The matrix elements
involving the K̂0 will be obtained by applying CPT transformation on the
result above. Putting now this definition into Eq. (17.122) and remembering
that the definition of L has a factor of 1

2 , we obtain

〈
K̂0
∣∣∣
[
sγλLd

][
sγλLd

]∣∣∣K0
〉

=
1

2
f2

Km
2
K

(
1 +

1

9
δαβδαβ

)

=
2

3
f2

Km
2
K , (17.125)

where the factor of m2
K comes from the square of the 4-momentum. Thus, the

matrix element of the effective transition Lagrangian of Eq. (17.115) between
the K0 and the K̂0 states gives

∆mK =
G2

FM
2
W

3π2
f2

KmKΛ2
crc . (17.126)

Putting in the charm quark mass 1.25 GeV, we obtain rc = 2.5× 10−4. Using
the value of Cabibbo angle from Eq. (17.23), of fK from Eq. (17.48), and of
the Fermi constant and MW , we obtain

∆mK

mK
= 4.2× 10−15 . (17.127)

If we take the experimental values, with

mK ≡
[
m(K0

L) or m(K0
S)
]

= (497.6± 0.024) MeV ,

∆mK ≡ m(K0
L)−m(K0

S) = (3.483± 0.006)× 10−12 MeV , (17.128)

the ratio comes out to be

∆mK

mK

∣∣∣∣
exp

= 7.2× 10−15 . (17.129)

The good news is that the theoretically calculated value is of the same order
of magnitude as the experimentally measured one. The bad news is that they
do not agree. There is of course an error bar for the experimental number,
but it cannot possibly be near a value that would make Eqs. (17.127) and
(17.128) consistent with each other.
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Figure 17.7: More diagrams for K0- bK0 transition.

Is this a disaster, that the theoretical estimate falls short of the experimental value by a con-
siderable amount? Not really. There are many things that have not been taken into account
in the calculation that we have described above. Consider the first stage of the procedure,
viz., that of determining the quark-level transition operator. We can include extra diagrams
by adding gluon lines connecting different quark lines in the box diagrams of Fig. 17.5 (p 510)
and Fig. 17.6 (p 513). In addition, there can be extra diagrams involving gluon exchanges, such
as those shown in Fig. 17.7. The first of these diagrams is called the double-penguin diagram.
These are of course higher order in perturbation theory if we count the loops. For example,
the penguin diagram has two loops whereas the box diagrams have only one. Thus, it might
naively seem that these extra diagrams provide only minuscule corrections to the box diagrams.
But this need not be true because the extra features present in these diagrams are gluons. At
low energies, their interaction is not in the perturbative domain. The important suppression
factors are the SU(2) gauge coupling constant and inverse powers of the W mass, and it is
easily seen that in this respect, the diagrams of Fig. 17.7 are no different from the diagrams of
Fig. 17.5 (p 510): any diagram of each of these two sets contains four weak vertices and two
W propagators. So the results of the two sets should be comparable. For the charm quark
intermediate diagrams, it has been estimated that these strong corrections can increase the
quark-level operator by a factor of about 2.

Let us now consider the second stage of the calculation, i.e., finding the matrix element of
the quark-level operator between the relevant meson states. The vacuum saturation method is a
poor consolation which has no reason to be very accurate. Clearly, there are other intermediate
states that will contribute to the matrix element, e.g., the ππ states. Since KS can decay to
two pions, and KS can be written as a superposition of K0 and bK0, it follows that both K0 and
bK0 have non-zero matrix elements with the two-pion states. There is no reason to assume that
these contributions are negligible. One can bypass the introduction of intermediate states by
devising more sophisticated techniques for evaluating the matrix element, e.g., the bag model ,
which involves some educated guess about the way the quarks bind in a hadron, but these are
guesses in any case, and are not supported by a solution of the QCD interactions.

Considering all these factors, we should feel happy that the simple calculation that we have
outlined gives an estimate of ∆mK that has the right order of magnitude.

17.9.5 Leptonic decays of neutral kaons

Like the charged kaons, the neutral kaons can also decay leptonically or semi-
leptonically. Let us first discuss semi-leptonic decays involving pions in the
final state. Both K0

S and K0
L can decay to π

+e−ν̂e and π
−e+νe. These are

called K0
e3 decays, analogous to the K+

e3 decay for the charged kaons. Such
decay modes arise at the tree level and their analysis is done in the manner
shown in §17.5.2. The rates are comparable to those of the charged kaons.
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Figure 17.8: Diagrams for K0
L → µ

+
µ

− arising at the one-loop level in the standard
model.

However, the branching ratio of the K0
e3 decay is very high, a little more

than 40%. In contrast, the K+
e3 decay has a branching ratio of 5.08%, and K+

µ3

has 3.35%. The reason lies in the fact that the purely leptonic decay modes of
the neutral kaons are extremely suppressed, whereas for the K+, the dominant
decay is into µ

+
νµ. Analogous decays for the neutral kaons would have to

be either into νν̂ channels, or into ℓ+ℓ− channels where ℓ is the electron or
the muon. The amplitude for the νν̂ channels should vanish in the standard
model for reasons explained in connection with the decay π

+ → e+νe in §17.5.
For the same reason, the rate for a neutral kaon decaying to e+e− should be
more suppressed compared to the µ

+
µ
− mode. All of these expectations are

consistent with experimental results.
What was a riddle, in the early days of quark models when only three

quarks were assumed to exist, was the minuscule rate for K0
L → µ

+
µ
−. At

the quark level, this involves a process dŝ→ µ
+

µ
− or sd̂→ µ

+
µ
−, i.e., there

is flavor change in the quark sector without any change of electric charge. This
is flavor-changing neutral current in the quark sector. As discussed earlier in
§17.2, such currents are absent at the tree level. So the process has to go
through loops, like those shown in Fig. 17.8. If one assumes only three flavors
of quarks as Cabibbo did when he first postulated quark mixing, only the up
quark can appear as the intermediate quark line. From the vertices, the factors
cos θC sin θC would appear in the amplitude, where θC is the Cabibbo angle.
Loop integrations give factors of the order of 1/(16π2). There does not seem
to be any other big suppression factor compared to tree-level diagrams. And
just these factors cannot take us anywhere near the experimentally observed
branching ratio,

B(K0
L → µ

+
µ
−) = (6.84± 0.11)× 10−9 . (17.130)

The solution to this riddle lies in the existence of other quarks, and in
the GIM cancellation mechanism discussed earlier. In fact, this is the riddle
which was addressed by Glashow, Iliopoulos and Maiani, and they showed
that the riddle disappears if one assumes the existence of a fourth flavor of
quark. This was in 1970, a few years before the charm quark was actually
discovered experimentally. Subsequently, Gaillard and Lee showed that the
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same mechanism can explain the suppression of the KL-KS mass difference,
something we have already discussed in §17.9.4.

The argument need not be given in detail for the present case, since we
have already encountered it in the context of the KL-KS mass difference. The
point is that the mixing matrix is unitary, so the contributions from different
internal lines cancel in the limit of vanishing quark masses. The dominant
contribution should therefore have a factor of m2

c/M
2
W in the amplitude, and

that accounts for the suppression of the rate.

17.10 Processes involving baryons

Baryon-baryon scattering is dominated by strong interactions. Scattering of
baryons against charged leptons, discussed in Ch. 13, is dominated by electro-
magnetic interactions. None of these processes falls under the subject matter
of this chapter, which is weak interactions. Scattering of neutrinos off baryons
must happen through weak interactions, because neutrinos have no other in-
teraction. So, here we take up the process of deep inelastic scattering of
neutrinos from protons. In particular, the process that we have in mind is

νµ + p→ µ
− +X . (17.131)

As in the notation used in §13.2 where deep inelastic scattering with electrons
was discussed, X means anything that is possible in the final state. In this
sense, this is also an example of inclusive process.

In Ch. 13, we discussed the content of the proton. At the quark level, the
process of Eq. (17.131) can be induced by the process

νµ + d→ µ
− + u . (17.132)

However, there are also antiquarks in the proton, and so the process

νµ + û→ µ
− + d̂ (17.133)

can also take place. In fact, the proton also contains strange quarks and an-
tiquarks, so there can also be quark-level processes involving them. However,
the amplitude of such processes would involve off-diagonal elements of the
CKM matrix, and therefore would be small. We will neglect them in what
follows. In order to maintain consistency, we will take the diagonal elements
to be equal to 1.

Whatever the underlying interaction might be, the final state parton from
this interaction would undergo hadronization along with the other partons
which were present in the original proton, resulting in hadrons in the final
hadronic state that we had called X . In order to analyze the process of Eq.
(17.131), let us first analyze the fundamental processes of Eqs. (17.132) and
(17.133).
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Figure 17.9: Tree-level diagrams for quark-level processes that contribute to
neutrino–proton scattering.

The Feynman diagram for both these processes is given by Fig. 17.9, where
the line marked d with an incoming arrow can be either interpreted as a d
quark coming in or a d-type antiquark going out. The first alternative, with
similar interpretation for the line marked u, gives the reaction of Eq. (17.132),
whereas the second alternative gives the reaction of Eq. (17.133). We will
neglect the masses of the quarks and also of the muon. For this reason,
the diagram mediated by the unphysical charged Higgs boson w+ does not
contribute.

We assume that we are interested in finding the scattering cross-section
for a momentum transfer in the range m2

p ≪ |q2| ≪ M2
W so that we can

neglect the proton mass and also use the 4-fermion approximation. It is not
necessary to get into a detailed derivation of the Feynman amplitude for the
reaction in Eq. (17.132). With minor changes in notation, the derivation is
exactly similar to what we had done in §14.5. Denoting the lepton momenta
in the initial and final states by k and k′, and the quark momenta by p̆ and
p̆′, we obtain

|M1|2 = 64G2
Fk · p̆ k′ · p̆′ = 16G2

F s̆
2
, (17.134)

where M1 denotes the Feynman amplitude of the process in Eq. (17.132).
For the other process, we will denote the Feynman amplitude by M2. The
only difference in its evaluation is that v-spinors would appear in place of u-
spinors. Because of this, the term involving the Levi-Civita tensor will change
its sign corresponding to whatever is written in Eq. (14.95, p 430). When the
contraction is done, one obtains

|M2|2 = 64G2
Fk · p̆′ p̆ · k′ . (17.135)

In §13.4, we had introduced two Lorentz invariant kinematical variables
called x and y. Let us recall them now. We note that

y =
p · q
p · k = 1− p · k′

p · k , (17.136)
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Figure 17.10: Differential cross-section for neutrino (box marks) and antineutrino
(bullet marks) scattering off protons. (Redrawn from the article by F. Eisele, Rep. Prog.

Phys. 49 (1986) 233. c© IOP Publishing. With kind permission of IOP Publishing and
the author.)

and that p · k = 1
2 s̆ in the limit of negligible masses. Thus, p · k′ = 1

2 (1− y)s̆,
and in the massless limit, k · p′ is the same. Thus,

|M2|2 = 16G2
F s̆

2
(1− y)2 . (17.137)

Using Eq. (4.215, p 108), we can then write

dσ

dt
(νµd→ µ

−u) =
G2

F

π
,

dσ

dt
(νµû→ µ

−d̂) =
G2

F

π
(1 − y)2 . (17.138)

If we now want to write the Feynman amplitude squared for the neutrino–
proton scattering, we should add contributions of Eqs. (17.134) and (17.137)
with suitable weights which are the parton distribution functions. The method
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of combining these results has been discussed in §13.7. The result is

dσ

dx dy
=
G2

F s

π

[
xfd(x) + xf

bu(x)(1 − y)2
]
, (17.139)

where in this formula, s stands for the Mandelstam variable of the electron–
proton scattering, different from s̆ that pertains to the quark-level process.

2 Exercise 17.20 Show that, for the reaction

bνµ + p→ µ
+ +X , (17.140)

the formula corresponding to Eq. (17.139) is

dσ

dx dy
=
G2

F s

π

ˆ

xfu(x)(1 − y)2 + xf
bd(x)

˜

. (17.141)

We therefore see how the knowledge of the parton distribution functions
can help in calculating the cross-section of neutrino or antineutrino scattering
against protons. However, even without knowing the parton distributions
explicitly, we can see some dramatic difference in the formulas in Eqs. (17.139)
and (17.141). Imagine integrating out these expressions over the entire range
of x. Both expressions will be of the form

dσ

dy
= A+B(1 − y)2 , (17.142)

where A and B are different for the two processes. In the proton, the proba-
bility of finding an antiquark should be small compared to the probability of
finding a u or a d quark. Thus, if we suppose that, to a first approximation,
the antiquarks are not at all there in a proton, we find that dσ/dy is constant
for neutrino–proton interaction, whereas it varies as (1−y)2 for antineutrino–
proton interaction. There is a slight deviation from such behavior, as seen in
Fig. 17.10, which confirms the presence of antiquarks by small amounts.



Chapter 18

Global symmetries of standard model

The standard model is based on a gauge symmetry, which is what we have
discussed in Ch. 12, Ch. 16 and Ch. 17. This symmetry governs the dynamics
of the model. However, there are many other symmetries, or near-symmetries,
in particle interactions, some of which we have discussed in earlier chapters
in the book. Such symmetries are often very helpful in understanding various
properties of hadrons and leptons. In this chapter, we discuss how some of
these symmetries can be understood from the standard model Lagrangian.

18.1 Accidental symmetries

We have discussed the basics of the standard model in two chapters. In
Ch. 16, we discussed the electroweak interaction of leptons, and in Ch. 17,
that of quarks. We can wonder how it was possible to discuss the two sectors
independent of each other. The answer is simple. In the standard model
Lagrangian, there is no interaction term which contains a quark field and a
lepton field. Indeed, the two sectors are really separated.

For one thing, this means that we cannot change a quark to a lepton, or
vice versa, through the interactions of the standard model. Let us look at the
Yukawa interactions of the standard model, for example. In Eq. (17.2, p 483),
we see that a barred quark field and an unbarred quark field appear. So, when-
ever a quark is annihilated by the unbarred operator, the barred counterpart
creates a quark or annihilates an antiquark. With either possibility, the net
quark number, defined as the number of all quarks minus the number of all
antiquarks, does not change. This number is usually divided by 3 and called
baryon number . Thus, a proton has baryon number equal to one, whereas
antiproton has the negative of that. Our statement above implies that baryon
number is conserved, provided all particles other than quarks and antiquarks
are assumed to carry zero baryon numbers.

The same thing can be said about lepton number , which is defined to be
the number of electrons, muons, taus and all three kinds of neutrinos, minus
the number of their antiparticles. But in the leptonic sector, there are more

523
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symmetries. If we look at all the interaction terms that appear in Ch. 16, we
will see that there isn’t any term that connects two leptonic fields of different
generations. Thus, we can even define generational lepton numbers , e.g.,

Le ≡ (number of electrons and νe’s)

−(number of their antiparticles) , (18.1)

and the number will be conserved by all interactions of the standard model.
The same way one can define Lµ and Lτ, using particles of the second and
third generations respectively.

Note that none of these symmetries was necessary in constructing the
standard model Lagrangian. In other words, we did not put these symmetries
as constraints on the Lagrangian. We wanted our Lagrangian to be Poincaré
invariant, of course. We also put in a gauge symmetry, which is an internal
symmetry, and demanded that our Lagrangian should be invariant under that
symmetry. Then how did we get a Lagrangian that conserves baryon number
or lepton number?

Let us consider a simple example with two numerical variables x and y.
Suppose we want to write a quadratic expression involving these two vari-
ables which will be invariant under the interchange x ↔ y, and also under
the change of sign of one of them, x → −x. Both are Z2 symmetries, so the
overall symmetry is Z2×Z2. It is easy to see that the most general quadratic
expression consistent with this symmetry is an arbitrary multiple of x2 + y2.
But this is invariant under arbitrary rotations in the x-y plane. Such trans-
formations, as we have seen earlier, form an O(2) group. This group contains
the Z2 ×Z2 symmetry that we started with, but is much bigger than that: it
is a continuous symmetry. We did not impose it: it appeared accidentally in
our expression. Such symmetries are called accidental symmetries.

Note that we have, in a sense, planned the accident. Had we not imposed
the condition that the expression will have to be quadratic in the two vari-
ables, the O(2) symmetry would not have appeared. Alternatively, suppose
we wanted to impose the Z2 × Z2 symmetry on quadratic terms involving
variables x, y and two more variables, w and z. The behavior of all these
variables under each Z2 is summarized below:

Variable
Result of application of
First Z2 Second Z2

x y −x
y x y
z w −z
w z w

(18.2)

In this case, the most general expression consistent with the rules is a(x2 +
y2) + b(w2 + z2) + c(xz+ yw), which does not have the O(2) symmetry in the
variables x and y.

It is the same thing with symmetries like baryon number and lepton num-
ber in the standard model. While writing the Lagrangian of the standard
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model, we put two kinds of restrictions on ourselves. First, we decide on a
certain repertoire of fields that should enter the Lagrangian. The collection
includes fields of different particles which have been experimentally observed
(e.g., the electron), as well as fields that may be necessary for fulfilling some
internal consistency of the theory. Second, we want the Lagrangian to be
renormalizable, so we allow only field combinations which have mass dimen-
sion less than or equal to four. If any one of these extra conditions is sacrificed,
an accidental symmetry may be lost. Let us use some examples to illustrate
this comment.

The standard model contains left-handed quark and lepton doublets which
transform as follows under the gauge group SU(3)c × SU(2)L ×U(1)Y:

qL : (3, 2,
1

6
) , ℓL : (1, 2,−1

2
) . (18.3)

Each generation has such multiplets: we have suppressed the generation index.
Consider now the combination of multiplets

qLqLqLℓL . (18.4)

Never mind how the different components of the multiplets couple to one an-
other. These will be determined by numerical factors which are not necessary
for our argument. These factors will dictate that the three quark fields would
make a color singlet, and that the four SU(2)L doublets would combine to
form an SU(2)L singlet. The weak hypercharge quantum number of the com-
bination is easily seen to be zero, so that the combination does not change the
weak hypercharge of any state that it operates on. In short, we can make an
invariant of the standard model gauge group from the four multiplets given
above.

Such a combination would not be renormalizable because there are four
fermion fields involved, which have a combined mass dimension of 6. But
if we did not have the requirement of renormalizability, such a term would
have been allowed in the Lagrangian. And it is obvious that this term would
have violated both baryon number and lepton number symmetries. In fact, it
would have violated both these numbers by one unit.

There is in fact a very easy argument to prove that baryon number violat-
ing dimension-6 operators would violate lepton number as well. Only quarks
carry baryon numbers in the standard model, and each quark field violates
baryon number by 1

3 . Since all baryons carry integral baryon numbers, we
need three quark fields to violate baryon number. With three quark fields
only, angular momentum is not conserved, so we need another fermion field.
All other fermion fields available in the standard model carry lepton numbers.
Hence the violation of lepton number.

2 Exercise 18.1 With the standard model multiplets, there are six
dimension-6 B-violating operators in total, not counting the differ-
ences between different generations of fermions. Eq. (18.4) repre-
sents two of these six, because both the first two and the last two
fields can be joined into a singlet or a triplet of the SU(2)L group.
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Identify the remaining four and show that in each case, lepton num-
ber is violated by the same amount.

Consider next what would have happened if we suddenly discovered a
multiplet of scalar bosons which transformed like (3, 1, 1

3 ) of the standard
model gauge group. If we really did, we should have included this multiplet in
writing the Lagrangian of the standard model. In other words, the Lagrangian
would have contained terms involving this multiplet, ∆ (no connection with
the ∆-baryons). In particular, there would have been terms like the following:

L∆ =
(
h1qLqL∆ + h2qLℓL∆†

)
+ h.c. , (18.5)

where h1 and h2 are coupling constants. These two terms, taken together,
would violate baryon number as well as lepton number symmetry.

It should be realized that any of these two terms, in absence of the other,
cannot violate baryon number. Take, e.g., h2 = 0 in Eq. (18.5). The remaining
term contains two quark fields, which have a combined baryon number of
2
3 . Therefore, if we assign the ∆ boson a baryon number equal to − 2

3 , the
interaction term does not violate baryon number. Similarly, if we consider
h1 = 0, we can assign a baryon number and a lepton number to ∆ that would
ensure conservation of baryon and lepton numbers. But when both are non-
zero, we cannot have a consistent assignment of baryon and lepton numbers
for the field ∆, and it is then that both these numbers are violated.

One might wonder why we are entitled to assign baryon number and lepton number arbitrarily to
field multiplets in order to save these symmetries. Shouldn’t baryons and leptons be fermions?
The answer is positive so far as we have only the fields of the standard model. If we have to
introduce more fields in the Lagrangian for whatever reason, we cannot be sure about the answer
from the outset. Leaving aside the question of whether only fermions should be included in the
club of baryons, let us try to see what are the symmetries of a given Lagrangian. For example,
if h1 = 0 in Eq. (18.5), we find that the interaction term is invariant under two independent
global U(1) symmetries. Under one of them, qL and ∆ carry equal charges whereas ℓL is neutral.
Under the other, ℓL and ∆ carry equal charges whereas qL is neutral. Unquestionably, these
symmetries are present in the Lagrangian. If someone has reservations against a boson being
called a baryon or a lepton, we can give some other names to these symmetries. But there is no
point really in proliferating names. The first U(1) symmetry is the same as the baryon number
symmetry so far as all standard model fields are concerned, so it is much easier to continue with
the name ‘baryon number’ for this symmetry. For the same reason, the second symmetry can
be called ‘lepton number’.

Of course, none of the possibilities discussed here is part of the standard
model. The standard model does not have non-renormalizable terms in the
Lagrangian, neither does it have extra scalar fields which are color triplets.
So baryon number and lepton number are indeed accidental symmetries of
the standard model. This statement should be taken with a grain of salt, and
will be reanalyzed in §18.4.
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18.2 Approximate symmetries

In addition to the absolutely conserved quantum numbers that appear acci-
dentally in the standard model, there are other symmetries which are only
approximate. We have discussed many of these in earlier chapters of this
book.

Consider, for example, parity or space inversion. It is a symmetry so far
as strong and electromagnetic interactions are concerned, because the theo-
ries for these interactions are vector-like. For QCD, this means that left- and
right-chiral fields transform the same way under its gauge group. QED has the
same property: left- and right-chiral components of the same fermion have the
same electric charge. Consequently, gauge interactions contain only polar vec-
tor bilinears of fermions. Through our experience with photon interactions,
we know that with only polar vector currents, parity is conserved. How-
ever, under the electroweak gauge group, left- and right-chiral fermion fields
transform differently, and therefore fermion currents obtained after adding
the left-chiral and the right-chiral currents are not purely polar vector type:
there are axial vector currents as well. This leads to parity violation, which
is a property of weak interactions only. If we do not make such subdivisions
in the interactions and consider all standard model interactions at the same
time, all we can say is that parity is an approximate symmetry. What it
means is that a parity conserving amplitude would be larger than a parity
violating amplitude in a general sense. The same thing can be said about
charge conjugation invariance.

The case of time reversal invariance is somewhat different. Polar and axial
vector currents behave the same way under time reversal, as seen from Eq.
(7.32, p 193). Thus, if gauge currents constituted the only interactions, time
reversal symmetry would have been exact. However, other interactions in the
standard model violate time reversal invariance by a small amount. Because
of CPT invariance, it also implies a minute violation of CP invariance. This
will be discussed in detail in Ch. 21.

There are more symmetries which are respected by both strong and elec-
tromagnetic interactions, but violated by weak interactions. An example is
the property called strangeness, which came up in the discussion of Ch. 10
many times. A little thought shows that the same statement can be made
about any flavor of particles. For example, consider an electron. If we de-
fine a quantum number that is +1 for the electron, −1 for the positron and
zero for everything else in the world, this number is not violated at the elec-
tromagnetic interaction vertex involving a photon. There is no question of
it being violated through strong interactions, because strong interactions are
completely oblivious of the existence of electrons. The quantum number so
defined can change only in weak interactions, e.g., in beta decay. For quarks,
the argument is the same so far as electromagnetic interactions are concerned.
For strong interactions, we only need notice that gluons, by construction of
the theory, can change only quark color: they do not do anything to the flavor.
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We have also discussed symmetries like isospin, which are respected only
by strong interactions. The flavor SU(3), discussed in Ch. 10, also falls in this
category. Isospin would have been an exact symmetry of the Lagrangian if the
up quark and the down quark were degenerate. Similarly, if the u, d and the
s quarks were all degenerate, flavor SU(3) symmetry would have been exact.
But the quark masses are unequal, so these symmetries are only approximate
ones. Some of the flavor SU(3) predictions have quite large discrepancies with
experimental results, because the mass of the strange quark is much larger
than those of the up and the down quarks.

And that brings in the question: why is isospin symmetry so good? The
quark masses, as mentioned in Eq. (13.98, p 409), show that the down quark
is probably about twice as heavy as the up quark, and can even be quite
a bit heavier than that. And yet, the predictions of isospin symmetry are
respected to within a percent or better. For example, the neutron-proton
mass difference is about a thousandth of their average mass, as given in Eq.
(8.1, p 202). Why such fantastic agreement?

The answer is that the masses of the up and the down quarks, whatever
may be the ratio between the two of them, are both very small compared to
the mass of all hadrons. Thus, to a first approximation, we can take both
masses to be zero, and in this limit isospin is conserved. We can even take
both to have the same mass, and isospin is still conserved. A dimensionless
measure of isospin breaking would then comprise the difference |md − mu|
divided by a typical energy or mass scale for hadrons. As we just said, all
such scales are much heavier than |md − mu|, which explains why isospin
violations are so small.

The strange quark mass is, however, much larger, as seen in Eq. (13.99,
p 409). Differences such as |ms−md| are therefore not that small compared to
hadron masses, resulting in considerable discrepancies between the predictions
of flavor SU(3) and experimental results.

18.3 Chiral symmetries

18.3.1 Symmetries of massless Dirac Lagrangian

Let us now consider a different kind of flavor symmetry of the Lagrangian,
which is realized approximately as well. To motivate this, consider the La-
grangian of a free Dirac particle. It has the symmetry

ψ(x)→ ψ′(x) = eiθψ(x) . (18.6)

The conserved Noether charge for this symmetry is just the number of ψ
particles. Each term in the free Dirac Lagrangian annihilates a particle but
creates one at the same time, so that the total number does not change.

In §14.2, we discussed how any Lagrangian involving fermion fields can
be written using chiral projections only. The free Dirac Lagrangian can be
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written in the form

L = ψLiγ
µ∂µψL + ψRiγ

µ∂µψR −m(ψLψR + ψRψL) . (18.7)

The mass term involves conversion from one chirality to another. If the mass
happens to vanish, the kinetic terms will conserve the numbers of ψL and
ψR separately. The Lagrangian in the massless limit therefore has more sym-
metries than what appears in Eq. (18.6). Obviously, the symmetry can be
written as

ψL(x)→ ψ′
L(x) = eiθ1ψL(x) , ψR(x)→ ψ′

R(x) = eiθ2ψR(x) . (18.8)

Such transformations which act differently on different chiralities of fermion
fields are called chiral transformations, and symmetries corresponding to these
transformations are called chiral symmetries.

2 Exercise 18.2 Show that the transformation of Eq. (18.8) can also be
written as

ψ′(x) = ei(α+βγ5)ψ(x) , (18.9)

where α and β are related to θ1 and θ2. Find these relations.

Whether we write the symmetry in terms of the chiral fields as in Eq. (18.8)
or in terms of the total field as in Eq. (18.9), it is clear that the symmetry
operation now involves two parameters which can be chosen independently,
so that there are two U(1) symmetries. In other words, the massless Dirac
Lagrangian has the symmetry U(1) × U(1). One of these symmetries, con-
nected with the parameter α in Eq. (18.9), is a vector-like symmetry, in the
sense that it does not distinguish between left and right chiralities. The other
symmetry, corresponding to the parameter β, is chiral.

Let us now consider the case where there are N massless Dirac fields.
Quite obviously, the Lagrangian of these fields will have a flavor symmetry
U(N)×U(N). Since the group U(N) is identical to the group SU(N)×U(1),
as shown in Eq. (3.9, p 39), we can also say that the flavor symmetry for N
massless Dirac fields is

SU(N)× SU(N)×U(1)×U(1) . (18.10)

One of the U(1) factors corresponds to a vectorial symmetry under which all
fields transform the same way. For N flavors of quarks, this symmetry is the
same as the baryon number symmetry. The other U(1) symmetry will be
discussed in §18.4. The rest of the symmetry group is SU(N)×SU(N), which
is what we are going to discuss for the moment.

This symmetry can at best be an approximate one. For example, since
the masses of the up and the down quarks are very small, we can think of the
corresponding SU(2) × SU(2) symmetry being an approximate symmetry of
the standard model Lagrangian to a very good extent.

There is a big advantage of considering this approximate symmetry. Sup-
pose this symmetry is spontaneously broken by some means to the diagonal
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vectorial SU(2) symmetry, which is the isospin symmetry. SU(2)×SU(2) sym-
metry has six generators, whereas the diagonal SU(2) symmetry has three.
The spontaneous symmetry breaking, in this case, breaks three of the six
generators, and we should expect three Goldstone bosons as a result.

As discussed in §15.2, a Goldstone boson should be massless. So, does that
mean that we should expect three massless bosons? Not really, because the
symmetry SU(2)×SU(2) was not exact to begin with. It was an approximate
symmetry, realized in the limit mu = md = 0. This means that, if mu and
md were really zero, we would have obtained three massless scalars from the
spontaneous breaking of chiral symmetry,

SU(2)× SU(2)→ SU(2) . (18.11)

But since mu and md are not really zero, we should not expect to see some
massless scalars. Rather, we should find three particles whose masses are
small, since mu and md are small.

There are, indeed, three such particles that we find in the hadronic spec-
trum whose masses are very small. These are the three pions. They are much
lighter compared to any other hadron. We can find a rationale of the smallness
of their masses through chiral symmetry: they are the Goldstone bosons of
the symmetry breaking shown in Eq. (18.11). They have some mass because
the symmetry that is being broken here was not an exact one to begin with:
the mass terms of the quarks do not respect this symmetry. The statement
will be quantified in §18.3.6.

18.3.2 Sigma model

To understand the nature of this symmetry breaking, let us forget about
quarks and gauge bosons for a while, and discuss a model with nucleons and
pions. In the Yukawa picture, the pions mediated a force between nucleons,
and the nature of this interaction was discussed in §8.8. In order to make our
point regarding chiral symmetries, we need to introduce another scalar field.
This field is usually denoted by σ(x) and therefore the model is called the
sigma model.

The Lagrangian of this model is given by

L = Niγµ∂µN +
1

2
(∂µσ)(∂µσ) +

1

2
(∂µ

πa)(∂µπa)

+gN
(
σ + iτaγ5πa

)
N − V (σ,π) , (18.12)

where the τa’s are the Pauli matrices, and

V (σ,π) =
1

2
µ2(σ2 + πaπa) +

1

4
λ(σ2 + πaπa)2 (18.13)

represents the potential involving the scalar fields. If the field σ is considered
an isosinglet, then this Lagrangian definitely has the isospin symmetry, under
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which the nucleons transform as a doublet and the pions as a triplet. More
explicitly, under this symmetry, the infinitesimal transformations are

δN = −i τa
2
αaN ,

δπa = εabcαbπc ,

δσ = 0 , (18.14)

where αa are infinitesimal parameters, all independent of x.
This is an SU(2) symmetry no doubt, but there is some additional symme-

try in this Lagrangian. This can be made explicit by using three infinitesimal
parameters βa:

δσ = −βaπa ,

δπa = βaσ ,

δN = −i τa
2
βaγ5N . (18.15)

Note that because of the presence of γ5 in the transformation rule for nucleons,
this is a chiral symmetry. It inflicts different transformations on the left-chiral
and right-chiral components of the nucleons.

The vectorial and the chiral symmetries do not commute. However, we can
rewrite the transformations using the two chiralities of nucleons, left and right.
Each chirality of nucleons will also transform like SU(2) doublets. What is
more, the two types of transformations commute, so that the total symmetry
is SU(2) × SU(2): one factor corresponding to the left-chiral and the other
corresponding to the right-chiral part of the nucleon. These comments will
be explained in more detail in §18.3.3.

2 Exercise 18.3 Show that the transformations given in Eqs. (18.14)
and (18.15), for infinitesimal αa’s and βa’s, are indeed symmetries
of the Lagrangian.

2 Exercise 18.4 Show that the Noether currents corresponding to the
vectorial SU(2) transformations are

Jµ
a = N

τa

2
γµN + εabcπb∂µπc , (18.16)

and those corresponding to the chiral SU(2) transformations are

eJµ
a = N

τa

2
γµγ5N + (∂µσ)πa − (∂µ

πa)σ . (18.17)

2 Exercise 18.5 The Lagrangian of Eq. (18.12) is also invariant under
parity. Show that the intrinsic parity of the σ-field is positive, whereas
that of the pion fields is negative.

Now suppose that the parameter µ2 appearing in the potential is in fact
negative. Then the minimum of the potential will not occur for vanishing
values of the four scalar fields. Rather, it will happen at the values satisfying

σ2 + πaπa =
−µ2

λ
≡ v2 . (18.18)
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Suppose we find the system in the vacuum where 〈σ〉 = v, and the expectation
value of the π fields are zero. Since the field σ was invariant under the isospin
transformations, the isospin symmetry does not know about this field, and
is therefore intact. However, the chiral SU(2) symmetry must be broken,
since σ transforms non-trivially under this symmetry. So we see a concrete
example where symmetry breaking of the type mentioned in Eq. (18.11) can
be realized.

We now expect three Goldstone bosons. To identify them, we note that σ
cannot be regarded as a quantum field now. We can rewrite the Lagrangian
in terms of the quantum fields σ̃ ≡ σ− v and the πa’s. Once we do this, it is
easily seen that the πa’s are the Goldstone bosons.

2 Exercise 18.6 Find the mass of the σ-particle after symmetry break-
ing.

2 Exercise 18.7 Is the parity symmetry broken spontaneously by the
vacuum expectation value of the σ-field?

18.3.3 Currents and charges

Let us now come back to quarks. The free Lagrangian of the quarks can be
written as

Lfree =
∑

q

qαiγ
µ∂µqα − (mass terms) . (18.19)

The sum over q runs over all quark flavors, and three colors of each flavor.
The index α on the quarks is a color index, which is assumed to be summed
over. The color symmetry is SU(3), which is gauged by the introduction of
the gluon fields, resulting in the theory of quantum chromodynamics or QCD.
Here, we are interested in the flavor symmetries. If we consider the limit in
which the up and the down quarks are massless, there is an SU(2) × SU(2)
flavor symmetry. Denoting the isospin doublet by

Ψ ≡
(
u

d

)
, (18.20)

these flavor symmetry transformations can be written as

Ψ→ Ψ′ = exp
(
− i τa

2
αa

)
Ψ (18.21)

and

Ψ→ Ψ′ = exp
(
− i τa

2
βaγ5

)
Ψ . (18.22)

The first one is a vector-like symmetry, the second one is chiral. The genera-
tors of SU(2) in the doublet representation are the Pauli matrices, which have
been denoted by τa.
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We can easily find the Noether currents corresponding to these symmetries.
For the vectorial SU(2) symmetry given in Eq. (18.21), the Noether currents
are

Jµ
a (x) = Ψ(x)γµ τa

2
Ψ(x) , (18.23)

whereas for the chiral SU(2) symmetry of Eq. (18.22), the currents are

J̃µ
a (x) = Ψ(x)γµγ5

τa
2

Ψ(x) . (18.24)

The conserved charges are therefore given by

Qa =

∫
d3x J0

a(x) =

∫
d3x Ψ†(x)

τa
2

Ψ(x) ,

Q̃a =

∫
d3x J̃0

a(x) =

∫
d3x Ψ†(x)γ5

τa
2

Ψ(x) . (18.25)

We can now try to see what are the commutation relations between the
charges. First, the commutator between two vectorial charges. With explicit
indices, we can write Ψ†(x)τaΨ(x) = Ψ†

A(x)
(
τa
)
AB

ΨB(x), where A,B take
the values 1 and 2 to denote which flavor of the doublet Ψ is implied. Then,

[
Qa, Qb

]
=
(τa

2

)
AB

(τb
2

)
CD

∫
d3x

∫
d3y

[
Ψ†

A(x)ΨB(x),Ψ†
C(y)ΨD(y)

]
.

(18.26)

Since the chargesQa are conserved, we can take both charges at the same time,
so that the right hand side of this equation involves an equal-time commutator
involving field variables. The commutator can be reduced by using the identity

[PQ,RS] = P [Q,R]+S − PR[Q,S]+ + [P,R]+SQ−R[P, S]+Q ,

(18.27)

which is valid for any set of objects P , Q, R and S whose multiplication is
associative. This way, we obtain equal-time anticommutators. Using the an-
ticommutation rule given in Eq. (4.128, p 86) which, in more explicit notation,
is given by

[
ψA(x), ψ†

B(y)
]
+

∣∣∣∣
x0=y0

= δABδ
3(x− y) , (18.28)

where A,B denote the components of the spinor fields, we obtain

[
Qa, Qb

]
=
(τa

2

)
AB

(τb
2

)
CD

∫
d3x
(
δBCΨ†

A(x)ΨD(x) − δADΨ†
C(x)ΨB(x)

)

=

∫
d3x Ψ†(x)

[τa
2
,
τb
2

]
Ψ(x) . (18.29)
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Using now the commutation relation of the Pauli matrices, we find that
[
Qa, Qb

]
= iεabcQc , (18.30)

which is an SU(2) algebra. However, the chiral charges do not form an SU(2)
algebra. A similar exercise gives

[
Q̃a, Q̃b

]
= iεabcQc , (18.31)

with Q, rather than Q̃, on the right hand side. And finally, the commutation
between two different kinds of charges is

[
Qa, Q̃b

]
= iεabcQ̃c . (18.32)

We said that the flavor symmetry is SU(2)×SU(2). Obviously, neither the
Qa’s nor the Q̃a’s are generators of either of these two SU(2) factors, because
the generators of the two factors should commute. It is easily seen that if we
define the combinations

Q(L)
a =

1

2

(
Qa − Q̃a

)
, Q(R)

a =
1

2

(
Qa + Q̃a

)
, (18.33)

then the Q
(L)
a ’s can be the generators of one of the SU(2) factors, and Q

(R)
a ’s

can be the generators of the other SU(2). Moreover, any of the Q(L) genera-
tors commutes with any of the Q(R) generators, so the two SU(2) factors are
independent, and the symmetry can be called SU(2)× SU(2).

2 Exercise 18.8 Verify that the charges defined in Eq. (18.33) have the
following commutators:

»

Q(L)
a , Q

(L)
b

–

= iεabcQ
(L)
c ,

»

Q(R)
a , Q

(R)
b

–

= iεabcQ
(R)
c ,

»

Q(L)
a , Q

(R)
b

–

= 0 . (18.34)

The relations in Eq. (18.34) are commutation relation between various
charges, and can be called the charge algebra. In a similar manner, we can
find out the commutators between a charge and the time component of a
current. For example, following the steps that lead to Eq. (18.30), we can
obtain the result

[
Qa, J

0
b (x)

]
= iεabcJ

0
c (x) . (18.35)

There are similar analogs of the other commutators, which are easy to guess.
Going one step further, we can find the commutator between the time com-
ponents of currents. For example, we obtain

[
J0

a(x), J0
b (y)

]∣∣∣∣
x0=y0

= iεabcJ
0
c (x)δ3(x− y) . (18.36)
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These relations, along with similar relations involving the time component of
the axial vector currents, comprise what is called the current algebra. One can
also include similar commutators involving the spatial parts of the currents,
but there is some complication in it which we need not discuss.

Why are these relations useful? Consider the Lagrangian to be divided into
two parts, L0 and L1, such that the chiral symmetry is an exact symmetry
of L0. We can find the Noether currents of the symmetry, as we have done in
Eqs. (18.23) and (18.24). We can also find the commutators, as we have done.
Now, what are the effects of L1 on all these exercises? We can still follow the
prescription of Eq. (4.109, p 82) to define a current. If L1 does not contain
any derivative term in the fields, we will still obtain the same expression for
the currents. Of course, these currents will not be conserved since L1 does
not have the chiral symmetry. But, any expression involving the currents will
still be valid, provided it has not used the current conservation at any stage.
The charge algebra and the current algebra are precisely expressions of this
sort. So, the physical consequences derived from these commutators would be
valid even if the chiral symmetry is not exact.

18.3.4 Chiral symmetry breaking

The SU(2)×SU(2) symmetry was established in Eq. (18.33). If this symmetry
is somehow broken spontaneously down to an SU(2) subgroup, we should
expect three Goldstone bosons. We have already seen, in Eq. (18.30), that
the Qa’s satisfy an SU(2) algebra among themselves. So it is tempting to
guess that the remnant SU(2) symmetry will be spanned by these generators.

However, in order to break a symmetry spontaneously, one needs some
vacuum expectation value that transforms non-trivially under that symmetry.
In all examples of spontaneous symmetry breaking discussed so far, we have
relied on the VEV of some scalar field. That cannot work here. There is no
boson in the Lagrangian of Eq. (18.19). However, in §15.2, we mentioned that
the strength of Goldstone’s theorem lies in the fact that even in the absence of
bosons in the fundamental Lagrangian, we will obtain three massless bosonic
states in the spectrum of states of the theory.

We must therefore need some composite operator, composed of quark
fields, to develop a VEV. The operator should transform like a scalar, be-
cause otherwise we would break the proper Lorentz symmetry. The simplest
such operators are of the form qq for any quark field q. Such an operator will
be able to create a quark-antiquark pair from the vacuum. Thus, the state-
ment that such operators have a VEV is equivalent to the statement that the
vacuum state contains quark-antiquark pairs.

There are quite a few reasons to believe that this statement is true. If the
quarks are really massless, it does not cost energy to create quark-antiquark
pairs from the vacuum, so it is natural to suppose that such pairs will remain
in the ground state of the system. After all, it is known that the VEV of
Cooper pairs of electrons gives rise to the phenomenon of superconductivity.
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Secondly, we know from earlier chapters that

qq = qLqR + qRqL . (18.37)

Thus, if qq develops a VEV, it would imply that the vacuum can take in
a right-chiral quark and give back a left-handed quark, and vice versa. In
other words, the vacuum can exchange a right-chiral quark for a left-chiral
one, change the chirality of a quark. This is also what happens with the mass
term in the Dirac equation. Thus, the vacuum in this case would emulate a
mass term for the quarks, some sort of an induced mass. This can explain
why a quark in a hadron has a large constituent mass, as we saw in §13.10.

Clearly, since the vacuum can change a left-chiral quark to a right-chiral
one, the numbers of quarks of left and right chiralities are not separately
conserved. It means that the vacuum does not respect chiral symmetries
of quarks. Thus, with this vacuum, the chiral SU(2) generators Q̃a will be
broken. The vectorial generatorsQa will remain unbroken, and will constitute
the vectorial SU(2) symmetry that is isospin. There will be three Goldstone
bosons corresponding to the three broken generators Q̃a. These should be the
pions.

18.3.5 PCAC and soft pion theorem

There are many ramifications of the idea that the pions are Goldstone bosons
of chiral symmetry breaking. We will discuss some of them here.

In §17.5, we introduced the matrix element of quark currents between
the pion and the vacuum states. The quark current in the standard model
Lagrangian has polar and axial vector parts. We remarked that only the axial
part contributes to the matrix element. So the definition of the pion decay
constant, given in Eq. (17.36, p 494), can also be written as

〈
0
∣∣∣J̃µ

a (x)
∣∣∣πb(p)

〉
= ifπδabp

µe−ip·x , (18.38)

where we have also generalized the relation to include the neutral pion and
the neutral current as well, and noting that isospin invariance would imply
the Kronecker delta on the right hand side.

The matrix element of the divergence of the axial current can be written
easily now, using the translation operator to relate J̃µ(x) to J̃µ(0), as shown
in Eq. (5.115, p 139). This gives

〈
0
∣∣∣∂µJ̃

µ
a (0)

∣∣∣πb(p)
〉

= fπδabm
2
π , (18.39)

where we have used the relation pµpµ = m2
π
. This is an interesting relation

which says that if the axial current is conserved, the pion is massless.

2 Exercise 18.9 Take the definition of the pion decay constant from
Eq. (18.38), with eJµ

a defined through Eq. (18.24). The charged pion
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fields are defined as
˛

˛

˛π+
E

=
“˛

˛

˛π1

E

+ i
˛

˛

˛π2

E”

/
√

2. Use this to show that

Eq. (18.38) is indeed equivalent to the definition given in Eq. (17.36,
p 494).

So far, this is just the definition of fπ. We can go a bit further if we express
the Kronecker delta on the right hand side of these equations in the form

〈0 |φa(x)|πb(p)〉 = e−ip·xδab , (18.40)

where φa represents the pion field. Eq. (18.39) now becomes

〈
0
∣∣∣∂µJ̃

µ
a (0)

∣∣∣πb(p)
〉

= fπm
2
π 〈0 |φa(0)|πb(p)〉 , (18.41)

where both sides of the equation contain matrix elements between the same set
of states. There is a conjecture that the relation is valid also at the operator
level, i.e., one can write operator relation

∂µJ̃
µ
a (x) = fπm

2
π
φa(x) . (18.42)

This conjecture goes by the name partially conserved axial current , better
known by the acronym PCAC .

2 Exercise 18.10 The Lagrangian of the sigma model was given in Eqs.
(18.12) and (18.13). Define a new theory by adding a term aσ to this
Lagrangian. This violates the chiral SU(2) symmetry explicitly, but
the vectorial SU(2) is intact because the σ field is invariant under it.
Use the expression of the chiral SU(2) currents given in Eq. (18.17),
take its divergence, and use the equations of motion to show that the
divergence is indeed of the PCAC form.

With the help of PCAC, we can deduce a class of relations for matrix
elements of arbitrary operators within states containing pions. To deduce
such relations, let us introduce a very standard machinery of quantum field
theory called the Lehmann–Symannzik–Zimmermann (or LSZ) reduction for-
mula. The aim of this reduction is to express any matrix element in terms of
the vacuum expectation value of some operator. If we have an initial state
containing one pion and any number of other particles which are collectively
called α, and a final state containing some particles which we collectively call
β, then for an arbitrary operator O(x), the reduction formula reads

〈β |O(0)|απa(p)〉 = i

∫
d4x e−ip·x(2 +m2

π)
〈
β
∣∣∣
(
O(0)φ(x)

)
T

∣∣∣α
〉
. (18.43)

The matrix element on the right hand side of this equation is of a time-ordered
product , which will be defined shortly. Without getting into the definition, it
is clear that, applying similar relations on the other particles in the initial and
the final states, we can ultimately obtain a vacuum expectation value, as men-
tioned earlier. But here we are not interested in reaching that goal. Rather,
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we first integrate by parts, transferring the derivative onto the exponential
factor, and obtain

〈β |O(0)|απa(p)〉 = i(−p2 +m2
π
)

∫
d4x e−ip·x

〈
β
∣∣∣
(
O(0)φ(x)

)
T

∣∣∣α
〉
.

(18.44)

Then we use the PCAC relation, Eq. (18.42), to rewrite the matrix element
as

〈β |O(0)|απa(p)〉 =
i(−p2 +m2

π
)

fπm2
π

×
∫
d4x e−ip·x

〈
β

∣∣∣∣
(
O(0)∂µJ̃

µ
a (x)

)

T

∣∣∣∣α
〉
. (18.45)

We have not had an occasion to introduce time-ordered products of operators since we did not
derive the results of quantum field theory in a formal manner. For any two operators A(x) and
B(y), the time-ordered product is defined as

“

A(x)B(y)
”

T
≡ Θ(x0 − y0)A(x)B(y) + Θ(y0 − x0)B(y)A(x) , (18.46)

where Θ denotes the unit step function, first introduced in Eq. (4.158, p 96). In other words,
in the time-ordered product of two operators, the operator at a later time always sits to the left
of the other one. If we now take a spatial derivative with respect to any of the co-ordinates,
the result will also be a time-ordered product. For example,

∂

∂xi

“

A(x)B(y)
”

T
=
“∂A(x)

∂xi
B(y)

”

T
. (18.47)

But if we take a derivative with respect to time, we need to consider derivatives of the step
function as well, which are delta functions. Therefore we obtain

∂

∂x0

“

A(x)B(y)
”

T
=
“∂A(x)

∂x0
B(y)

”

T
+ δ(x0 − y0)

h

A(x), B(y)
i

. (18.48)

Using this result, we can write
〈
β

∣∣∣∣
(
O(0)∂µJ̃

µ
a (x)

)

T

∣∣∣∣α
〉

= ∂µ

〈
β

∣∣∣∣
(
O(0)J̃µ

a (x)

)

T

∣∣∣∣α
〉

−δ(x0)
[
J̃µ

a (x), O(0)
]
. (18.49)

Putting this back into Eq. (18.45) and performing some partial integrations,
we obtain

〈β |O(0)|απa(p)〉 =
i(−p2 +m2

π)

fπm2
π

∫
d4x e−ip·x

×
〈
β

∣∣∣∣ipµ

(
O(0)J̃µ

a (x)

)

T

− δ(x0)
[
J̃µ

a (x), O(0)
]∣∣∣∣α

〉
.

(18.50)

Suppose now we consider this result in the limit pµ → 0. This is usually
called the soft limit . On the right hand side, the term containing the time-
ordered product now vanishes. In the other term, the integration over x can
be performed to yield the axial charge. Thus we obtain

lim
pµ→0

〈β |O(0)|απa(p)〉 = − i

fπ

〈
β
∣∣∣
[
Q̃a, O(0)

]∣∣∣α
〉
. (18.51)
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This is called the soft pion theorem. On the left hand side, we have a matrix
element within two states, one of which contains a pion. In the soft pion
limit, this matrix element is equal to another matrix element where the pion
has been removed from the external state, and the operator is a commutator
involving the axial charge. There is, of course, a similar result where the
removed pion is in the final state.

18.3.6 Quark masses

So far, we have considered the consequences of neglecting the masses of the u
and the d quarks. We can go further and consider the s quark to be massless as
well. In that case, the global flavor symmetry would be SU(3)× SU(3), apart
from the two U(1) factors one of which is baryon number symmetry and the
other will be discussed in §18.4. The global symmetry implies polar and axial
vector currents. If the axial SU(3) currents are spontaneously broken, then
there will be eight Goldstone bosons. Three of them are the three pions. The
others are naturally the other members of the lightest meson octet that was
discussed in Ch. 10, containing also the kaons and the eta. We will represent
all these particles collectively by the uppercase letter Π in what follows, and
their fields by Φ(x). Generalization of the formulas derived above for pions is
then obvious.

Quark mass terms in the Lagrangian are not invariant under chiral sym-
metries, as has been said before. Because of these terms, the chiral symmetry
is not really a symmetry of the Lagrangian, and the members of the pseu-
doscalar meson octet should not be massless. The mass of these mesons must
then somehow depend on the quark masses. This fact entails crucial informa-
tion regarding quark masses, as we will now see.

The mass terms in the Lagrangian are

Lmass = −
(
muuu+mddd+msss

)
. (18.52)

The corresponding terms in the Hamiltonian would have opposite signs, and
will be denoted by H ′. We can treat these terms as perturbations and esti-
mate meson masses. In first order in perturbation theory, we should write

m2
a = 〈Πa |H ′|Πa〉 , (18.53)

where the index a can take values from 1 to 8. We can use the soft pion
theorem to remove the mesons from the external states. The result will be
valid only in the soft limit, and would read

m2
af

2
a =

〈
0
∣∣∣
[
Q̃a,

[
Q̃a,H

′
]]∣∣∣ 0

〉
, (18.54)

where there is no summation on the repeated indices on any side. If we
take non-hermitian generators, then one of the Q̃a’s should be replaced by its
hermitian conjugate.
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Evaluating the commutators present in Eq. (18.54) is easy. For SU(3) ×
SU(3) symmetry, the axial charges are given by

Q̃a =

∫
d3x Ψ†(x)

λa

2
γ5Ψ(x) , (18.55)

where now Ψ denotes a column matrix with u, d and s quarks as entries, and
λa’s are the SU(3) generators in the fundamental representation, presented in
Eq. (10.13, p 259). On the other hand, H ′ can be written as

H ′ = Ψ†γ0MΨ , (18.56)

where

M = diag(mu,md,ms) . (18.57)

Evaluation of commutators now follows more or less the same steps as those
obtained while evaluating charge commutators in §18.3.3. We can use Eq.
(18.27), just as we did there. The difference is that now there is a Dirac
matrix γ5 in one factor and a γ0 in the other, which anticommute. This gives
an extra minus sign between the two terms, and we end up with

[
Q̃a,H

′
]

= Ψ
[λa

2
,M
]
+
γ5Ψ . (18.58)

The evaluation of the second commutator is similar, and it gives, finally,

[
Q̃a,

[
Q̃a,H

′
]]

= Ψ
[λa

2
,
[λa

2
,M
]
+

]
+

Ψ . (18.59)

For example, if we consider Q̃3, we would obtain

[
Q̃3,

[
Q̃3,H

′
]]

= Ψ



mu 0 0
0 md 0
0 0 0


Ψ = muuu+mddd . (18.60)

When we put this into Eq. (18.54), we will obtain vacuum expectation values
of uu and dd. In the first order of perturbation, we can neglect the difference
between such vacuum expectation values and write all of them as 〈qq〉. Thus
we obtain

f2
π
m2

π
= (mu +md) 〈qq〉 , (18.61)

since Q̃3 is part of a triplet under isospin, and so is the pion. Using the same
procedure with Q̃4 instead of Q̃3, we would obtain a similar relation involving
the isodoublet kaons:

f2
Km

2
K = (ms +md) 〈qq〉 . (18.62)
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And with Q̃8, we obtain the mass formula for the isosinglet in the SU(3) octet,
which is the η:

f2
ηm

2
η =

1

3
(mu +md + 4ms) 〈qq〉 . (18.63)

We have written one mass relation for each isomultiplet, tacitly taking
a viewpoint that isospin symmetry is not broken. This can be a consistent
viewpoint only if mu = md. Using this, and taking the decay constants to
be equal as well, we obtain Eq. (10.82, p 280), the Gell-Mann–Okubo mass
formula for pseudoscalar mesons. Moreover, we obtain the relation

m2
π

2m2
K −m2

π

=
m0

ms
, (18.64)

where m0 is the common mass of the up and the down quarks in this limit.
Using the experimentally known values of the pion and kaon masses, we obtain

m0

ms
≈ 1

26
. (18.65)

This shows that the up and the down quarks are substantially lighter than
the strange quark, implying that the isospin is a much better symmetry than
the SU(3) flavor symmetry.

We can also introduce isospin breaking effects coming from electromagnetic
interactions, which will depend only on the charges of the quarks and not their
flavors. So the corrections for π

+ and for K+ would be equal. We can then
interpret the previously obtained equations as the ones which are valid for the
neutral mesons, and write the formulas for the charged mesons as

f2m2
π+ = (mu +md) 〈qq〉+ ∆ ,

f2m2
K+ = (ms +mu) 〈qq〉+ ∆ , (18.66)

using a common value of the decay constants. This gives

m2
K+ −m2

π+ −m2
K0

m2
K0 −m2

K+ +m2
π+ − 2m2

π0

=
md

mu
. (18.67)

Note that the electromagnetic correction drops out of the ratio. Putting in
the masses of the mesons, we obtain

md

mu
≈ 1.8 . (18.68)

This is the result that we mentioned in §18.2: the down quark is much heavier
than the up quark.

The ratios mentioned above do not determine any of the masses. However,
we can take a hint from the baryon decuplet, for which any two successive
isospin multiplets has a mass difference of about 150 MeV. If we assign this
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difference to the mass of a strange quark, Eq. (18.65) tells us that the average
mass of the up and the down quarks should be about 6 MeV. Using Eq.
(18.68) now, we can obtain

mu ≈ 4 MeV , md ≈ 7.5 MeV . (18.69)

Quark masses similar to these were quoted in §13.10.
Contrary to the constituent quark masses which appear in the formulas for

magnetic moments etc, these are really the quark masses that appear in the
Lagrangian, because these are responsible for the fact that chiral symmetry
is not a symmetry of the Lagrangian. Since the quarks cannot be seen as free
particles, their masses have to be estimated in such indirect manner. In addi-
tion, quark masses are parameters in the Lagrangian which, like the coupling
constants, depend on the momentum scale. This increases the confusion with
the exact values of the quark masses. All in all, the estimates have a lot of
arbitrariness. For example, the masses quoted in Ch. 13 are somewhat smaller
than the values mentioned here.

18.3.7 Chiral Lagrangians

In §15.3, we discussed that the interactions of Goldstone bosons are always
derivative interactions, i.e., they vanish in the limit that the 4-momentum of
the Goldstone boson goes to zero. If pions are thought of as Goldstone bosons
of chiral symmetry breaking, the same should apply to them. We showed that
we can write the fields in a “polar” form in which this is explicit. For a U(1)
symmetry, we presented this polar form in Eq. (15.36, p 451). In a similar
fashion, we can construct a matrix

U ≡ exp
(
i
τa
2

πa/fπ

)
, (18.70)

that contains the pion fields. Since the pions are supposed to be the Goldstone
bosons of the SU(2)× SU(2) flavor symmetry, the Lagrangian should contain
only derivatives of U if this symmetry is exact in the Lagrangian.

To construct a Lagrangian with the derivatives, we need to know how U
transforms under the SU(2)×SU(2) flavor symmetry. For this, it is easiest to
introduce the nucleons in the Lagrangian. The infinitesimal transformation
on the nucleon fields were given in Eqs. (18.14) and (18.15). We can use these
to see that the finite transformations on the left and right chiralities of the
nucleon are of the form

NL → N ′
L = VLNL , NR → N ′

R = VRNR , (18.71)

where VL and VR are both 2× 2 matrices, of the form

VL = exp
(
−i τa

2
θ(L)

a

)
, (18.72)
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and likewise for VR. Since we are talking of global transformations here, the
parameters θ

(L)
a and θ

(R)
a , or equivalently the matrices VL and VR, should be

independent of the spacetime co-ordinates.
To see how these transformations affect the pion fields, let us consider the

pion–nucleon interaction term of Eq. (18.12). To the lowest order in the pion
field, this can be written as

gfπ

(
NLUNR +NRU

†NL

)
. (18.73)

It is now clear that, in order that this is invariant under SU(2) × SU(2), the
transformation of U should read like

U → U ′ = VLUV
†
R . (18.74)

The effective Lagrangian involving the pions can now be written down
as something that contains only derivatives of U , and is invariant under the
transformation of Eq. (18.74). This Lagrangian has to be of the form

Leff = f2
π

Tr
(
(∂µU

†)(∂µU)
)

+ · · · , (18.75)

where the dots indicate terms with more factors of U . It is easy to see that one
obtains the expected kinetic terms for the pions if one expands the exponential
in U . The first non-vanishing term would be quadratic in pion fields:

L
(2)
eff =

1

4
(∂µπa)(∂µ

πb) Tr (τaτb) . (18.76)

According to the normalization of the SU(2) generators in the fundamental
representation that was decided upon in Eq. (11.54, p 308), Tr (τaτb) = 2δab

since the generators are really τa/2. Thus we obtain

L
(2)
eff =

1

2
(∂µπa)(∂µ

πa) , (18.77)

which is the kinetic term for the pion fields. The interactions come from
higher order terms in the pion field.

It should be remembered that the SU(2) × SU(2) symmetry is only an
approximate symmetry of the Lagrangian. Thus, the effective Lagrangian
involving pions can contain also some terms which are not invariant under
this symmetry. Consider, for example, the following Lagrangian:

Leff = f2
π Tr

(
(∂µU

†)(∂µU)
)

+m2
πf

2
π Tr(U + U †) . (18.78)

The first term is the same as that given in Eq. (18.75), and is invariant under
the SU(2) × SU(2) flavor symmetry. The second term is not invariant. Ex-
panding U in a power series of the pion field, we see that indeed the quantity
mπ present in this term is the pion mass. Also note that the new term, though
not invariant under SU(2)× SU(2), is invariant under the diagonal subgroup
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SU(2) under which VL = VR. This is the isospin subgroup, and because it is
intact, the neutral and the charged pions come out with the same mass.

The pion interaction with photons can be incorporated into this effective
Lagrangian easily. The trick, as always, is to change the ordinary derivative
into a gauge covariant derivative,

Dµ = ∂µ + ieQAµ . (18.79)

The value of Q should be taken as ±1 for π
±, and zero for π

0. The electro-
magnetic interaction terms will also not be invariant under the SU(2)×SU(2)
flavor symmetry. From such terms, and also higher order terms in the matrix
U , low-energy properties of pions can be calculated.

18.4 Anomalies

We proposed to postpone the discussion about the U(1) factors in the flavor
symmetry group. Now we take it up.

As mentioned in Eq. (18.10), there are two U(1) symmetries. The vectorial
one is baryon number symmetry. The axial U(1) is the one under which all
quark fields transform as

q(x)→ eiβγ5 q(x) , (18.80)

with the same value of β. This symmetry would also be broken spontaneously
by the 〈qq〉 VEVs. If quarks were massless, one would have expected a Gold-
stone boson. Of course, the quark mass terms in the Lagrangian break this
symmetry explicitly, so the Goldstone boson will not be massless. Naively, one
should expect a particle which would be roughly as heavy as the pions if only
the up and down quarks are involved. If also the strange quark is involved,
the mass can be expected to be roughly the same as the mass of the kaons
or the eta. And yet, there exists no meson which fits this description. The
η′, which is a singlet of flavor SU(3), has a mass of 958 MeV, almost twice as
heavy as the η. If η′ is identified as the Goldstone boson of the broken chiral
U(1) symmetry, we have reasons to suspect that the symmetry is more badly
broken in the Lagrangian than the chiral SU(3). This turns out to be the case
indeed, for reasons that we will explain in this section.

18.4.1 Failure of Noether’s theorem

Noether’s theorem tells us that, corresponding to a continuous symmetry of
the Lagrangian, there exists a 4-vector, called the Noether current, whose
divergence is zero. The theorem was originally proved in the context of classi-
cal field theory. We now show that, when quantum corrections are included,
there are cases where the theorem no longer holds, i.e., the divergence of the
Noether current does not vanish.
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a) A simple example

To see this, we need not go through the elaborate framework where a number
of flavors of quark fields are involved. We can just take QED, with one fermion
field ψ(x) interacting with the photon field, and ask ourselves whether the
axial vector current,

J̃µ = ψγµγ5ψ , (18.81)

is conserved in the limit that the fermion is massless. From the QED La-
grangian given in Eq. (5.7, p 113) and the resulting equations of motion, we
expect

∂µJ̃
µ = 2imψγ5ψ ≡ 2imJ̃ , (18.82)

where J̃ stands for the pseudoscalar bilinear of the fermion field. This would
imply that the axial vector current has vanishing divergence in the massless
limit, as is expected from Noether’s theorem and invariance of the Lagrangian
under the axial symmetry

ψ(x)→ eiβγ5 ψ(x) . (18.83)

2 Exercise 18.11 Verify Eq. (18.82).

Let us now define the following matrix element of creating two photons
from the vacuum:∫

d4x e−iq·x
〈
γ(k1)γ(k2)

∣∣∣J̃λ(x)
∣∣∣ 0
〉

= EµνT µνλ(k1, k2) , (18.84)

where Eµν is just a shorthand for the expression

Eµν = (2π)4δ4(k1 + k2 − q)ǫ∗µ(k1)ǫ∗ν(k2) , (18.85)

and T µνλ(k1, k2) is the quantity whose properties will be the focus of our
discussion. If we contract both sides of Eq. (18.84) by qλ, we obtain

Eµν qλT µνλ =

∫
d4x

(
i∂λe

−iq·x
)〈

γ(k1)γ(k2)
∣∣∣J̃λ(x)

∣∣∣ 0
〉

= −i
∫
d4x e−iq·x

〈
γ(k1)γ(k2)

∣∣∣∂λJ̃
λ(x)

∣∣∣ 0
〉
, (18.86)

by performing integration by parts. A vanishing divergence of the axial vector
current would then imply the relation

qλTµνλ(k1, k2) = 0 . (18.87)

2 Exercise 18.12 If the mass of the fermion is not neglected, show that
the corresponding equation is

qλTµνλ(k1, k2) = 2mTµν(k1, k2) , (18.88)

where Tµν is defined through a relation that is very similar to Eq.
(18.84), except that the pseudoscalar current is involved instead of
the axial vector current.
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l1 + k1

l1

l1 − k
2

Aµ(k1)

Aν(k2)(a)

l2 + k2

l2

l2 − k
1

Aµ(k1)

Aν(k2)

(b)

Figure 18.1: Triangle diagrams for the 3-point function involving two photons and
an axial vector current. The blob on the left vertex in each diagram represents an axial
vector coupling.

We can now try to see whether Eq. (18.87) is respected once we take loop
corrections into account. In particular, we can evaluate the left hand side
in the massless limit and check whether it really vanishes. At the one-loop
level, diagrams for the quantity Tµνλ are presented in Fig. 18.1, where the

blob represents the axial coupling of the fermion that results from J̃µ. The
contributions from the two diagrams can be written down, using the usual
Feynman rules. With our notation for the momenta for different legs in the
loop given in the figure, we obtain

iTµνλ = −(−ieQ)2
∫

d4l

(2π)4
Tr

(
i

l/1
γµ

i

l/1 + k/1
iγλγ5

i

l/1 − k/2
γν

+
i

l/2
γν

i

l/2 + k/2
iγλγ5

i

l/2 − k/1
γµ

)
, (18.89)

where the electric charge of the fermion is eQ, and the overall minus sign is
for a closed fermion loop. Note that, in writing Eq. (18.89), l1 and l2 have
not been identified with the loop integration variable l, for reasons that will
be clear soon. In general, l can be the momentum of any of the internal lines,
or even some combination involving the external momenta.

If we now contract the expression by qλ and use relations like

q/γ5 = (l/1 + k/1 − l/1 + k/2)γ5 = (l/1 + k/1)γ5 + γ5(l/1 − k/2) , (18.90)

we arrive at the one-loop relation

qλTµνλ = −ie2Q2

∫
d4l

(2π)4
Tr

(
1

l/1
γµ

1

l/1 − k/2
γνγ5 −

1

l/1
γµ

1

l/1 + k/1
γνγ5

+
1

l/2
γν

1

l/2 − k/1
γµγ5 −

1

l/2
γν

1

l/2 + k/2
γµγ5

)
. (18.91)
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Performing the traces now and reorganizing the terms, we can write

qλTµνλ = 4e2Q2εµναβ

∫
d4l

(2π)4

(
lα2 k

β
2

l22(l2 + k2)2
− lα1 k

β
2

l21(l1 − k2)2

− kα
1 l

β
2

l22(l2 − k1)2
+

kα
1 l

β
1

l21(l1 + k1)2

)
. (18.92)

Naively, it seems that this expression vanishes, as one should expect from
Noether’s theorem. If we identify both l1 and l2 with the loop integral variable
l, and replace l by l+ k2 in the integrand of the first term, the first two terms
of the last equation cancel each other. Likewise, the cancellation of the other
two terms can be seen by suitable shift of the integral variable. There is a
catch, however: all four terms in the integral are linearly divergent, and it
is dangerous to shift the integration variable arbitrarily in such integrals. In
other words, one cannot afford to be naive in this situation.

To understand the problem with linearly divergent integrals, let us see an example of an inte-
gration over just one variable, of the form

I(a) =

Z +∞

−∞
dx
h

f(x+ a) − f(x)
i

, (18.93)

where a is a constant, and f(x) is a function with the property

lim
x→±∞

f(x) = constant , (18.94)

i.e., at positive or negative infinity, the function does not vanish but all of its derivatives do.
We can expand f(x+ a) in a Taylor series, which gives

I(a) =

Z +∞

−∞
dx
h

af ′(x) +
1

2
a2f ′′(x) + · · ·

i

. (18.95)

This will give

I(a) = a
h

f(+∞) − f(−∞)
i

, (18.96)

and there is no reason that this must be zero.

2 Exercise 18.13 To see a concrete example, consider f(x) = tanhx.
The indefinite integral of “tanh(x+ a) − tanhx” can be performed ex-
actly. Put the limits and show that the result agrees with the expres-
sion obtained in Eq. (18.96).

It is now easy to derive a similar result for integrals on more than one variable. Consider
integrals of the form

Iα(a) =

Z

dDx
h

fα(x+ a) − fα(x)
i

. (18.97)

Here, x and a are vectors in a D-dimensional Euclidean space, and we take a function which
itself carries a vector index, because this is the kind of function that we will encounter. Taylor
expansion now gives

I(a) =

Z

dDx
h

aµ∂µfα(x) + · · ·
i

. (18.98)

Only the first derivative term will not automatically vanish for a linearly divergent integral,
because using Gauss theorem we can write it as

Iα(a) = aµ

Z

dSD nµfα(x) , (18.99)
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where dSD denotes an element of the (D−1)-dimensional surface of the entire space, and nµ is
the unit normal on it. Obviously, dSD = RD−1dΩD for a surface of radius R, and nµ = Rµ/R.
The integration over the angular variables implied in ΩD has been shown in Eq. (G.26, p 761).
Using the result, we obtain

Iα(a) = aµ 2π
D/2

Γ(D/2)
lim

R→∞
RµR

D−2fα(R) . (18.100)

We will encounter integrands that have the form

fα(R) = Rα/R
D (18.101)

for large R. For such functions, we convert RµRα to 1
D
R2gµα in the integrand, as indicated

in Eq. (G.10, p 758). This gives

Iα(a) = aα
2π

D/2

DΓ(D/2)
. (18.102)

For integrals over Minkowski spaces, there will be an additional factor of i because of Wick
rotation, described in Appendix G. Specializing for D = 4, we can write

Iα(a) = i
π2

2
aα . (18.103)

We, therefore, need to be careful about the linear divergence while eval-
uating the expression of Eq. (18.92). Before actually evaluating the integral,
let us see what would happen if we contract the expression of Eq. (18.89) by
one of the photon momenta, e.g., k1. The result of the contraction for this
case would be

kµ
1 Tµνλ = −ie2Q2

∫
d4l

(2π)4
Tr

(
1

l/1
k/1

1

l/1 + k/1
γλγ5

1

l/1 − k/2
γν

+
1

l/2
γν

1

l/2 + k/2
γλγ5

1

l/2 − k/1
k/1

)
. (18.104)

Again, using relations like

1

l/1
k/1

1

l/1 + k/1
=

1

l/1

(
l/1 + k/1 − l/1

) 1

l/1 + k/1
=

1

l/1
− 1

l/1 + k/1
, (18.105)

we obtain

kµ
1 Tµνλ = −ie2Q2

∫
d4l

(2π)4
Tr

[(
1

l/1 − k/2
γν

1

l/1
− 1

l/2
γν

1

l/2 + k/2

+
1

l/2 − k/1
γν

1

l/2 + k/2
− 1

l/1 − k/2
γν

1

l/1 + k/1

)
γλγ5

]
, (18.106)

where we have used the cyclic property of traces to keep γλγ5 at the extreme
right for each term. After the traces are evaluated, this becomes

kµ
1 Tµνλ ∝ ελναβ

∫
d4l

(
lα1 k

β
2

l21(l1 − k2)2
− lα2 k

β
2

l22(l2 + k2)2

+
lα2 (k1 + k2)β

(l2 − k1)2(l2 + k2)2
− lα1 (k1 + k2)β

(l1 − k2)2(l1 + k1)2

)
, (18.107)



§18.4. Anomalies 549

keeping only the linearly divergent terms in the integral, because other terms
do not contribute.

In order to proceed, we now need to be more specific about l1 and l2. Let
us take

l1 = l + b1k1 + b2k2 , (18.108)

keeping the numerical constants b1 and b2 unspecified at this stage. This way,
we remain as general as we can. For example, if b1 = b2 = 0, the loop integral
variable is the momentum of the rightmost side of the triangle in Fig. 18.1
(p 546)a. If b1 = 1 and b2 = 0, the loop integral variable is the momentum of
the upper left side, and if b1 = 0 and b2 = −1, it is the momentum of the
lower left side. For any other combination of values of b1 and b2, the loop
momentum cannot be identified with the momentum on any of the legs. In
any case, Eq. (18.108) tells us that for the diagram in Fig. 18.1 (p 546)b, we
must take

l2 = l + b1k2 + b2k1 , (18.109)

because the expression in Eq. (18.89) must obey Bose symmetry, i.e., should
be unchanged if we interchange the two identical photons in the outer lines,
i.e., make the changes

k1 ↔ k2 , µ↔ ν . (18.110)

Thus,

l1 − l2 = (b1 − b2)(k1 − k2) . (18.111)

We now note that the first two terms of Eq. (18.107) can be written in the
form

ελναβ k
β
2

∫
d4l
[
fα(l1)− fα(l2 + k2)

]
(18.112)

where

fα(l) =
lα

l2(l − k2)2
. (18.113)

Using Eq. (18.103), the result of the integral of these two terms can therefore
be written as

i
π2

2
ελναβ k

β
2 (l1 − l2 − k2)α = i

π2

2
(b1 − b2)ελναβ k

α
1 k

β
2 . (18.114)

Similarly, the last two terms of Eq. (18.107) can be written in the form

ελναβ (k1 + k2)β

∫
d4l
[
fα(l2 − k1)− fα(l1 − k2)

]
(18.115)
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for a suitably defined function fα. The value of this integral will be

i
π2

2
2(b2 − b1 − 1)ελναβ k

α
1 k

β
2 . (18.116)

The total contribution can be obtained by adding these two contributions.
But the photon couples to the gauge current, which must be conserved. This
implies that the tensor Tµνλ should satisfy the relations

kµ
1 Tµνλ = 0 , kν

2Tµνλ = 0 . (18.117)

This shows that b1 and b2 cannot be completely arbitrary: they must obey
the relation

b2 − b1 = 2 . (18.118)

With this knowledge, let us now look at Eq. (18.92). The algebraic steps
are very similar to those encountered already, and we do not give the details.
Using Eq. (18.118), we obtain

qλTµνλ = − ie
2Q2

2π2
εµναβk

α
1 k

β
2 (18.119)

when the fermion inside the loop is massless. If we perform the same calcu-
lation with a mass m of the fermion in the loop, we would obtain this extra
term in addition to the mass-dependent contribution shown in Eq. (18.88),
i.e.,

qλTµνλ(k1, k2) = 2mTµν(k1, k2)− ie2Q2

2π2
εµναβk

α
1 k

β
2 . (18.120)

The important part is the new addition on the right hand side compared to
Eq. (18.88), i.e., the loop contribution shown in Eq. (18.119), which implies
that the axial current is not conserved even in the massless limit, and there is
a failure of Noether’s theorem. Such cases, where a symmetry of the classical
Lagrangian is broken by the quantum corrections, is called anomaly. Classical
symmetries which have anomaly are called anomalous symmetries.

One can also express the result in co-ordinate space. For this, one needs
to multiply both sides of Eq. (18.120) by the polarization vectors of the two
photons and take the inverse Fourier transform. This would yield

∂µJ̃
µ = 2imJ̃ +

e2Q2

8π2
FαβF̃αβ , (18.121)

where

F̃αβ =
1

2
εαβµνF

µν , (18.122)

is the dual field-strength tensor, introduced in Eq. (5.143, p 144).

2 Exercise 18.14 Go back to the diagrams of Fig. 18.1 (p 546) and write
the amplitudes without neglecting the fermion mass. Go through the
procedures mentioned in the text to show how the mass dependent
term of Eq. (18.120) appears through direct evaluation of the dia-
grams.



§18.4. Anomalies 551

b) Variations

In our discussion so far, the anomalous term comes from the electromagnetic
field-strength tensor. If the fermions coupling to the axial current couple to
gluons as well, there will be a similar term involving the field-strength tensor
of QCD. In general, for any non-abelian symmetry, the Feynman rules for the
vertices would involve not only just the coupling constant but also a matrix
that is a representation of a generator of the group. If the lines connected to
the triangle diagrams correspond to the currents J̃A

λ , Jb
µ and Jc

ν where b, c are
gauge indices, the formula corresponding to Eq. (18.121) would be:

∂µJ̃
µ
A =

gbgc

16π2
Tr
(
TA

[
Tb, Tc

]
+

)
Fαβ

b F̃ c
αβ + (mass terms) , (18.123)

where gb and gc are the gauge coupling constants that accompany the gener-
ators Tb and Tc, and F is the field-strength tensor for this gauge symmetry.

It should be noted that we have used a different kind of index for the
axial current, and a different-looking letter for the accompanying generator.
The reason is that this current can carry some index other than the gauge
index. In questions of interest, the currents in fact do. For example, the flavor
currents that we are considering carry a flavor index, whereas they are neutral
under color. The trace appearing in the anomaly expression should be taken
over all indices, gauge and any others.

It is easy to see why the anticommutator of generators occurs in Eq.
(18.123). Imagine the diagrams of Fig. 18.1 (p 546) with these non-abelian
currents at the vertices. If we pick up the generators TATbTc by following the
opposite direction of the arrows on the fermion line in the first diagram, we
will pick up TATcTb from the second diagram.

We can also contemplate chiral theories in which the left-chiral and right-
chiral projections of fermions transform like different representations of the
group. The two chiral projectors differ by a sign of the γ5 term, so the
contribution of the two chiralities to the triangle diagrams would come with
opposite signs. Therefore, in such theories, the factor involving the generators
in the anomalous term should be written as

AAbc ≡ Tr
(
TA

[
Tb, Tc

]
+

)
R
− Tr

(
TA

[
Tb, Tc

]
+

)
L
, (18.124)

where the two traces are over the representations of right and left chiral pro-
jections of fermions, as indicated by the subscripts. A chiral current J̃µ

A is
non-anomalous if the anomaly co-efficient AAbc is zero for any choice of b and
c. If the chiral current in question is a gauge current, all anomaly co-efficients
associated with it must vanish in order that the theory is renormalizable.

18.4.2 QCD anomaly of U(1)A

Let us now consider which of the flavor currents can have a QCD anomaly.
This means that we consider Eq. (18.123) when both b and c are color indices.
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The flavor group commutes with the color group. In other words, the
color of a quark does not depend on its flavor in any way. Thus, in this case,
the trace decomposes into a flavor trace and a color trace. The flavor trace
contains just the trace of TA. If we consider a flavor current belonging to the
SU(N)× SU(N) part of the flavor group, this trace is zero, as shown in §10.3.
Thus, all currents corresponding to this part of the flavor group are free from
QCD anomaly.

In more pedestrian terms, we can look at what happens to a flavor current
of the form uγµγ5u− dγµγ5d. The color interactions are flavor-blind. So the
mass-independent part of the contribution coming from u quarks in the loop
would be the same as those coming from d quarks in the loop, except that
the flavor current couples with opposite signs to the two flavors. Hence, the
contributions from up quarks and down quarks cancel.

Such cancellation does not take place only for the axial U(1) current. All
quarks contribute with the same magnitude and same sign to this current,
implying that the generator is the diagonal unit matrix. Thus, the trace over
the flavor space produces a factor NF , the number of quark flavors. In the
color sector, we can use the cyclicity of the trace to write the relevant trace
in the form 2 Tr(TbTc). According to the normalization convention chosen for
the generators in §11.2, this trace should be equal to δbc since each flavor of
quark is in the fundamental representation of the color group. So we obtain,

∂µJ̃
µ =

g2
sNF

16π2
Gµν

a G̃a
µν + (· · ·) , (18.125)

where G denotes the QCD field-strength tensor. The terms omitted on the
right hand side include fermion masses, and also possibly an anomaly term
involving the QED field-strength tensor.

In the preamble for §18.4, we mentioned the problem with the mass of the
η′ meson. We now see why this ceases to be mysterious once anomalies are
known. The point is that, even in the absence of quark masses, the chiral
U(1) symmetry is broken by anomalies. In other words, even if we neglect
quark masses, the η′ cannot be treated like a Goldstone boson. No wonder
then that the mass of the η′ is much larger than the masses of the mesons in
the octet.

18.4.3 Decay of neutral pions

The SU(N) flavor currents do not have any QCD anomaly, as we have argued.
However, they can have QED anomalies. The basic reason is that the elec-
tromagnetic U(1) group does not commute with the flavor groups. In other
words, different flavors of fermions carry different electric charges. This is cru-
cial in the explanation of several physical phenomena, most striking of which
is the decay of the neutral pion.

The neutral pion decays into two photons. The relevant amplitude should
be represented by

〈
γ(k1)γ(k2)

∣∣π0(p)
〉
. Using the LSZ reduction formula, we
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can write

〈
γ(k1)γ(k2)

∣∣π0(p)
〉

= i

∫
d4x e−ip·x(2 +m2

π
) 〈γ(k1)γ(k2) |φ0(x)| 0〉 ,

(18.126)

where φ0(x) is the field operator for the neutral pion. Performing integration
by parts, this can be written as

〈
γ(k1)γ(k2)

∣∣π0(p)
〉

= i(−p2 +m2
π
)

∫
d4x e−ip·x 〈γ(k1)γ(k2) |φ0(x)| 0〉 .

(18.127)

Sutherland and Veltman then used the PCAC relation, Eq. (18.42), to claim
that the amplitude is proportional to

∫
d4x e−iq·x

〈
γ(k1)γ(k2)

∣∣∣∂µJ̃
µ
3 (x)

∣∣∣ 0
〉
, (18.128)

where the subscript ‘3’ on the current signifies that it transforms like the third,
or the neutral generator of the flavor SU(2). The matrix element present in
this equation is exactly of the form that appears on the right hand side of
Eq. (18.86), and should therefore have the form given in that equation, which
involves the tensor Tµνλ(k1, k2). Sutherland and Veltman tried to write the
most general expression for this tensor subject to the condition that it should
obey Bose symmetry, and should be transverse to the momentum of any of
the photons, in the sense given in Eq. (18.117), when the photons are on-shell,
i.e.,

k2
1 = k2

2 = 0 . (18.129)

This expression is of the form

Tµνλ(k1, k2) = kα
1 k

β
2

[
εµναβqλT1(p2) +

(
εµλαβk2ν − ενλαβk1µ

)
T2(p2)

+
(

(δρ
µk1ν − δρ

νk2µ)ερλαβ − gαβεµνλρ(kρ
1 − kρ

2)
)
T3(p2)

]
,

(18.130)

where T1, T2 and T3 are three Lorentz invariant form factors. This gives

qλTµνλ(k1, k2) = εµναβk
α
1 k

β
2 p

2
(
T1(p2) + T3(p2)

)
. (18.131)

In the soft pion limit, p2 = 0, this expression can be non-zero only if T1 or T3

has a term that goes like 1/p2 for small p2. Such terms can arise only from
propagators of massless particles. There is no such known massless particle.
Hence, the amplitude must vanish. This is the important and shocking result
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by Sutherland and Veltman, that the neutral pion decay amplitude vanishes
in the soft pion limit.

But the neutral pion decays nevertheless! And we now understand what
goes wrong in this argument. The PCAC relation, Eq. (18.42), implies that
the axial current is conserved in the limit when the pion mass is zero. We
realize that this must be modified. The effect of anomaly must be there. The
correct relation should therefore be

∂µJ̃
µ
A(x) = fπm

2
π
φA(x) +

e2

8π2
Tr
(
TAQ

2
)
Fαβ(x)F̃αβ(x) , (18.132)

where F is the electromagnetic field-strength tensor. The extra term added
here is exactly what we wrote in a more general notation in Eq. (18.123). For
electromagnetic interactions, the gauge coupling constant is e, and the charge
Q plays the role of the generator.

The π
0 → 2γ amplitude now contains not only the contribution shown in

Eq. (18.128), but also another contribution from the anomaly term, which is

e2 Tr
(
T3Q

2
)

8π2

−p2 +m2
π

fπm2
π

∫
d4x e−ip·x

〈
γ(k1)γ(k2)

∣∣∣Fαβ(x)F̃αβ(x)
∣∣∣ 0
〉
.

(18.133)

In the soft limit, this amplitude is the same as that coming from an effective
interaction term

Leff = Kφ0(x)Fαβ(x)F̃αβ(x) , (18.134)

where

K =
e2 Tr

(
T3Q

2
)

8π2fπ

=
αTr

(
T3Q

2
)

2πfπ

. (18.135)

This gives a decay rate

Γ =
K2m3

π

4π
. (18.136)

In order to obtain a numerical value, we need to evaluate Tr
(
T3Q

2
)

. Only

the u and the d quarks have non-zero values of T3, and the values are + 1
2 and

− 1
2 respectively. Using the values of charges of these quarks, we obtain

Tr
(
T3Q

2
)

= Nc

(
1

2
× 4

9
− 1

2
× 1

9

)
=

1

6
Nc , (18.137)

where Nc is the number of quark colors. Putting this into the expression for
the decay rate written down above, we obtain

Γ = (Nc/3)2 × 1.11× 1016 s−1 . (18.138)
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The measured value of this lifetime,

τ(π0) = 8.52× 10−17 s , (18.139)

corresponds to Nc = 3, an experimental confirmation of the fact that quarks
come in three colors.

2 Exercise 18.15 Starting from the effective interaction given in Eq.
(18.134), deduce Eq. (18.136) by using the following steps.

a) Show that the Feynman amplitude is given by

M = 4iKεµνλρk
µ
1 k

λ
2 ǫ

ν
1ǫ

ρ
2 , (18.140)

where ǫ1 and ǫ2 are the polarization vectors for the photon with
momenta k1 and k2 respectively.

b) Take the absolute square of the Feynman amplitude and sum
over all photon polarizations. Use Eq. (4.33, p 68) for evaluat-
ing the polarization sums.

c) Now integrate over the phase space factors, remembering that
only half of the total solid angle is available for a single photon
because the two photons are identical.

There is another interesting aspect of this result. Suppose, instead of
working with quarks, we treat the nucleons as fundamental particles that
couple to the pions through Yukawa interactions. We can perform the same
calculation. All arguments leading to Eq. (18.136) would still be valid, with K
still given by Eq. (18.135). The only difference would be that the triangular
loops will now contain the nucleons. However, note that the neutron has
Q = 0, so it does not contribute to K. The proton has T3 = 1

2 , so that we

obtain Tr
(
T3Q

2
)

= 1
2 , which is the same as that obtained with quarks for

Nc = 3. This means that we would obtain the same value for the neutral pion
decay rate if we ignore the quark degrees of freedom and work with nucleons.
This is ensured by the fact that

Tr
(
T3Q

2
)

nucleons
= Tr

(
T3Q

2
)

quarks
, (18.141)

provided there are three colors of quarks. This is called the anomaly matching
condition, and has to be satisfied by any substructure of hadrons in order that
one obtains the correct value of the neutral pion decay rate, which is driven
by anomaly.

18.4.4 Anomaly cancellation for gauge currents

We have been discussing anomalies for chiral currents. The standard elec-
troweak model has chiral currents. So, are they also not conserved in the
unbroken phase of the model? If the answer to this question turns out to be
‘yes’, that would jeopardize the renormalizability of the standard model.
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Fortunately, the answer is ‘no’. This answer derives not from any fun-
damental structure of the standard model gauge group, but from the repre-
sentations of the fermions under the gauge group. Let us try to understand
the answer in a somewhat oblique way. We will take the representation of
the quark and lepton fields under the SU(3)c and SU(2)L groups, and exam-
ine to what extent can the vanishing of triangle anomalies involving various
combinations of gauge currents determine the weak hypercharges of these mul-
tiplets. Thus, we start with undefined weak hypercharges Yl and Yq for the
lepton and the quark doublets, and Ye, Yu and Yd for the right-chiral SU(2)
singlets of the particles denoted by the subscripts. Fermions in the second
and third generations are not considered, because they will produce identical
contributions. First, from the 331 triangles, i.e., triangles where two of the
vertices couple to the SU(3)c gauge bosons and the other to the U(1)Y gauge
boson of the standard model, we obtain the condition

2Yq = Yu + Yd , (18.142)

which needs to be satisfied in order that the relevant anomaly vanishes. From
the 221 triangles, we obtain

3Yq + Yl = 0 , (18.143)

remembering that quarks can come in three colors. Triangles like 311 or

211 will vanish identically because of the tracelessness of the non-abelian

generators. Thus the only other non-trivial condition comes from the 111
triangles, which give

2Y 3
l − Y 3

e + 6Y 3
q − 3Y 3

u − 3Y 3
d = 0 . (18.144)

We can obtain further constraints on the weak hypercharges by demanding
that the left- and right-chiral components of a fermion must have the same
electric charge. Since the electric charge is a linear combination of the two
neutral generators of the electroweak group, we can write a relation of the
form

aQ = T3 + bY , (18.145)

where a and b are constants. As emphasized after Eq. (16.18, p 465), we can
take a = b = 1 by using the multiplicative arbitrariness in defining U(1)
quantum numbers. Using this, we obtain the relations

Yq = Yu −
1

2
= Yd +

1

2
, Yl = Ye +

1

2
. (18.146)

Eq. (18.142) becomes redundant in the light of these equations. The five
relations in Eqs. (18.143), (18.144) and (18.146) have the solutions for the
weak hypercharges that exactly coincide with the values given for the standard
model in Eqs. (16.40) and (17.1). We have thus shown that all gauge currents
in the standard model are anomaly free, and that the charges of the particles
are unique once the choice a = b = 1 is made in Eq. (18.145).
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18.4.5 Non-anomalous global symmetry

In §18.1, we mentioned that baryon number is an accidental global symmetry
of the standard model. So are the generational lepton numbers. Now that we
have learned about anomalies, let us check whether these statements are true.

Let us take the case of baryon number first. We can consider triangle
diagrams where one vertex couples like the baryon number. If the other two
vertices are QCD vertices, the corresponding anomaly co-efficient must vanish,
since there will be no chiral coupling in such diagrams. Let look at the case
where the other two vertices couple to SU(2) currents, e.g., with T3. The
anomaly co-efficient for a single generation of fermions will be

Tr
(
BT 2

3

)
= 3× 2× 1

3
× 1

4
=

1

2
. (18.147)

The factor 3 comes from the number of colors, the factor 2 comes from two
different flavors, and then 1

3 is the value of B for any of the quarks, and
1
4 is the value of T 2

3 for a quark of any color or flavor. The bottom line is
that baryon number has a non-vanishing anomaly co-efficient with the gauge
currents, and its current therefore has a non-vanishing divergence. The same
is true for the lepton number current.

2 Exercise 18.16 Show that, for fermions from a single generation,

Tr

„

LT 2
3

«

=
1

2
, (18.148)

where L stands for lepton number.

2 Exercise 18.17 Calculate the anomaly co-efficients for baryon num-
ber and lepton number with two U(1)Y currents.

Strictly speaking, then, baryon number and lepton number are not global
symmetries of the standard model. They are violated by the anomaly. How-
ever, this is the only source of violation of baryon number and lepton number.
The Lagrangian, being a local object, i.e., being a function of fields and their
derivatives at a given spacetime point, does not have the information of this
violation. Hence the Feynman rules derived from the Lagrangian will not have
this information either, so perturbative calculations will never reveal any ef-
fect of this violation. Only non-perturbative effects such as instantons can
violate baryon number and lepton number. But Eqs. (18.147) and (18.148)
also show that the anomaly co-efficients vanish for the combination B − L.
This is therefore a non-anomalous symmetry.
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Bosons of standard model

The electroweak sector of the standard model has four gauge bosons: W+,
W−, Z and the photon. In addition, the symmetry breaking mechanism
leaves a neutral scalar as a physical state, which is called the Higgs boson. In
earlier chapters, we have discussed only processes where these bosons appear
as intermediate virtual particles. But they can also occur in the initial or final
state of a physical process. In this chapter, we discuss some processes of this
kind.

19.1 Interactions among bosons

The standard model Lagrangian has many terms which signify interactions
involving the gauge bosons and the spinless bosons. Here, “spinless bosons”
mean the physical Higgs boson, as well as the unphysical degrees of freedom
that vanish in the unitary gauge but can be present as internal lines in general
gauges. In this section, we examine these interactions.

19.1.1 Self-interaction among gauge bosons

One of the most distinguishing features of non-abelian gauge theories is the
self-coupling of gauge bosons. In Ch. 11, we derived the general rules for
cubic and quartic couplings of gauge bosons in a general gauge theory. Such
couplings exist in the standard electroweak model because of the SU(2) factor
in its gauge group. Instead of taking the real fields W 1

µ , W 2
µ and W 3

µ , we take
the SU(2) gauge bosons in the form of W±

µ which were defined in Eq. (16.15,
p 464), and denote W 3

µ by W 0
µ . The generators associated with W±

µ and W 0
µ

are T± and T0, where, in terms of the hermitian generators T1,2,3,

T± =
1√
2

(T1 ± iT2) , T0 ≡ T3 . (19.1)

The commutation relations between these generators are:

[T+, T−] = T0 , [T0, T±] = ±T± . (19.2)

558
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W
+
µ
(p

) W −
ν (q)

W
0λ
(r)

Feynman rule:

−ig
[
(pνgµλ − pλgµν) + (qλgνµ − qµgνλ)

+ (rµgλν − rνgλµ)
]

= ig
[
(pλ − qλ)gµν + (qµ − rµ)gνλ + (rν − pν)gλµ

]

Figure 19.1: The only basic cubic interaction of gauge bosons in the electroweak
sector of the standard model. The momentum associated with each leg is given in the
parentheses.

This means that the non-zero structure constants of the SU(2) group, with
this choice of generators, are

f+−0 = −i , f0++ = −i , f0−− = i , (19.3)

and the relations obtained by using the antisymmetry of the first two indices.

2 Exercise 19.1 Verify that the structure constants of the SU(2) group
given in Eq. (19.3) satisfy the symmetry relations given in Eq. (11.53,
p 308).

Armed with the structure constants, we now find the gauge boson cou-
plings. The cubic interaction among gauge bosons in a general non-abelian
gauge theory was given in Eq. (11.74, p 312). Letting the gauge indices take the
‘values’ +, − and 0, and putting in the structure constants from Eq. (19.3),
we obtain the cubic gauge interaction terms for the SU(2) group as follows:

Lcubic = −ig
[
Wα

+W
β
−∂[αW

0
β] +Wα

0 W
β
+∂[αW

−
β] −W

α
0 W

β
−∂[αW

+
β]

]
,

(19.4)

where we have used a shorthand notation

∂[αVβ] ≡ ∂αVβ − ∂βVα . (19.5)

The Feynman rule for the cubic vertex can be read from Eq. (19.4), or directly
from Fig. 11.2 (p 313). This is shown in Fig. 19.1.

To interpret the Feynman rule in terms of physical bosons, we need to
recall that W 0

µ is not an eigenstate of the Hamiltonian. The eigenstates are
the photon and the Zµ, and the relation is

W 0
µ = cos θW Zµ + sin θW Aµ . (19.6)

Thus, the Feynman rule for the WWZ vertex will have an extra factor of
cos θW in it, whereas the WW -photon vertex will have an extra factor of
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W+
µ W+

ν

W−
λ

W−
ρ

Feynman rule:

−ig2
[
Eµλρν − Eµρνλ

]

= ig2
[
2gµνgλρ − gµλgνρ − gµρgνλ

]

W+
µ W−

ν

W 0
λW 0

ρ
Feynman rule:

ig2
[
Eµλρν − Eµρνλ

]

= −ig2
[
2gµνgλρ − gµλgνρ − gµρgνλ

]

Figure 19.2: Feynman rules for quartic interactions of gauge bosons in the standard
electroweak model. The tensor E with four indices has been defined in Eq. (11.71,
p 311).

sin θW . Recalling the relation g sin θW = e which was shown in Eq. (16.28,
p 466), we can also say that for the vertex involving the photon, the factor g
appearing in Fig. 19.1 will have to be replaced by e.

We now talk about quartic couplings. The SU(2) gauge group can have two
kinds of quartic couplings: a coupling with W+W+W−W− at a vertex, and
another type with W+W−W 0W 0. There can be only one more combination
of SU(2) gauge bosons that would conserve electric charge at the vertex, viz.,
W 0W 0W 0W 0. But a look at the general vertex given in Fig. 11.1 (p 312)

quickly confirms that a quartic vertex cannot be built from four copies of the
same gauge boson: the associated structure constants of the group vanish.

The Feynman rule for the coupling of four charged gauge bosons can be
easily read from the general form of the quartic coupling given in Fig. 11.1
(p 312) and putting in the proper structure constants. Of course it has to
be remembered, as for the case of cubic couplings, that W 0 is not a physi-
cal boson. The W+W−W 0W 0 coupling shown in Fig. 19.2 therefore entails
three kinds of quartic vertices involving neutral gauge bosons: W+W−ZZ,
W+W−ZA and W+W−AA. Along with the usual factor of g2 that appears
in the Feynman rule of quartic couplings, there will be an extra factor of
cos θW for each Z boson in the vertex and a factor of sin θW for each photon
in the vertex. The Feynman rules have been given with these explicit factors
in Appendix H, and are not repeated here.

There is an interesting point about the WW -photon coupling that is worth
mentioning here. In Ch. 5, we derived photon couplings with any other field
by the method of minimal substitution, i.e., by taking the free Lagrangian of
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this other field and replacing the ordinary derivatives in that Lagrangian by
the gauge covariant derivative

Dµ = ∂µ + ieQAµ , (19.7)

where eQ is the charge of the particle involved. For fermion fields, this method
gave us the trilinear coupling of QED, shown in Eq. (5.17, p 116). For charged
scalar fields, we got both trilinear and quadrilinear couplings, as shown in
Fig. 5.7 (p 135).

Let us see what we would have obtained if we had followed the same
procedure for the W bosons. The free Lagrangian for the W bosons is given
by

Lfree = −1

2
(∂µW

+
ν − ∂νW

+
µ )(∂µW ν

− − ∂νWµ
−)

= −(gαµgβν − gανgβµ)(∂µW
+
ν )(∂αW

−
β ) . (19.8)

The procedure of minimal substitution would yield

Lms = −(gαµgβν − gανgβµ)
(

(∂µ + ieAµ)W+
ν

)(
(∂α − ieAα)W−

β

)
. (19.9)

The quartic interaction term present in Eq. (19.9) is

Lms4 = −e2(gµνgλρ − gνλgµρ)AµAνW
+
λ W

−
ρ

= −1

2
e2(2gµνgλρ − gνλgµρ − gµλgνρ)AµAνW

+
λ W

−
ρ , (19.10)

where in the last step we have taken the factors of the metric tensors to
be symmetric in the exchange of the indices µ and ν since the expression
multiplies AµAν . This interaction is the same as that obtained in the pure
gauge Lagrangian of the Yang-Mills theory.

This is not the case for the cubic couplings involving the photon. Eq.
(19.9) contains the following cubic terms:

Lms3 = −ie(gαµgβν − gανgβµ)
[
AµW

+
ν (∂αW

−
β )− (∂µW

+
ν )AαW

−
β

]
.

(19.11)

Certainly these terms are contained in Eq. (19.4), but that equation contains
the extra cubic terms

−ieWα
+W

β
−Fαβ , (19.12)

where Fαβ is the field-strength tensor for electromagnetism. It therefore has
to be remembered that the electromagnetic interactions of the W bosons
cannot be obtained from the prescription of minimal substitution. The terms
obtained from minimal substitution have to be augmented by the term shown
in Eq. (19.12) in order to obtain the photon interactions that come out of the
pure gauge Lagrangian of the standard model.
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In passing, we want to note that a coupling of the form shown in Eq. (19.12) gives a magnetic
moment of the charged vector boson. This can be inferred from the analogy with the case of
fermions, where we saw that an effective interaction of the form ψσµνψFµν indicates a coupling
of the spin to the magnetic field. If we put in the matrix indices to make the pattern more
explicit, we would see that this effective interaction is of the form

(ψ)a(σµν)ab(ψ)bF
µν , (19.13)

where a, b are matrix indices. If we mimic the same thing for vector bosons, we should substitute
σµν ’s by the generators of the Lorentz group in the vector representation, i.e., should write

W+
λ (Sµν)λρW−

ρ Fµν , (19.14)

because this would reduce to the interaction S · B in the non-relativistic limit. Using the form
of these matrices given in Eq. (3.57, p 54), one easily obtains the form given in Eq. (19.12).

19.1.2 Self-interaction among scalars

The scalar potential of the standard model was given in Eq. (16.5, p 463).
In the Lagrangian, the potential comes with a negative sign. Apart from a
constant that is not important, this part of the Lagrangian can be written as

Lsc = −λ(φ†φ− v2/2)2 . (19.15)

The quantum fields in the multiplet can be represented in the form

φ =

(
w+

1√
2 (v +H + iz)

)
, (19.16)

as shown in Eq. (16.32, p 467). Putting this in, we obtain

Lsc = −λ
[
w+w− +

1

2
(2vH +H2 + z2)

]2
. (19.17)

The only mass term is −λv2H2, which means

M2
H = 2λv2 . (19.18)

We can, therefore, use M2
H instead of λ as the independent parameter in the

scalar potential. The VEV of the Higgs multiplet, v, can also be exchanged
in favor of the W boson mass, which is

MW =
1

2
gv (19.19)

as shown in Eq. (16.16, p 464). Thus, the scalar potential terms in the La-
grangian can be written as

Lsc = −g
2M2

H

8M2
W

[
w+w− +

2MW

g
H +

1

2
H2 +

1

2
z2

]2
. (19.20)

All cubic couplings present in this expression have at least one leg of the
physical Higgs boson H . There is no coupling such as the zzz or the w+w−z.
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w
+ w −

H

Feynman rule:

− igM2
H

2MW

z z

H

Feynman rule:

− igM
2
H

2MW

H
H

H

Feynman rule:

− 3igM2
H

2MW

Figure 19.3: Feynman rules for cubic interactions of fundamental scalars in the
standard model.

Three kinds of cubic vertices are present in the expression: w+w−H , zzH and
HHH . The corresponding Feynman rules are shown in Fig. 19.3 and repeated
in Appendix H. Note that the Feynman rule for the zzH vertex contains not
only the numerical co-efficient of zzH in Eq. (19.20) but also an extra factor
of 2! = 2 because of the two identical field operators z. Similarly, there is an
extra factor of 3! = 6 in the Feynman rule for the HHH vertex.

The quartic couplings involve the squares of the three quadratic terms in
Eq. (19.20), and their products of one with another. The Feynman rules for
these vertices are given in Appendix H, and are not repeated here.

19.1.3 Gauge-scalar interactions

All interactions involving gauge fields and scalar fields come from the covariant
derivative term of the scalar doublet. Using the representation matrices of the
doublet representation of SU(2) as well as the value of the weak isospin, the
covariant derivative acting on the multiplet φ, given in Eq. (16.4, p 463), can
be written as

−iDµφ = −i∂µφ+
1

2

(
gW 0

µ + g′Bµ
√

2gW+
µ

√
2gW−

µ −gW 0
µ + g′Bµ

)
φ , (19.21)

where W 0
µ is the neutral gauge boson of SU(2), written as W 3

µ in Ch. 16. We
can replace W 0

µ and Bµ by the eigenstates Zµ and Aµ through the defining
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relations in Eqs. (16.22) and (16.24). Then we obtain
∣∣∣Dµφ

∣∣∣
2

=

∣∣∣∣− i∂µw
+ + (

g cos 2θW

2 cos θW
Zµ + eAµ)w+

+
(
MW +

g

2
(H + iz)

)
W+

µ

∣∣∣∣
2

+
1

2

∣∣∣∣(−i∂µH + ∂µz) + gw+W−
µ

−
(
MZ +

g

2 cos θW
(H + iz)

)
Zµ

∣∣∣∣
2

. (19.22)

There are many kinds of terms in this expression. First, we see that there
are the mass terms of the W and the Z bosons, which we identified earlier in
§16.3. Then there are terms which contain one gauge boson and the derivative
of one scalar field. These are the pathological terms which we first encountered
in §15.4: they clutter the interpretation of particle states and are removed by
gauge fixing. The rest of the terms are interactions. There are cubic and
quartic vertices.

Let us take a look first at the terms involving the photon field. There
are quartic terms involving the w+, i.e., w+w−AµA

µ, and the co-efficient
of this term is exactly what one would expect from scalar electrodynamics
involving the field w+. There are also cubic vertices involving w+w−A, and
those couplings are also exactly what one would expect from scalar QED. But
then we notice that there are also interaction terms like

eMWAµw+W−
µ + h.c. (19.23)

The Feynman rule of the resulting vertex is shown in Fig. 19.4.
Such terms, involving two gauge bosons and one scalar field, were not

discussed in Ch. 11. The reason is that they do not exist unless the theory
is spontaneously broken, as the presence of the factor MW indicates in no
uncertain terms. There are such terms involving other pairs of gauge bosons,
as we will see shortly.

The term in Eq. (19.23) is perplexing from another point of view. In
earlier chapters, on many occasions we have made the comment that the
photon cannot change one particle to another. And now, here we see that a
W boson can become a w line through the emission or absorption of a photon.
The two statements are reconciled when we recall that the fields w± are not
physical, and that they can be removed from the Lagrangian by a suitable
choice of the gauge, as described in §15.4.4.

The cubic couplings involving the W and the Z bosons can also be read
from Eq. (19.22), and they look very similar to the photon coupling, except for
an overall multiplicative factor. There are also trilinear couplings involving
the physical Higgs boson H , all of which are shown in Fig. 19.4. Note the
absentee list: there is no coupling of this kind involving the z, the unphysical
neutral Higgs boson.
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w
+

W −
µ

Aν

Feynman rule:

ieMWgµν

w
+

W −
µ

Zν

Feynman rule:

− igMZ sin2 θW gµν

H
W −

µ

W+
ν

Feynman rule:

igMWgµν

H
Z
µ

Zν

Feynman rule:

ig
MZ

cos θW
gµν

Figure 19.4: Feynman rules for vertices involving two gauge bosons and one scalar
boson.

In the category of quartic couplings involving two gauge bosons, there is
no absentee. The combinations w+w−, zz and HH appear in all possible
combinations that conserve electric charge. The Feynman rules for these
vertices are easily readable from Eq. (19.22) and are given in Appendix H.
We don’t repeat them here.

2 Exercise 19.2 Starting from the Lagrangian terms given in Eq.
(19.22), derive the Feynman rules shown in Fig. 19.4.

19.2 Decay of gauge bosons

The W and the Z bosons, being massive, can decay into lighter particles. In
particular, their coupling to fermions can induce decays into two fermions.
For example, we can have

W+ → e+ + νe (19.24)

or

Z → e+ + e− . (19.25)

To obtain the decay rates of such processes, we notice that the fermion inter-
actions with gauge bosons are generically of the form

Lint = −f1γ
µ(a− bγ5)f2Vµ , (19.26)

where V represents either the W or the Z, and the fermions f1 and f2 might
be the same field or two different fields. In the case of W interactions, the
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two fermion fields must be different since they have to have different electric
charges.

In the generic notation of Eq. (19.26), the gauge boson V decays as

V (k)→ f1(p1) + f̂2(p2) , (19.27)

where we have denoted the notations that we are going to adopt for the
momenta of the different particles. The amplitude is given by

M = −u1(p1)γµ(a− bγ5)v2(p2)ǫµ(k) , (19.28)

where ǫµ(k) denotes the polarization vector for the gauge boson. This gives

|M |2 =
1

3


∑

pol

ǫµ(k)ǫ∗ν(k)


Tr

[
p/1γ

µ(a− bγ5)p/2γ
ν(a− bγ5)

]
. (19.29)

Note that we are neglecting fermion masses. Also note that the averaging
over initial state polarizations imply division by 3, since the massive vector
boson has three independent polarization states.

We now use the polarization sum from Eq. (4.41, p 69) and evaluate the
traces of the Dirac matrices. Note that the terms proportional to ab do not
contribute to this result because they are antisymmetric in the Lorentz indices,
whereas the polarization sum is symmetric. So we obtain

|M |2 =
4

3
(a2 + b2)

(
− gµν +

kµkν

M2

)[
pµ
1p

ν
2 + pν

1p
µ
2 − gµνp1 · p2

]

=
4

3
(a2 + b2)

[
p1 · p2 +

2k · p1 k · p2

M2

]
. (19.30)

Kinematical equations imply k · p1 = k · p2 = p1 · p2 = 1
2M

2, so that

|M |2 =
4

3
(a2 + b2)M2 . (19.31)

The decay rate of the vector boson can now be written by using Eq. (4.168,
p 97):

Γ =
M

12π
(a2 + b2) . (19.32)

To get a feel for the numerical values, consider the decay of the W+ boson
into a charged antilepton, ℓ+, and the associated neutrino, νℓ. In this case

a = b =
g

2
√

2
. (19.33)

Using Eq. (16.28, p 466), we can write

Γ(W+ → ℓ+νℓ) =
g2MW

48π
=

αMW

12 sin2 θW

. (19.34)



§19.2. Decay of gauge bosons 567

Experimentally, the total decay width of the W boson is obtained to be

Γtot(W ) = (2.141± 0.041) GeV , (19.35)

and the branching ratio to the e+νe mode, for example, is

B(W+ → e+νe) = 10.75%. (19.36)

Combining the two pieces of data, we obtain

Γ(W+ → e+νe) = 230 MeV. (19.37)

If we use the experimentally measured mass of the W boson, MW = 80.4 GeV,
and the value sin2 θW = 0.23 obtained from neutrino scattering experiments,
Eq. (19.34) gives a decay rate of 211 MeV if we use the low energy value
α = 1/137. However, the important point to notice here is that the low
energy value should not be used. As explained in §12.2, the couplings depend
on the momentum scale of the interaction. In this case, we should use the
value of α at a scale equal to the W mass. As mentioned in Ex. 12.2 (p 332),
this value is close to about 1/128. If we use this value, we obtain the decay
rate to be about 228 MeV, in excellent agreement with experimental results.

For the Z boson decay, Eq. (19.32) is still applicable, only the values of a
and b are different. Looking back at Eq. (16.38, p 470), we find

a =
g

2 cos θW

(
T3L − 2Q sin2 θW

)
, b =

g

2 cos θW
T3L , (19.38)

where T3L is the value of the diagonal generator of weak isospin for the left-
chiral projection of the particle. The right-chiral fields, as we have seen, are
all singlets under weak isospin in the standard model.

It is to be noted that the decay rate is very sensitive to the properties
of the final particle-antiparticle pair. For example, for the charged leptons,
T3L = − 1

2 and Q = −1, so a turns out to be very small. The branching ratio
of the Z to ℓ+ℓ− pairs comes out to be very low, about 3.3% for each charged
lepton. For the quarks, the branching ratios are much larger because a and
b are both appreciable. For example, the branching ratios to bb̂ and cĉ pairs
are about 15.6% and 12.0% respectively.

2 Exercise 19.3 Show that the relative branching ratios of Z boson de-
cay to ℓ+ℓ−, cbc and bbb channels are consistent with the formulas given
in Eqs. (19.32) and (19.38).

2 Exercise 19.4 Calculate the decay rate for the process Z → νbν. Take
sin2 θW = 0.23 and neglect neutrino mass. Put in MZ = 91.2 GeV and
verify that the rate comes out to be 165MeV.

2 Exercise 19.5 � Why can’t a Z boson decay into two photons?

The Z boson can be produced as a resonance in e+e− collisions, and the
width of the resonance has been found to be

Γtot(Z) = (2.4952± 0.0023) GeV . (19.39)
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′ )

Z
,γ
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Figure 19.5: Tree-level diagrams forW+W− elastic scattering in the standard model.

The decay rates to the charged leptons and quarks account only for about
80% of this width. The remaining 20% of the width must come from Z
boson decays to νν̂ pairs. Indeed, with three neutrinos each contributing to
165 MeV of width, one can account for the remaining decay width with very
good accuracy.

19.3 Scattering of gauge bosons

In a U(1) gauge theory such as QED, the gauge boson does not have any
self-interaction. Thus, it can interact only through loop effects, and such in-
teractions are therefore very much suppressed. A photon-photon scattering
can take place through a 1-loop diagram involving four vertices, and the ampli-
tude is therefore of order e4, or the cross-section of order α4. For non-abelian
gauge bosons, this is not the case, Even at tree level they can interact, yield-
ing an amplitude that is O

(
g2
)

where g is the gauge coupling constant. For
example, tree-level diagrams of W+W− elastic scattering have been shown in
Fig. 19.5.

The Feynman amplitude of the scattering process can be written as

M = ǫµ(p)ǫν(q)ǫ∗λ(p′)ǫ∗ρ(q′)M µνλρ , (19.40)
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where ǫµ(p), for example, is the polarization vector of the incoming W+ boson
with momentum p. The contribution to M µνλρ is different from different
diagrams. The diagram containing the quartic coupling gives

M µνλρ
(a) = g2(2gµρgλν − gµλgνρ − gµνgρλ) . (19.41)

The diagrams with intermediate photon line give the following contribu-
tions to Mµνλρ:

M µνλρ
(bγ) = −e

2gαβ

s

[
(p− q)αgµν − (q + 2p)νgαµ + (p+ 2q)µgνα

]

×
[
(−p′ + q′)βgλρ + (q′ + 2p′)ρgβλ + (−p′ − 2q′)λgρβ

]

M µνλρ
(cγ) = −e

2gαβ

t

[
(p+ p′)αgµλ + (p′ − 2p)λgαµ + (p− 2p′)µgλα

]

×
[
(q + q′)βgνρ + (q′ − 2q)ρgβν + (q − 2q′)νgρβ

]
, (19.42)

where s is one of the Mandelstam variables. Contributions from the Z-
mediated diagrams are similar: only that e has to be replaced by g cos θW ,
and the propagator denominator will contain the Z boson mass, i.e., s and t in
the denominators have to be replaced by (s−M2

Z) and (t−M2
Z) respectively

in the ’t Hooft–Feynman gauge. The diagrams mediated by the Higgs boson
H will be discussed shortly.

2 Exercise 19.6 We have used the Z propagators in the ’t Hooft–
Feynman gauge. In a general Rξ gauge, there will be more terms
in the propagator. Check that these terms do not contribute to the
amplitude.

In order to obtain the cross-section for completely unpolarized W bosons,
one has to average over initial polarization states and sum over final polariza-
tion states, as we have done many times for fermion spins. There is however
one aspect of this scattering that has to be specially mentioned. Since this
aspect pertains to the longitudinal polarization states, we might as well con-
sider the case where all the W bosons in initial as well as in final states are
longitudinally polarized.

The longitudinal polarization vectors have been mentioned in Eq. (4.40,
p 69). If we are considering scattering at energies much higher compared to
the mass of a massive vector boson, the energy can be taken to be equal to
the magnitude of 3-momentum and we can write

ǫµl (k) ≈ kµ

M
. (19.43)

If we put this form into Eq. (19.40), the resulting expression looks problematic
at the first sight. For example, consider the contribution of the quartic vertex
to the Feynman amplitude. It is

M(a) =
g2

4M4
W

(
2u2 − s2 − t2

)
, (19.44)
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where we have used the Mandelstam variables, with

s = (p+ q)2, t = (p− p′)2, u = (p− q′)2 . (19.45)

If we calculate the contribution of this term alone to the cross-section, we will
find a contribution that goes like g4s3/M8

W . In §14.8, we discussed that such
behavior causes problem with partial wave unitarity, since it is clear that only
very few partial waves contribute to this scattering.

Fortunately, there is nothing to worry about. Although individual terms
show this troublesome behavior, the potentially offending terms all cancel
when we sum them up. In fact, in this approximation where the gauge boson
masses are completely neglected everywhere except in the denominator of the
polarization vector, we find

M(bγ+bZ) =
g2

4M4
W

(t2 − u2) ,

M(cγ+cZ) =
g2

4M4
W

(s2 − u2) . (19.46)

The sum of these two contributions cancels M(a). Thus we have shown that
there is no term in the amplitude which goes like 1/M4

W and violates partial
wave unitarity constraint.

The Higgs boson-mediated diagrams have been kept out of this argument
because the WWH coupling is proportional to MW , as can be seen from
Fig. 19.4 (p 565). With two such couplings and the factors of 1/MW from
each polarization vector, the Higgs-mediated diagrams have at best an overall
factor of 1/M2

W . Of course, if the total amplitude contains a term with M2
W

in the denominator, the cross-section will contain a contribution that goes
like g4s/M4

W . This will also violate the partial wave unitarity constraint.
Therefore, if the theory has to make sense, these terms need to cancel as
well. Checking this cancellation is however a much more complex task. There
are many terms. The form of the longitudinal polarization vector given in
Eq. (19.43) should now be modified to include corrections; the Mandelstam
variables contain W mass terms; and even in propagators we should write

1

s−M2
Z

≈ 1

s
+
M2

Z

s2
+ . . . (19.47)

and use the relation MW = MZ cos θW . Finally, after all these operations,
it is found that the 1/M2

W term does not cancel in the amplitude, but its
co-efficient does not grow with energy either. In fact, the co-efficient is pro-
portional to M2

H . We will discuss these terms in §19.4.

19.4 Equivalence theorem

It is to be noted that in §19.3, we have not really calculated the cross-section
for the cross-section of longitudinally polarized W+-W− scattering. We have
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only indicated some features of the result at high energies. The calculation
itself is complicated, as the expressions for different contributions to the Feyn-
man amplitude suggest.

Fortunately, there is an easy way out. At energies much higher than the
masses, any amplitude involving longitudinally polarized gauge bosons can be
obtained by substituting the external gauge boson lines by the corresponding
unphysical Higgs boson and using the couplings of these would-be Goldstone
modes to calculate the diagrams. This statement is called the equivalence
theorem.

Let us use this theorem to calculate the cross-section of W+-W− scatter-
ing with longitudinally polarized W bosons. The diagrams are obtained by
replacing the external W± lines with w± lines, and are not shown here. Using
the Feynman rules given earlier in this chapter and in Appendix H, we obtain

iM ′
(a) = − ig2M2

H

2M2
W

,

iM ′
(bH) =

(−igM2
H

2MW

)2
i

s−M2
H

iM ′
(cH) =

(−igM2
H

2MW

)2
i

t−M2
H

. (19.48)

Addition of these contributions gives

M ′
(a+bH+cH) = −g

2M2
H

4M2
W

[
s

s−M2
H

+
t

t−M2
H

]
. (19.49)

These are the only terms with MW in the denominator. Thus, we already see
the simplification in relation to working with the gauge bosons themselves: the
1/M4

W terms, which canceled between different diagrams of Fig. 19.5 (p 568),
do not appear in this procedure at all.

We are still left with the photon and the Z boson-mediated diagrams.
These contributions are easily calculated, yielding

M ′
(bZ+cZ) = −

(
g cos 2θW

2 cos θW

)2 [
(p− k) · (p′ − k′)

s−M2
Z

+
(p+ p′) · (k + k′)

t−M2
Z

]

= −
(
g cos 2θW

2 cos θW

)2 [
u− t

s−M2
Z

+
s− u

t−M2
Z

]
,

M ′
(bγ+cγ) = −e2

[
u− t

s
+

s− u

t

]
. (19.50)

All these terms are obtained even if we use the W bosons in the outer legs.
In addition, some other terms also appear, but they all vanish in the limit
M2

W /s→ 0. This is a demonstration of the equivalence theorem.

Right when we introduced the idea of the Higgs mechanism in Ch. 15, we said that in a sponta-
neously broken gauge theory, the unphysical Higgs modes are ‘unphysical’ as the name suggests,
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and they cannot appear as external lines of any diagram. One might wonder whether the algo-
rithm of the equivalence theorem is insane because it clearly advises us to use the unphysical
Higgs modes as external legs. However, there is really no problem. The point is that the equiv-
alence is obtained only in the limit MW → 0. Since MW = 1

2
gv, one can think of approaching

this limit in two different ways: as g → 0 or as v → 0. If we consider the g → 0 limit, the theory
is not a gauge theory at all. It only has global symmetries. Symmetry breaking in this case
would produce real Goldstone bosons, as discussed in §15.1. Therefore, the procedure makes
sense. On the other hand, if we consider the limit v → 0, there is a gauge symmetry but it
remains unbroken. So, even this limit makes sense because the gauge bosons do not eat up any
scalar degrees of freedom, and all scalar modes remain physical.

2 Exercise 19.7 For the process WZ → WZ involving longitudinally po-
larized W and Z bosons, use the equivalence theorem to find the terms
in the amplitude that contain the factor M2

H/M
2
W .

Why does the equivalence theorem work? Notice that the theorem pre-
scribes replacement of longitudinally polarized gauge boson by the correspond-
ing unphysical Higgs only on the external lines. The propagators and other
factors coming from internal lines would be the same in both ways of evalu-
ating the amplitude. If we use the gauge bosons on the external lines, there
would be a factor of ǫµl in the amplitude, because of the Feynman rule for
external vector boson lines. In Eq. (19.43), we showed that this factor is
roughly equal to kµ/M , where kµ is the 4-momentum and M is the mass
of the gauge boson, provided the energy is much larger than M . Obviously,
this factor would be absent if we work with the alternative formulation where
the would-be Goldstone mode is considered to be the external line. Thus, the
amplitude calculated in two ways can be equal only if the same factors appear
in the other formalism for some other reason.

The only other difference between the two diagrams would be in the vertex
where this external line meets other parts of the Feynman diagram. If we use
gauge boson in the external line, we will have to use the gauge couplings.
With an unphysical Higgs boson on the external line, we need to use its
couplings. However, recall from the discussion of §17.4, and in particular from
Eq. (17.30, p 490), that the latter coupling is precisely kµ/M times the gauge
couplings. Thus, in the regime where the longitudinal polarization vector can
be written as kµ/M , the gauge boson diagrams would give the same results
as the diagrams with the unphysical Higgs bosons in the external lines.

2 Exercise 19.8 Earlier in this chapter, we have derived the Feynman
rule for the WWZ coupling. Use it, and the diagram of Fig. 19.5
(p 568) with Z and z intermediate lines. Writing the propagators in the
Rξ gauge, show that the WWz coupling vanishes from the requirement
that the amplitude is independent of ξ.

2 Exercise 19.9 Consider the process We → Aνe where A is a photon.
Draw the tree-level diagrams of this process mediated by the W boson
and the unphysical Higgs boson w. Take the WW -photon coupling
from the discussion of §19.1. Work in the Rξ-gauge and find the
Ww-photon coupling from the fact that the amplitude should be inde-
pendent of ξ. Check that your final result agrees with the expression
given in Fig. 19.4 (p 565).
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19.5 Custodial symmetry

In describing the phenomenon of spontaneous symmetry breaking in the stan-
dard electroweak theory, we said that the gauge symmetry SU(2)L × U(1)Y
breaks down to U(1), the latter being the symmetry of QED. This statement
does not seem to be an accurate description of the symmetry breaking phe-
nomenon if we look only at the scalar potential which is responsible for spon-
taneous symmetry breaking. The reason is that this part of the Lagrangian
possesses symmetry that is larger than the gauge symmetry. In other words,
the scalar potential has some accidental symmetry.

To appreciate the point, we recall that the potential, as shown in Eq. (16.5,
p 463), is a function of φ†φ. Here φ is a doublet of the SU(2) part of the gauge
group, i.e., it has two components. We can write the doublet in the form

φ ≡
(
a1 + ib1
a2 + ib2

)
, (19.51)

where a1, a2, b1, b2 are real fields. Then,

φ†φ = a2
1 + a2

2 + b21 + b22 . (19.52)

Since the potential is a function of this expression, the potential remains
unaffected by any orthogonal transformation involving the variables a1, a2,
b1, b2. In other words, the potential is invariant under rotations in this four-
parameter space, and therefore has an O(4) symmetry. Using very similar
steps that we had used in §3.6 to show that the proper Lorentz group, SO(3,1),
is equivalent to SU(2)×SU(2), we can show that SO(4) symmetry is equivalent
to an SU(2)×SU(2) symmetry. Obviously, this is bigger than the SU(2)×U(1)
gauge symmetry that we wanted to implement, implying that we have some
accidental symmetry in the potential.

So far, we have been talking about the symmetry in the unbroken phase,
i.e., when the doublet φ has no VEV. Let us now shift our attention to the
situation where φ has a VEV. As discussed earlier, the VEV can be taken
in any one direction in this four-parameter space. If we take 〈a2〉 6= 0 as we
did in Ch. 16, the O(4) symmetry is broken. The direction of a2 has been
singled out. The remaining three directions however still remain equivalent,
which means that there is an unbroken O(3) symmetry. Again, SO(3) is the
same as SU(2) so far as the group algebra is concerned, so we can describe
the symmetry breaking process as

SU(2)× SU(2)→ SU(2). (19.53)

This left-over symmetry is called custodial symmetry.
What would be the physical implication of this custodial symmetry? It

would mean that the quanta of the fields a1, b1 and b2 would be degenerate.
If we have only the scalar fields in the theory, this would be a trivial state-
ment because the symmetry would have been global, and the aforementioned
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particles would have been the Goldstone bosons of the symmetry breaking
process. Obviously, they would be degenerate, because they are all massless.

When we introduce the gauge bosons and talk about a gauge theory, there
are non-trivial ramifications of the custodial symmetry. These ramifications
are clear and dramatic if we consider a doublet of scalar fields, and put it in
a gauge theory with a gauge symmetry SU(2). The scalar potential would
have the same form even in this case, and all arguments given earlier in this
section would hold. The three scalar fields a1, b1 and b2 would transform like
a triplet of the custodial SU(2) symmetry in the scalar potential. Because it
is unbroken in the scalar potential, the mass terms for these three fields would
be the same for any choice of the gauge-fixing term. Accordingly, the gauge
bosons that eat them up would also have equal masses after the symmetry
breaking, owing to the custodial SU(2) symmetry.

2 Exercise 19.10 Take an SU(2) gauge theory, along with a doublet of
scalar field. If the doublet develops a VEV, show that all three gauge
bosons acquire equal masses.

Now consider what would happen if the gauge symmetry were SU(2) ×
U(1). First consider the limit in which g′, the coupling constant of the U(1)
part of the gauge group, is vanishingly small. In this case, there is really no
U(1) gauge symmetry, and the custodial symmetry would guarantee that the
three gauge bosons of the SU(2) part of the gauge group are degenerate after
the doublet of scalars develop a VEV. In particular, this will be the mass of
the charged gauge bosons, so we call this contribution to the mass-squared
values by M2

W . In the limit g′ → 0, this will also be the mass of the neutral
gauge boson belonging to the SU(2) part of the gauge group.

We now want to consider the effects of the fact that g′ is non-zero in the
real world. In the W 0

µ -Bµ basis, the mass matrix of the neutral gauge bosons
must be of the form

(
M2

W M ′2

M ′2 M2
B

)
(19.54)

for some M ′ and MB. The upper left element, the direct mass contribution
for the W 0 boson, would be equal to the mass of the charged W bosons
because of the custodial symmetry. The two off-diagonal elements would be
equal because the mass matrix should be hermitian. Diagonalization of this
matrix would give one massless gauge boson, viz., the photon, which implies
that the determinant of the matrix is zero, i.e., M2

B = M ′4/M2
W . Further,

if we define the photon through Eq. (16.24, p 466), i.e., define the Weinberg
angle by saying that the photon is a superposition of W 0 and B with the
relative weights sin θW and cos θW , then that implies that, in Eq. (19.54), one
should have M2

W /M ′2 = − cot θW . Utilizing these relations, we can rewrite
the matrix of Eq. (16.24, p 466) in the form

(
M2

W −M2
W tan θW

−M2
W tan θW M2

W tan2 θW

)
. (19.55)
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The square of the Z boson mass would be the only non-zero eigenvalue of this
matrix, i.e., M2

Z = M2
W (1 + tan2 θW ), or

M2
W = M2

Z cos2 θW . (19.56)

This relation between the masses of the W boson and the Z boson was
first encountered in Eq. (16.29, p 467), where it was derived as a tree-level
relation. We now see that the relation is a consequence of the custodial SU(2)
symmetry, which means that it will be obeyed to all orders in perturbation
theory provided one does not include the effects of breaking of this custodial
SU(2). As we said, the accidental larger symmetry SU(2)× SU(2) exists only
in the Higgs potential. Thus, inclusion of effects of the gauge interactions
or fermion mass or Yukawa coupling would produce effects that violate the
custodial SU(2), and thereby violate the mass relation of Eq. (19.56). Of
course, these effects can only come through loop diagrams, and will therefore
be small.

19.6 Loop corrections

Loop corrections to weak interaction processes are important for several rea-
sons. First, precision tests have been performed near the Z mass scale at
the LEP and in later machines. In order to test the experimentally obtained
results against their theoretical predictions, one needs accuracy of order of
one part in a thousand or better. At this level, certainly one-loop correc-
tions are relevant. Second, in view of the astounding success of the standard
model, it is clear that if there is any physics beyond the standard model, its
effects would be small. In order to discover any such effect, one must make
sure that the standard model effects have properly been taken into account.
Third, some approximate symmetries are violated at the loop level, and it is
important to study the effects of their violation. One such symmetry is the
custodial SU(2) symmetry, which we have discussed in §19.5.

Before embarking on a discussion on the loop corrections, it is important
to note that at the tree level, there are equivalent definitions of some physical
parameters which are violated by loop corrections. Take, for example, the def-
inition of the Weinberg angle θW . It appears in the relation between different
gauge coupling constants, as in Eq. (16.23, p 466) or in Eq. (16.28, p 466). It
also appears in the mass relation between gauge bosons, Eq. (16.29, p 467).
These relations are equivalent at the tree level, but need not be so once loop
corrections are included. We should be careful about which definition should
be carried over to the discussion of higher order effects. The answer to this
question is guided by experimental data. In the gauge sector of the standard
model, three parameters are measured with very high accuracy. These are the
fine-structure constant α, the Fermi constant GF and the Z mass, MZ . In-
terestingly, there is a tree-level relation that connects these three parameters
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Figure 19.6: A typical diagram at the one-loop level that contributes to fermion–
fermion scattering.

to the Weinberg angle:

sin2 2θW =
4πα√

2GFM2
Z

. (19.57)

It is therefore appropriate to take this equation to be the definition of the
Weinberg angle to all orders. This means that the mass relation such as Eq.
(16.29, p 467) might get modified at the loop level. Indeed, since the mass
relation follows from the custodial symmetry, a symmetry that is violated by
various terms of the Lagrangian, it is expected to break down at the loop
level. One therefore defines the ratio

ρ ≡ M2
W

M2
Z cos2 θW

, (19.58)

which is called the ρ parameter. At the tree level in the standard model, one
should obtain ρ = 1. This is a result of the symmetry being broken by the
doublet. For more general schemes of symmetry breaking, the value of ρ is
obtained through Eq. (16.30, p 467).

19.6.1 Oblique parameters

Let us consider loop corrections to the scattering of two light fermions. The
scattering will be mediated by gauge bosons. On the intermediate line, there
can be self-energy loops for the gauge bosons, as shown in Fig. 19.6. In the
corresponding tree-level diagram without the loop in the middle, the internal
line would contribute to the Feynman amplitude only through its propaga-
tor. In the one-loop diagram, we will have two propagators, sandwiched by
the self-energy of the gauge boson. Any self-energy function, with incoming
and outgoing momentum equal to q, will contain two terms in general: one
proportional to the metric tensor and another to qµqν . Propagators of gauge
bosons have also the same general Lorentz structure. Thus, these terms can
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be written symbolically in the form

(
agµα + bqµqα

)

︸ ︷︷ ︸
propagator

(
Π(q2)gαβ + ∆(q2)qαqβ

)

︸ ︷︷ ︸
self-energy

(
agνβ + bqνqβ

)

︸ ︷︷ ︸
propagator

. (19.59)

The momentum terms in the propagators will contract with the Dirac matrices
coming from the fermion vertices, and will be proportional to the masses of
the external fermions when the Dirac equation for the spinors is used. For
high energies and light external fermions, we can neglect these terms. We
then see that the term in self-energy containing qαqβ can also be neglected
for the same reason. We therefore find that the only corrections will come
through the invariant function Π(q2) that appears in the self-energy of gauge
bosons. These corrections are called oblique corrections, which means that
they are not corrections to the fermion vertex directly. Rather, they appear
through the self-energy function of gauge bosons somewhat indirectly or in
an oblique manner.

In fact, there is not a single function Π(q2). There will be different func-
tions, depending on what the gauge boson lines are at the two ends. There are
four gauge bosons in the standard model. Since the W bosons are charged,
there can be four possible self-energy functions, WW , ZZ, Zγ and γγ. The
Π-functions for these different self-energies can be written as

ΠWW (q2) = ΠWW + q2Π
′
WW + . . . , (19.60a)

ΠZZ(q2) = ΠZZ + q2Π
′
ZZ + . . . , (19.60b)

ΠZγ(q2) = q2Π
′
Zγ + . . . , (19.60c)

Πγγ(q2) = q2Π
′
γγ + . . . , (19.60d)

where Π′ denotes the derivative of Π with respect to q2, and the bars on Π
and Π′ imply that the said quantity has to be evaluated at q2 = 0. The dots
denote higher order terms in q2 which do not concern us. Note that Πγγ(q2)
as well as ΠZγ(q2) must vanish at q2 = 0 because otherwise the photon would
obtain a mass, something that is not allowable by the electromagnetic U(1)
symmetry which is not broken.

There are thus six parameters in Eq. (19.60) which need to be considered,

the values of the two Π’s and four Π
′
’s. There are three parameters which are

very well-measured, viz., the fine-structure constant α, the Fermi constant GF

and the Z mass, MZ . Three of the six parameters obtained in Eq. (19.60) can
be absorbed in the definition of these three measured parameters. The other
three can then be used to test the standard model, e.g., to check whether there
exist unknown particles which, even if not seen directly, will nevertheless affect
the values of the self-energy functions through their contributions in loops.

To define the combination of the parameters that will be convenient for
this purpose, it is better to carry out the discussion in terms of the currents
of the form Jµ

a = ψγµTaψ for the hermitian generators Ta of the SU(2), and
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the electromagnetic current Jµ
Q. The currents that couple to W and Z can be

written as

Jµ
W =

g√
2

(Jµ
1 ± iJµ

2 ) ,

Jµ
Z =

g

cW
(Jµ

3 − s2WJµ
Q) , (19.61)

using Eqs. (16.36) and (16.38) and writing cW = cos θW and sW = sin θW for
the sake of brevity. The notation JQ stands for the electromagnetic current.
If we denote the current-current correlation functions as Π11 etc, then

ΠWW =
1

2
g2
(

Π11 + Π22

)
= g2Π11 , (19.62a)

ΠZZ =
g2

c2W

(
Π33 − 2s2W Π3Q + s4W ΠQQ

)
, (19.62b)

ΠZγ =
ge

cW

(
Π3Q − s2W ΠQQ

)
, (19.62c)

and

Πγγ = e2ΠQQ = g2s2W ΠQQ . (19.62d)

Of course the relations in Eq. (19.62) are valid definitions for all q2. They can
also be written in terms of the values of these functions at q2 = 0, and the
derivatives at q2 = 0, and so on.

The oblique corrections are parametrized by the following quantities:

αS = 4e2(Π
′
33 −Π

′
QQ) , (19.63a)

αT =
g2

M2
W

(Π11 −Π33) , (19.63b)

αU = 4e2(Π
′
11 −Π

′
33) , (19.63c)

which are called the oblique parameters or alternatively Peskin-Takeuchi pa-
rameters after the people who initiated this kind of analysis. Note that the
parameters S, T and U are all dimensionless.

2 Exercise 19.11 Show that, in terms of the self-energies in the basis
of physical gauge bosons, the oblique parameters are defined as

αS = 4s2W c2W

»

Π
′
ZZ − c2W − s2W

sW cW
Π

′
Zγ − Π

′
γγ

–

,

αT =
ΠWW

M2
W

− ΠZZ

M2
Z

,

αU = 4s2W

h

Π
′
WW − c2W ΠZZ − 2sW cW Π

′
Zγ − s2W Π

′
γγ

i

. (19.64)

The custodial symmetry would imply Πaa = Πbb (no summation implied
on the indices) where the a and b stand for SU(2) indices. Thus, custodial
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symmetry would imply that T = 0 and U = 0, although S can be non-zero.
On the other hand, if the weak isospin symmetry, i.e., the SU(2) part of the
gauge group, remains intact, that would also imply T = U = 0.

To demonstrate how these parameters express loop corrections to tree-level
relations, let us consider the ρ parameter. The tree-level contributions to the
W and Z boson masses were given in Eqs. (16.16) and (16.29). After adding
the self-energy terms, the 2-point function for the W boson will be

(k2 − 1

4
g2v2)gµν −ΠWW gµν + (qµqν terms) . (19.65)

The qµqν terms include gauge-fixing terms, which are not important. The
inverse of the 2-point function is the propagator, whose pole gives the mass of
the concerned particle. Taking the inverse of the expression given Eq. (19.65),
we find that the mass of the W boson is given by

M2
W =

1

4
g2v2 + ΠWW . (19.66)

Similarly, the mass of the Z boson will be given by

M2
Z =

1

4
(g2 + g′2)v2 + ΠZZ . (19.67)

Thus,

ρ =

(
1 +

4ΠWW

g2v2

)/(
1 +

4ΠZZ

(g2 + g′2)v2

)

≈ 1 +
4ΠWW

g2v2
− 4ΠZZ

(g2 + g′2)v2
. (19.68)

Neglecting higher order corrections, this expression can be written as

ρ = 1 +
ΠWW

M2
W

− ΠZZ

M2
Z

= 1 + αT . (19.69)

Experimental measurements of the ρ parameter therefore places bounds on
the oblique parameter T .

19.6.2 Evaluation of T

As an example of loop corrections affecting tree-level results, we present here
in some detail the calculations of one-loop corrections to the ρ parameter. As
seen from Eq. (19.69), it means calculation of the oblique parameter T . As
commented earlier, T can be non-zero by effects which break the custodial
symmetry. Such effects are present in the fermion sector. So we calculate the
contribution to the oblique parameter T that comes from fermion loops in the
self-energy diagram of gauge bosons.
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q q

k + q

k

Figure 19.7: Self energy diagram
for gauge bosons, with fermions in the
loop.

The couplings to the W bosons are
purely left-chiral. The Z boson cou-
ples to both left and right chiralities
of fermions. The calculation is facili-
tated by first evaluating self-energy func-
tions with purely chiral couplings of
fermions to gauge bosons, and with ar-
bitrary masses m1 and m2 in the two
fermion lines. For example, if both
vertices have left-chiral couplings, the
corresponding self-energy tensor is de-
noted by Πµν

(LL)(m1,m2, q). Explicitly,
using the momentum notation defined in
Fig. 19.7, we can write

iΠµν
(LL)(m1,m2, q) = −

∫
d4k

(2π)4
Tr

[
iγµL

i(k/+m2)

k2 −m2
2

×iγνL
i(k/+ q/+m1)

(k + q)2 −m2
1

]
, (19.70)

where the minus sign outside the integral comes from the closed fermion loop,
as mentioned in §4.10.3. Combining the denominators by the trick shown in
Eq. (G.2, p 756), we obtain

iΠµν
(LL) = −

∫ 1

0

dx

∫
d4k

(2π)4

Tr
(
γµk/γν(k/+ q/)R

)

(
k2 + 2xk · q + xq2 −X12

)2 , (19.71)

where, for the sake of brevity, we define the shorthand

X12 = xm2
1 + (1− x)m2

2 . (19.72)

We now rewrite the expression in terms of a shifted momentum l = k + xq.
There will be three kinds of objects carrying the Lorentz indices: lµlν , gµν

and qµqν . The last type of terms are irrelevant for our purpose, as explained
earlier. We are only interested in the co-efficient of gµν . The lµlν term also
contributes to this co-efficient, because within the integrand, one can replace
lµlν by 1

4 l
2gµν , a result that has been demonstrated in Appendix G, as Eq.

(G.10, p 758). After evaluating the trace, we therefore have to merely identify
the co-efficient of gµν , which is

iΠ(LL) =

∫ 1

0

dx

∫
d4l

(2π)4
l2 − 2x(1− x)q2

(
l2 + x(1− x)q2 −X12

)2 . (19.73)

This integral is divergent in 4-dimensional spacetime, so we need to perform
the integral by going over to a D-dimensional spacetime. The result of such
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integration has been given in Eq. (G.34, p 762). In Eq. (19.63b), we need only
the values of self-energies at q2 = 0, which comes out to be

Π(LL)(m1,m2) =
2Γ(2− D/2)

(4π)
D/2

∫ 1

0

dx
(
X12

)−1+D/2
. (19.74)

Note that this quantity depends only on the two masses in the loop, as we
have explicitly indicated on the left hand side of this equation.

In §G.6 of Appendix G, we have discussed how the divergent part of such
integrals can be separated from the finite part. Following the prescription
presented in Eq. (G.49, p 764), we obtain

Π(LL)(m1,m2) =
1

8π2

∫ 1

0

dx X12

(
1

ε′
− lnX12

)
, (19.75)

where

ε′ =
1

2− D/2
− (some constants) , (19.76)

as presented in Eq. (G.46, p 764) or Eq. (G.48, p 764). The remaining integra-
tion on the Feynman parameter x is trivial, and it yields the result

Π(LL)(m1,m2) =
1

16π2

[
(m2

1 +m2
2)

1

ε′
+

1

2
(m2

1 +m2
2)

−m
4
1 lnm2

1 −m4
2 lnm2

2

m2
1 −m2

2

]
. (19.77)

It might be unpleasant seeing logarithms of dimensionful quantities like m2
1

or m2
2. In §G.6 of Appendix G, we explain why such monstrosities appear,

and how things can look sane by introducing an arbitrary mass scale in the
calculations. However, we assure that the final result will be devoid of such
monstrosities so we might be better off by just ignoring the awkward looks of
the intermediate steps.

Since the fermion to W boson coupling has a factor of g/
√

2, it is quite
easy to see that

ΠWW (m1,m2) =
1

2
g2Π(LL)(m1,m2) , (19.78)

where m1 and m2 denote masses of the partners in a fermion doublet. On the
other hand, the Feynman rule for the coupling of a fermion with the Z boson,
given in Fig. 16.2 (p 469), can be written in the form

− ig

cos θW
γµ
(

(T3 −Q sin2 θW )L−Q sin2 θW R

)
, (19.79)
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so that we can write

ΠZZ =

(
g

cos θW

)2[
(T3 −Q sin2 θW )2Π(LL)

−(T3 −Q sin2 θW )Q sin2 θW

(
Π(LR) + Π(RL)

)

+(Q sin2 θW )2Π(RR)

]
. (19.80)

In the evaluation of the traces of Dirac matrices during the calculation of
Π(LL), the terms with a single factor of γ5 do not contribute at all. Hence, if
we change the sign of these terms, the result will not be affected. This means
that

Π(LL) = Π(RR) . (19.81a)

For the same reason, we have

Π(LR) = Π(RL) . (19.81b)

For the self-energy of the Z boson, we will always have the same fermion
on both internal lines. Thus, we need the value of Π(LL) after putting m1 =
m2 = m in Eq. (19.77). This can be done by taking the limit m2 → m in Eq.
(19.77), or, more easily by putting the two masses to be equal in Eq. (19.75).
The result is

Π(LL)(m,m) =
m2

8π2

(
1

ε′
− lnm2

)
. (19.82)

Evaluation of the LR loops can also be performed. For equal masses in the
loop, the result is

Π(LR)(m,m) = −m
2

8π2

(
1

ε′
− lnm2

)
= −Π(LL)(m,m) . (19.83)

Because of Eqs. (19.81) and (19.83), the expression in Eq. (19.80) reduces to
the form

ΠZZ =

(
g

cos θW

)2

T 2
3 Π(LL)(m,m) (19.84)

for a fermion of mass m in the loop. We need to add the contributions from
two fermions, of masses m1 and m2, which are partners in a doublet. This
gives

ΠZZ =
g2

32π2 cos2 θW

[
m2

1

(
1

ε′
− lnm2

1

)
+m2

2

(
1

ε′
− lnm2

2

)]
. (19.85)

We now take ΠWW from Eqs. (19.78) and (19.77) and ΠZZ from Eq.
(19.85), and put them into Eq. (19.63b). Since the result contains an explicit
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factor of g2, we can put MW = MZ cos θW in the rest of the factors, thereby
obtaining

αT =
g2

32π2M2
W

[
1

2
(m2

1 +m2
2)− m2

1m
2
2

m2
1 −m2

2

ln
m2

1

m2
2

]

=
GF

4
√

2π2

[
1

2
(m2

1 +m2
2)− m2

1m
2
2

m2
1 −m2

2

ln
m2

1

m2
2

]
. (19.86)

Notice that, as promised, the awkward logarithms have disappeared from this
expression, as they should because it is a measurable quantity. Also notice
that the divergent terms have all disappeared from this expression.

The expression in Eq. (19.86) is valid for one doublet of fermions. Contri-
butions like this one occur for each doublet. In particular, for quark doublets,
there can be three different colors of quarks circulating in the loop, so there
will be a color factor of 3.

The implication of this result is profound. It shows that the two members
of a fermion doublet cannot be arbitrarily separated in terms of their mass
eigenvalues. Because, if they do, they would contribute too much to the ρ
parameter. This argument was in fact very useful for obtaining an upper
bound of the top quark mass even before the top quark was discovered. We
will outline the argument in §20.4.

2 Exercise 19.12 Suppose we have a doublet of fermions whose partners
have equal mass. Weak isospin is not violated by these mass terms,
and therefore these fermions should not contribute to the oblique pa-
rameter T . Verify that indeed the contribution of Eq. (19.86) vanishes
if m1 = m2.

19.7 Higgs boson

The Higgs boson is the only spinless elementary particle, according to the
standard model. It was also the last particle in the standard model for which
experimental evidence was obtained. In fact, it created a record of a sort.
The standard model was proposed in 1967, and the discovery of the Higgs
boson was announced in 2012, i.e., a long 45 years later. It remained elusive
for almost half a century.

19.7.1 Elusiveness

Why is the Higgs boson so elusive? One part of the answer is that it is heavy.
However, that cannot be the whole story. The t quark, in fact, is much heavier
than the Higgs boson. And yet, the t quark was discovered in the mid-1990s
whereas the Higgs boson defied detection for almost two more decades.

The other big reason for the elusiveness of the Higgs boson is its coupling
to fermions. In §16.5, we saw that the coupling of the Higgs boson to any
fermion is proportional to the mass of the fermion, and is in fact given by

hf =

√
2mf

v
=

gmf√
2MW

. (19.87)
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Our experimental detectors are made out particles in the first generation of
fermions because they are constituents of stable material. More often than
not, the experimental probes are also made out of the same. The masses
of the first generation fermions are much smaller compared to the masses of
fermions in the other generations. Accordingly, couplings of these fermions
with the Higgs boson are also small. For the electron, Eq. (19.87) tells us
that the coupling is of order 10−7. With the up and the down quarks, the
couplings are a little bigger, maybe by an order of magnitude. But even then,
these are minuscule couplings. This is the basic reason why the Higgs boson
is hard to produce and to detect.

There is a theoretical part of the elusiveness. Eq. (19.18) gives the value
of the Higgs boson mass in terms of the parameters in the standard model
Lagrangian. Using Eq. (19.19), we can write this mass formula in the form

M2
H =

8λM2
W

g2
=

√
2λ

GF
. (19.88)

We know the value of the Fermi constant GF quite well, but there is also
the factor λ sitting in the mass formula. This quantity, λ, does not appear
in any interaction involving gauge bosons and/or fermions. This is a totally
independent coupling constant that occurs in the theory: we have no idea
about its magnitude from all experimental facts that we know about fermions
and gauge bosons.

The experimentalists therefore had to start searching the Higgs boson from
very small masses. With machines of increasing energy, they could gradually
rule out higher and higher masses of the Higgs boson until they found some
indication of the particle.

19.7.2 Theoretical bounds on mass

Since the Higgs boson mass is not predicted by the standard model, as ex-
plained in connection with Eq. (19.88), we can start by finding out whether
theoretical arguments can at least put some bounds on the Higgs boson mass.
There are a few such arguments.

a) Unitarity bound

In §14.8, we discussed how partial wave unitarity constraints must be obeyed
by scattering cross-sections. The argument can be applied to WW scattering.
At energies much higher than the W boson mass, the dominant part of the
amplitude comes from the longitudinally polarized W bosons. The Feynman
amplitude for this scattering was calculated in §19.4, and it has terms that
grow with the Higgs boson mass. Arguments using partial wave unitarity will
say that this growth cannot be unlimited, thereby putting an upper bound
on the Higgs boson mass.

Since the bound is going to be relevant for large values of MH , we look at
the terms in the Feynman amplitude that grow most quickly with MH . These
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are the terms given in Eq. (19.49). At energies much higher than the Higgs
boson mass as well, we find that

|M | ≈ g2M2
H

2M2
W

. (19.89)

This part of the amplitude is angle-independent, i.e., has only the zeroth
partial wave. Therefore, from Eq. (14.147, p 439), we find that

1

64π2s

(
g2M2

H

2M2
W

)2

<
4

s
, (19.90)

which is equivalent to

MH <
4
√

2πMW

g
= 2v

√
2π . (19.91)

Putting in the known value of v, we obtain

MH < 1.2 TeV . (19.92)

Other processes yield similar upper bounds on MH .

2 Exercise 19.13 Find the unitarity bound for MH using the WZ → WZ
scattering amplitude studied in Ex. 19.7 (p 572).

2 Exercise 19.14 Do the same thing for ZZ → ZZ elastic scattering.
[Note : Only the Higgs boson can mediate this process at the tree-level.]

b) Triviality bound

In §12.2, we discussed that the gauge coupling constants run, i.e., their values
depend on the momentum scale at which they are measured. The same is true
for other coupling constants in the theory. In particular, for the self-coupling
λ of the Higgs multiplet, the evolution equation is given by

dλ

d ln(µ2)
=

3λ2

4π2
(19.93)

to the one-loop approximation. Integrating this equation, one obtains

λ(µ) =
λ(µ0)

1− 3λ(µ0)

4π2
ln
µ2

µ2
0

, (19.94)

where µ0 is some fixed scale where the value of λ is λ(µ0). This equation,
taken literally, implies that the value of λ becomes infinite at a scale

µ2
∗ = µ2

0 exp

(
4π2

3λ(µ0)

)
. (19.95)
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This scale is called the Landau pole. The only way to avoid this catastrophe
at any scale is to have λ = 0, i.e., a trivial theory.

We cannot have λ = 0, because then the Higgs potential cannot have a
non-zero minimum. Thus, we need λ at least at the weak scale, characterized
by the VEV of the Higgs multiplet v. We can then ask, what should be the
value of λ(v) at the weak scale so that, within a reasonable domain of validity
of our theory, the value of λ remains finite everywhere?

If the upper boundary of this “reasonable” domain is taken to be Λ, then
we want λ(Λ) to remain finite everywhere up to Λ. This happens if the
denominator of Eq. (19.94) does not become zero even at Λ, i.e., if

λ(v) <
4π2

3 ln(Λ2/v2)
. (19.96)

The mass of the Higgs boson is therefore bounded by

M2
H = 2λ(v)v2 <

8π2v2

3 ln(Λ2/v2)
. (19.97)

This produces an upper limit for the Higss boson mass, and the value depends
on the value of Λ that we consider reasonable. Some examples follow:

Λ = 1016 GeV⇒MH < 160 GeV ,

Λ = 1019 GeV⇒MH < 144 GeV . (19.98)

Why do we consider these values of Λ to be reasonable? As we said, the coupling constants
run. If we consider the running of the gauge coupling constants of the electroweak SU(2) and
U(1), and also of the color SU(3), we find that they cross one another at about an energy scale
of 1016 GeV. At higher energies, presumably a new state of affairs will prevail, as discussed
briefly in Ch. 23. This is the reason to believe that we should not extrapolate any consideration
with the standard model to energy scales larger than about 1016 GeV.

In discussing particle interactions, we have always neglected the effects of gravitation. Grav-
itational interactions have an inherent energy scale given by Newton’s constant. This energy
scale is characterized by Planck mass, which was mentioned in Ex. 1.7 (p 13). Its value comes
out to be of order 1019 GeV. Thus, above the Planck mass, gravitational effects are bound to
become very important and all our arguments should be reconsidered.

Remember that in deducing the bound on MH , we have assumed that the
evolution of the coupling constant λ depends only on the value of λ itself.
This is not true. The evolution of λ should depend on the gauge coupling
constants as well, and also on the Yukawa couplings. Although most of the
Yukawa couplings are minuscule, as discussed in connection with Eq. (19.87),
the top quark mass is larger than the W boson mass by more than a factor of
2 and therefore its Yukawa coupling cannot be neglected. Including its effect
as well as the effects of gauge couplings, the evolution equation for λ at the
one-loop level should read

dλ

d ln(µ2)
=

1

16π2

[
12λ2 + 12λh2

t − 12h4
t

−3

2
λ(3g2

2 + g2
1) +

3

16
(2g4

2 + (g2
2 + g2

1)2)
]
, (19.99)
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where we have used the notations g2 and g1, rather than g and g′ used in
Ch. 16, for the SU(2)L and U(1)Y parts of the gauge groups in order to make
the notations more obvious. Considerations of these other terms change the
numerical values given in Eq. (19.98), but not by huge amounts.

2 Exercise 19.15 For each term on the right hand side of Eq. (19.99),
identify at least a single one-loop diagram that can be responsible for
it.

c) Stability bound

There is also an argument to assert that the Higgs mass cannot be very small.
Notice that the expression for the Higgs boson mass contains the VEV v and
the scalar self-coupling λ. The value of the VEV is known to be 246 GeV from
the known values of the W boson mass and gauge coupling constant. So, the
Higgs boson mass can be small if λ is small. Now, the expression for the VEV,
as given in Eq. (16.7, p 463), shows that the parameter µ2 in the Lagrangian
must have a small magnitude. If the magnitude is too small, its sign may be
overturned by quantum corrections. If that happens, there is no symmetry
breaking, and no standard electroweak theory. Hence a lower bound on Higgs
boson mass.

In order to set a numerical value for the bound, we need to calculate
quantum corrections to the Higgs potential. Rather than attempting it, we
provide here a quick and dirty way of having a taste of the result. For small
λ, the dominant terms of Eq. (19.99) can be written as

dλ

d ln(µ2)
=

1

16π2

[
− 12h4

t +
3

16
(2g4

2 + (g2
2 + g2

1)2)
]
. (19.100)

Note that the contribution coming from the top quark Yukawa coupling is
negative. It is now known that ht is almost equal to unity, so it can be the
most dominant term and drive λ down. For some mass scale, λ will become
negative. That would be a disaster because the scalar potential will then not
have any minimum. This problem can be avoided only if λ is not very small so
that the terms shown in Eq. (19.100) can never dictate the dominant running
for λ. The lower bound on λ, thus obtained, implies a lower bound on the
Higgs boson mass:

MH > 134 GeV , (19.101)

if we do not want λ to be negative anywhere below 1016 GeV.

d) Bound from oblique parameters

In §19.6.2, we showed how the mass difference between partners of an SU(2)L

doublet contributes to the oblique parameter T . The calculation we performed
there pertained to a fermion doublet. However, similar calculation can be
performed for a scalar multiplet as well. The contribution to T comes out
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Figure 19.8: Feynman diagrams for main processes that can be responsible for Higgs
boson production at hadron colliders. Each vector boson line marked V can represent
either the W or the Z boson. Remember that, according to the arrow convention that
we have employed, the outgoing arrow on the line marked bq in diagram (a) represents
an incoming antiquark.

to be proportional to ln(MH/MZ). In principle, one can put a bound on the
Higgs boson mass from the experimental limits on the ρ parameter. But, since
the dependence on the mass is logarithmic, this bound is not very useful.

19.7.3 Production

In order to detect the Higgs boson experimentally, one has to produce the
particle through some interaction. As we emphasized earlier, the couplings
of the Higgs boson to all first generation fermions are very small. So, direct
production through the coupling to the electron or to light quarks would be
a hopeless proposal.

Instead, one should explore the possibilities of producing the Higgs boson
through its gauge coupling, or coupling to the top quark. Depending on
the initial particles, different production mechanisms might dominate. For
example, if one tries to produce the Higgs boson in hadronic colliders such as
the LHC, the initial state will contain quarks, antiquarks and gluons. From
our discussion in §13.9, recall that at very high energies such as what LHC
possesses, there is a substantial component of ocean quarks and gluons in the
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proton, so that even a pp collider like the LHC will have lots of antiquarks
and gluons in the colliding beams, apart from the valence quarks that are
present in the proton. Thus, the Higgs boson might be created from quark
and antiquarks or from gluons. In Fig. 19.8, we show some processes that are
expected to dominate.

If, instead, we are thinking of the production of the Higgs boson in a e+e−

collider machine, all processes involving quarks and gluons in the initial state
are irrelevant for obvious reasons. Instead, the processes that can dominate
the production have Feynman diagrams like those in Fig. 19.8a and Fig. 19.8b,
but with all quarks replaced by electrons and all antiquarks by positrons.
The gauge bosons V shown in these diagrams will have to be Z bosons. The
suggested modifications of Fig. 19.8a would give rise to a process

e+e− → ZH , (19.102)

whereas that of Fig. 19.8b would imply a process

e+e− → e+e−H . (19.103)

In the LEP machine described in Ch. 9, at a CM energy of 205 GeV, signature
of the process in Eq. (19.102) was searched for, and nothing was found. Since
the couplings are known, the null result can only mean that the Higgs boson
mass is higher than the available energy that is the CM energy minus the Z
boson mass, or 91 GeV. This imposes an experimental lower bound

MH > 114 GeV . (19.104)

19.7.4 Decay

The Higgs boson will have a small lifetime, so, once it is created, one cannot
possibly detect it through the direct observation of its track. Rather, one has
to look for decay channels of the Higgs bosons in order to look for resonances in
these channels. Therefore we need to know what could be the dominant decay
channels for the Higgs bosons. Not surprisingly, the answer to this question
depends on the mass of the Higgs boson. Let us identify several regions of
Higgs mass and discuss what might be the dominant decays in those regions.

The coupling of the Higgs boson to any fermion is proportional to the mass
of that fermion. Therefore, heavier fermions have larger couplings to the Higgs
boson and therefore the matrix element of Higgs boson decay would be larger
for heavier fermions. For example, the Higgs boson would prefer to decay to a
bb̂ pair rather than to a cĉ pair. The decays to an even lighter quark-antiquark
pair, i.e., to uû , dd̂ and sŝ, are so small that we will not talk about them at
all. For the same reason, we will not talk about decays into leptons, with the
only exception of decays into the τ

+
τ
−.

If the Higgs boson mass MH were smaller than MZ , then, as said above,
decay to bb̂ pair and subsequently into bottom-carrying hadrons would have
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γ

γ

H

Figure 19.9: Feynman diagram for the process H → γγ. The loop can contain any
charged fermion.

been the most dominant. Subdominant processes would include cĉ pair and
τ

+
τ
− pair. Decays to all other fermions would be negligible. However, the

Higgs boson could decay into a photon pair, γγ. The Higgs boson is electrically
uncharged, so it does not couple to the photon directly. The simplest way that
it can decay into two photons is through the one-loop graph shown in Fig. 19.9.
There are contributions from all charged fermions in the loop because they
all have couplings with the Higgs boson. However, the largest contribution
comes from the top quark in the loop, because its coupling with the Higgs
boson is large. The couplings with the photon are gauge couplings, so we
know how large they are. Thus the only suppression in the diagram is coming
from typical numerical factors that appear in loop integration. That is why
the branching ratio of the process can be quite large for small values of MH ,
as seen in Fig. 19.10 (p 591).

If the Higgs boson is heavier, new channels, involving heavier particles,
gradually gain importance. The qualitative features regarding the importance
of different channels should be understandable by looking at Fig. 19.10. For
example, the tt̂ channel has vanishing contribution below 2mt. For MH >
2mt, the top contribution rises very fast and overpowers all other fermionic
decay modes because the top coupling to the Higgs boson is much larger than
the coupling of any other fermion to the Higgs boson.

The case of the decay to two weak gauge bosons is also qualitatively under-
standable from the figure. For MH > 2MW , decay is possible only to virtual
WW or ZZ pairs, and the rate is low. For MH = 2MW , there is a resonance,
which is seen as a hump in the curve for the WW final state. Remember that
the graph uses logarithmic scales, so that the hump is less pronounced than it
would be on a linear scale, but is still discernible. At this mass, the branching
ratios to all other channels dip sharply, as is seen in the figure. Again, it will
have to be remembered that a dip looks much more dramatic on a logarithmic
scale than it does on the linear scale.

2 Exercise 19.16 The coupling of the Higgs boson to WW as well as
ZZ pairs is given in Fig. 19.4 (p 565). Use them to find the ratio
Γ(H → ZZ)/Γ(H → WW ) in the regime of high Higgs mass where the
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Figure 19.10: Branching ratio for the Higgs decay into various channels for a range
of values of the Higgs boson mass MH . (Adapted from A. Djouadi, hep-ph/0503172,
with permission from the author.)

W and the Z masses can be neglected. See whether your result agrees
with that inferred from Fig. 19.10.

It is not just the branching ratios that are important. One needs to con-
sider, along with them, how good is the detection for each channel. For Higgs
masses somewhat larger than 100 GeV, the two-photon mode may be the best.
Although its branching ratio is substantially smaller than some other modes,
the final state signal is clear. Consider, on the contrary the bb̂ or τ

+
τ
−

modes, which have much larger branching ratios. However, the b or the τ is
not directly detected: detection is only possible through identifying their de-
cay products. This makes the analysis less reliable than that of a two-photon
state.

If the Higgs mass is substantially higher, WW or ZZ channels should be
better for the detection of the particle. Although the WW branching ratio
is higher, this channel is less convenient for detection than the ZZ channel.
The reason is that if either of the W ’s decays leptonically, neutrinos will be
produced, which will not be detected, and therefore one will not be able to
reconstruct the energy and momentum. Alternatively, the W ’s can decay
hadronically, but such decays are always difficult to analyze because the ef-
fects of hadronization cannot be quantified. On the other hand, if the Higgs
decay produces a ZZ pair, there is some probability that both Z’s will decay
into charged leptons only, producing two charged leptons and corresponding
antileptons for the detector. This would constitute the best possibility for
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detection of a heavy Higgs boson, and the final mode just described is often
called the gold-plated mode.

The first announcement of observation of a Higgs boson by two different
experiments at the LHC was based on these two decay modes described above.
The mass of the Higgs boson was found to be about 125 GeV.



Chapter 20

Hadrons involving heavy quark flavors

We have so far discussed hadrons that involve the up, down and the strange
quark flavors. In a sense all these quarks can be called light: they are all lighter
than the nucleon, or even lighter than the QCD scale parameter ΛQCD. There
are, however, quarks which are heavier than ΛQCD, and even heavier than the
nucleon. Three such flavors of quark are known: charm (c), bottom (b) and
top (t). In this chapter, we discuss hadrons involving them.

There is a reason for deferring the discussion of these quarks for so long.
In earlier chapters, we have taken some symmetry or some kind of interaction
as the central theme and brought in different particles to provide examples
on the theme. Here, we will take a different approach. Now that we have
introduced all basic interactions and the major symmetries, we can discuss
both strong and weak interactions of fermions with heavy flavors. There is
only one kind of phenomenon that we will leave out here: CP violation in
heavy quark systems will be treated along with CP violation in light quark
systems in Ch. 21.

20.1 Charm quark and charmed hadrons

20.1.1 Prediction of charm quark

The charm quark was discovered in 1974. But it was conjectured on theoretical
grounds a few years before that.

When Cabibbo put forward the idea of quark mixing, only three types of
quarks were known: the three light quarks u, d and s. Cabibbo, therefore,
conjectured that the weak charged current connects the up quark to a super-
position of the down and the strange quarks. In modern language, we can say
that

(
u

d cos θc + s sin θc

)
(20.1)

593
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constitutes a doublet of the SU(2)L part of the electroweak gauge group. If
this were the case, only the up quark could have been in the internal quark
line for the process KL → µ

+
µ
− shown in Fig. 17.8 (p 518). As explained

in §17.9.5, the extremely small branching ratio of this process could not have
been explained this way. Glashow, Iliopoulos and Maiani realized that if there
is a fourth quark that also couples to both d and s quarks through charged
currents, the leading term coming from this quark in the loop cancels the
leading contribution coming from up quarks in the loop. This is the GIM
cancellation mechanism discussed earlier. And this extra quark, the fourth
flavor, was named the charm quark or the c quark.

The same argument can be given from many other processes. For example,
consider the calculation of the KL-Ks mass difference, presented in §17.9.4.
Suppose there is no third generation, and there is no charm quark either.
The small factor rc ≡ m2

c/M
2
W that appears in Eq. (17.126, p 516) would not

have been present in that case. Instead, there would be a factor of order
1, coming from the integration of the loop diagrams with only the u quarks
in it. The calculated value of ∆mK would have been much larger than the
experimental value in that case. It is the GIM cancellation that ensures that
the leading terms, of order 1, cancel among themselves, so that the surviving
terms contain a suppression factor and produces a theoretical result that is
comparable with the experimental values. Because of such rare processes, the
need for the charm quark was felt as soon as the GIM paper came out.

20.1.2 Discovery of charmonium

Then in 1974, there were two experiments which saw a charmonium state. The
generic name indicates a bound state of the c quark and its antiquark, just
like positronium is the name of a bound state of positron and its antiparticle,
the electron. One of these experiments was done near the eastern coast of the
USA at the Brookhaven National Laboratory under the leadership of Samuel
Ting. The other was performed at Stanford, near the opposite coast, under
the leadership of Burton Richter. They were different experiments. We will
start by describing the method used by Richter’s group.

Consider what happens to the inelastic cross-section of e+e− collision as
we increase the CM energy. For CM energies less than twice the muon mass,
the inelastic cross-section is zero: the collision is totally elastic because no
inelastic channel is available at such energies. Once the CM energy goes
above twice the muon mass, the process e+e− → µ

+
µ
− becomes possible.

For energies just a little bigger than 2mµ, there are some threshold effects
involving the muon mass, as shown in Eq. (5.95, p 133). As the energy is
increased further, these contributions drop out and we obtain

σ(e+e− → µ
+

µ
−) =

4πα2

3s
. (20.2)
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If the CM energy is high enough, hadrons can also be produced. Let us
define the ratio

R ≡ σ(e+e− → hardons)

σ(e+e− → µ+µ−)
. (20.3)

The ratio has to be taken for the same value of the CM energy of the initial
e+e− pair, and will depend on this energy. Equivalently, we can say that the
ratio depends on the Mandelstam variable s.

At the basic level, hadron production should be governed by quark-
antiquark production. The cross-section for the production of a free quark-
antiquark pair of a certain flavor can be calculated in exactly the same manner
as µ

+
µ
− production. The only difference is that the quark charge Qq is not

the same as the muon charge, and there are three different colors of quarks
corresponding to a certain flavor. Taking these into account, we can write

σ(e+e− → qq̂) = 3Q2
q σ(e+e− → µ

+
µ
−) , (20.4)

neglecting the masses of the final-state fermions. Thus, at any given value of
s, the ratio R should be given by

R = 3
∑

q

Q2
q , (20.5)

where the sum is over all flavors of quarks which can be created along with
its antiquark at the given value of s, i.e., whose mass is below the CM energy
of the incoming electron.

Of course the quark-level process may be more complicated. For example,
it is possible that hadrons are formed from the products of the basic reaction
e+e− → qq̂g. The cross-section for this process will have an extra factor of
α3. Thus, a term proportional to α3 will add to the näıve contribution of
Eq. (20.5). However, at high energy the strong coupling constant is small, as
discussed in Ch. 12, so these effects would be small and R will be given by the
simple expression of Eq. (20.5).

If only hadrons involving the u, d and s quarks are produced in the final
state, the ratio R will have the value 4

3 + 1
3 + 1

3 = 2. Fig. 20.1 shows that a little
above 1 GeV, this is more or less the value of R obtained from experiments.
But then, above 3 GeV, the ratio increases. The increase can be explained if
there is a fourth quark of charge Q = 2

3 , which can contribute an extra 4
3 to

R. This rise in R clearly indicates that, around
√

s = 3 GeV, one crosses a
threshold for producing a new quark.

But then what happens exactly at the threshold? Shouldn’t we see a
hump, as explained in §9.6.1? The answer is of course ‘yes’, but in this case
the hump was more like a sharp spike, i.e., very narrow, so much so that it
was missed at first. The first such spike is encountered at a mass of 3097 MeV,
and its width is only about 93 keV. This is the lightest bound state of the
charm quark and its antiquark, and is called the J/ψ particle. The width is
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Figure 20.1: The ratio R as a function of the CM energy
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s. [Reprinted with
permission from: Particle Data Group, Phys. Rev. D86 (2012) 010001; c© (2012) by
the American Physical Society.]

so small that the rise and the fall of the ratio R at the resonance cannot be
shown in the scale of the plot in Fig. 20.1. Hence a vertical line is drawn at
the relevant energy to indicate the position of the spike.

The name of the particle is somewhat strange. It almost looks like the experts could not agree
whether to call it J or call it ψ, and hence left both names with a slash mark in between. In fact,
that is exactly what happened historically. As mentioned earlier, two groups found the particle
roughly at the same time. One group wanted to call it J , the other preferred ψ. In the ensuing
discussion, we will use the symbol JΨ, showing both letters in a superposed configuration.

At this point, let us comment on the method that Ting’s group had used to
obtain the same particle. They used a fixed-target experiment, bombarding a
beryllium target by a proton beam with momentum 28.5 GeV. Of course the
target contained protons, and there were reactions of the form

p+ p→ e+ + e− +X , (20.6)

where X means ‘anything’. They looked at the CM energies of the e+e− pair
to find out whether they are products of the decay of an intermediate particle
formed in the reaction. In other words, they tried to see whether the process
shown in Eq. (20.6) can occur through the production of a short-lived particle

p+ p→ JΨ +X , (20.7)
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followed by the decay of this particle:

JΨ→ e+ + e− . (20.8)

In §9.6.2, we described how the presence of such intermediate short-lived
particles can be ascertained by reconstructing events. That is exactly what
they did, and found a peak for the e+e− invariant energy at 3.1 GeV.

There are of course other bounds states of cĉ. Fig. 20.1 shows the spike
corresponding one such state that is marked ψ(2S). It has a mass of 3686 MeV
and total width of 317 keV, and was discovered within about two weeks from
the discovery of the state mentioned earlier. As its name indicates, the c quark
and its antiquark in this meson have a spatial wavefunction corresponding
to a 2S state. The earlier state mentioned, the lightest cĉ state, has a 1S
configuration. Other states have also been discovered, with different spatial
and spin configurations of the c quark and its antiquark. All cĉ states are
collectively called charmonium states.

20.1.3 Flavor SU(4)

With three flavors of quarks, we discussed the flavor SU(3) symmetry in
Ch. 10. With the addition of the charm quark, we can think of extending
the group to SU(4), for which the u, d, s and c quarks form the fundamental
representation. We will denote this group by writing SU(4)F, where the sub-
script ‘F’ stands for flavor. By the same token, the SU(3) symmetry discussed
in Ch. 10 can be denoted by SU(3)F.

The advantage of considering the flavor group is that the possible meson
and baryon combinations can be identified easily from the representations of
the group. Some of the simplest irreducible representations of SU(4) are as
follows:

Dimension : 4 6 10 15
Young tableaux : 2 2

2
22 22

2
2

(20.9)

The 15-dimensional representation is the adjoint representation of SU(4).

2 Exercise 20.1 Using the method of finding the complex conjugate rep-
resentation of any Young tableaux described in Fig. 10.4 (p 267), de-
termine which of the representations given in Eq. (20.9) are real.

To understand the SU(4)F multiplets in terms of the multiplets of SU(3)F,
we have to consider the decomposition of SU(4)F representations under the
subgroup SU(3)F ×U(1)X, where the generator of X commutes with all gen-
erators of SU(3)F. The normalization of the U(1) quantum number X is ar-
bitrary, and we can set it in a way such that the fundamental representation
of SU(4)F decomposes as 4 à (3,−1

3
) + (1, 1) . (20.10)
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Figure 20.2: Mesons belonging to the 15+1 representations of SU(4)F. The middle
level contains the SU(3)F octet. The states at the center are not labeled. They have
been discussed in the text.

The SU(3)F triplet consists of the u, d and s flavors of quark, as discussed
in Ch. 10. The singlet of SU(3)F is the charm quark. So we see that the
value of X is +1 for the charm quark, and − 1

3 for all lighter quarks. If we
introduce the charm quantum number C which is +1 for the c quark, −1 for
its antiquark and zero for everything else, we can write

X = −B +
4

3
C , (20.11)

where B is baryon number, which is equal to 1
3 for any quark.

a) Mesons

If we combine a quark and an antiquark into a meson, the combination will
transform as 4× 4∗ = 1 + 15 . (20.12)

The decomposition of the adjoint representation can be calculated from Eqs.
(20.12) and (20.10). The result is15 à (8, 0) + (3,−4

3
) + (3∗,

4

3
) + (1, 0) . (20.13)

Since B = 0 for mesons, we see from Eq. (20.11) that the members of the
octet of SU(3)F have C = 0, i.e., they do not contain any charm quark. The3∗ representation of SU(3)F has C = 1, so its members must contain the
charm quark, plus the antiquark of either u, or d, or s. The 3 representation
of SU(3)F has C = −1, so it will have ĉ along with one of the lighter quarks
u, or d, or s.

The spin and parity of the lowest mass mesons are given by JP = 0−,
as discussed in Ch. 10. Let us first discuss such mesons. The SU(3)F-octet
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of mesons contained in the 15 of SU(4)F comprises the pions, the kaons and
the eta. All of these mesons are made up of the u, d, s quarks and their
antiquarks, and were presented in Fig. 10.1 (p 256). The C = +1 mesons are
called D mesons:

∣∣D+
〉

= cd̂ ,
∣∣D0

〉
= cû ,

∣∣D+
s

〉
= cŝ . (20.14)

These three mesons transform like a 3 representation of SU(3)F. The conju-
gate mesons, which contain the ĉ and form a 3 representation of SU(3)F, are
called D−, D̂0 and D−

s respectively. All these mesons have been observed,
and their masses are around 1900 MeV. The D+ and the D0 form a doublet
of isospin, and their masses are very close, around 1865MeV. The mass of
D+

s is larger by about 100 MeV, a difference that we encountered between
different isomultiplets within an SU(3)F multiplet while studying the SU(3)F
multiplets in Ch. 10. More accurate values of the masses have been given in
Table B.4 (p 721).

Finally, we discuss the mesons that occupy the center of the figure shown
in Fig. 20.2. There can be four states at the center, corresponding to the
combinations uû, dd̂, sŝ and cĉ. The actual mesons are linear superpositions
of these combinations. Three such combinations, the π

0, the η and the η′,
have been discussed in Ch. 10. The fourth state is a cĉ state, and is called the
ηc. Its mass is 2980 MeV.

The JP = 1− mesons have the same representation under the flavor group,
and therefore Fig. 20.2 applies to the vector mesons as well, with only changes
in the names of the particles. The SU(3)F octet plus the SU(3)F singlet, in
this case, are considered together as a nonet of particles, as mentioned in
§10.7. This nonet includes the isotriplet ρ mesons, the K∗ mesons, plus the
ω and the φ. The mesons that take the place of the D mesons are called the
D∗ mesons. The only other state is a cĉ state, and this is the charmonium
state JΨ.

b) Baryons

Let us now discuss baryons. Since they have three quarks, their transforma-
tion under SU(4)F would be like 4 × 4 × 4. Moreover, we argued in §10.11
that the quark wavefunctions are antisymmetric in color. Thus, in the lowest
lying states for which the spatial wavefunction is symmetric, the spin-flavor
part of the wavefunction must also be symmetric. In analogy with the spin-
flavor group SU(6) that we considered in §10.11.1, here we need to consider
the spin-flavor SU(8) whose fundamental representation would consist of four
different flavors of quarks with spins up or down. The completely symmetric
part of the product of three fundamentals is

(8× 8× 8)symm = 120 . (20.15)
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Figure 20.3: Spin- 1
2

baryons belonging to the 20m representation of SU(4)F . The
gray polygon at the lowest and the highest levels denote the octet and the antitriplet of
SU(3)F that appear in Eq. (20.17). The middle level contains the sextet (in gray) and
the triplet (in white). Concentric elliptical mark at any place indicates that there are
two states at that place. In the table, q means either u or d quark.

If we decompose the 120 in terms of the subgroup SU(4)F ⊗ SU(2) where
SU(2) is the rotation group, we obtain120 à (20s, 4) + (20m, 2) . (20.16)

The first thing on the right hand side represents spin-3
2 baryons, the second

thing spin- 1
2 baryons. Notice that, as far as the SU(4)F group is concerned,

both types of baryons transform like a 20-dimensional representation. How-
ever, the two are not the same representation. The representation denoted by20s is completely symmetric in the SU(4)F group indices, i.e., it has a Young

tableaux 222. The other one is the representation 22
2

, which means that it
has mixed symmetry.

It might seem peculiar that two different representations of the same group have the same
dimension. If it does, then that’s because the most familiar non-abelian group, SU(2), does
not have this property. But there is nothing strange about it. For abelian groups, this is the
rule rather than exception since all irreducible representations are 1-dimensional. For discrete
non-abelian groups also such representations are quite common. For SU(2), however, all repre-
sentations of the same dimension are equivalent. There is no reason to expect the same thing
for SU(4) or any other group.

2 Exercise 20.2 In fact, apart from the two different irreducible 20-
dimensional representations mentioned already, SU(4) has yet an-

other of the same dimension, given by the Young tableaux 22
22

. Verify
this statement.

The two different 20-dimensional representations decompose differently
under the SU(3)F ×U(1)X subgroup.20s à (10,−1) + (6, 1

3
) + (3, 5

3
) + (1, 3) ,



§20.1. Charm quark and charmed hadrons 60120m à (8,−1) + (6, 1

3
) + (3, 1

3
) + (3∗,

5

3
) . (20.17)

Let us first look at the 20m, which are spin- 1
2 baryons according to Eq. (20.16).

The X quantum number of the octet of SU(3)F implies that it has C = 0,
since B = 1 for these three-quark states. Indeed, this is the charmless octet
that contains the nucleon, and that was discussed in Ch. 10. Calculation of
the charm quantum number of the other SU(3)F multiplets shows that the
baryons transforming as the 6 and 3 of SU(3)F contain one c quark, whereas
those transforming as the 3∗ of SU(3)F contain two c quarks. These states
have been shown in Fig. 20.3, where the number of c quarks is denoted by a
subscript.

The lettered names of the baryons appear in the figures. The naming
scheme can be explained as follows. The two lightest quarks are the u and the
d. If both of them occur in a baryon along with some third flavor of quark,
the combination can be a isospin singlet or a triplet. The isospin singlet is
called Λ and the triplet is collectively called Σ. Of course, when we say a
quark ‘occurs’ in a baryon, we mean that it is one of the valence quarks. The
ocean quarks do not matter in this discussion. When only one out of the three
valence quarks is either u or d, the baryon must be a isospin doublet, and is
denoted by the letter Ξ. If a baryon does not contain any u or d quark, it is
represented by the letter Ω. Such baryons are clearly isosinglets.

Of course just this much is not enough, it will lead to the same name for
many different baryons. To remove such degeneracies, two things are done.
A superscript is added denoting the electric charge of the baryon. which
helps distinguish between different members of the same isomultiplet. And a
subscript is added, which tells us the flavors of the quarks which are neither
u nor d. For example, if a Σ particle has a c quark in addition to the u and
d quarks, it is called Σc. If the additional quark happens to be a strange
quark, the subscript is omitted. Thus, in Ch. 10, the baryons that we had
encountered in Fig. 10.6 (p 274) and Fig. 10.7 (p 275), there is no subscript on
any of the baryons. But in Fig. 20.3 and Fig. 20.4, subscripts appear with
charmed baryons.

Note that there are some points on the figure where two baryons appear.
We encountered this phenomenon while discussing SU(3)F as well. Take, for
example, the udc baryons. There is one such baryon where the u and the
d quarks form an isospin singlet. This is called the Λ+

c , according to the
naming scheme explained above. There is another which would be part of an
isotriplet, along with uuc and ddc baryons, which is the Σ+

c . Similarly, there is
a dsc baryon that is a U -spin singlet, and one that is part of a U -spin triplet.
In the first one, the d and the s quarks are in an antisymmetric combination,
whereas in the second one they are in a symmetric combination. An usc
baryon can similarly be a V -spin singlet or triplet. Since neither U -spin nor
V -spin is a very good symmetry, the real particles are superpositions of these
two states which are appropriate for members of isospin doublets. With these
two uncharged and two singly charged states, there are two isodoublets: one
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(ssc)
(dsc) (usc)

(ddc)
(udc)

(uuc)

(scc)
(dcc) (ucc)

(ccc)

Figure 20.4: Spin- 3
2

baryons in SU(4). The lowest level contains the decuplet of
baryons of SU(3)F, which have not been labeled here.

whose members are denoted by Ξc, and the other whose members are called
Ξ′

c. The masses of these isodoublets are presented in Fig. 20.3.
The 20s of SU(4)F contains baryons with spin- 3

2 . The 10-plet of SU(3)F
has C = 0 through Eq. (20.11). Obviously, this is the SU(3)F decuplet of
baryons that was discussed in Ch. 10. Then there is a sextet of SU(3)F with
C = 1, i.e., these baryons have one c quark and two other quarks which are u,
d or s. There is also a triplet of SU(3)F with C = 2, baryons which contain two
c quarks. And finally, the SU(3)F singlet with C = 3 is a baryon composed of
three c quarks. All these members of the 20s of SU(4)F are shown in Fig. 20.4.

Having discussed the advantage of considering the SU(4)F group, it should
be added that this symmetry is very badly broken, which is why the states
in the same multiplet have a wide range of masses. But this is only to be
expected! The isospin symmetry is respected very well, at the per cent level.
The SU(3)F symmetry is much worse, as we have discussed in Ch. 10, because
the strange quark mass is much larger than that of the u and the d quarks.
And the SU(4)F must be even worse because the charm quark is much heavier
than the s quark, as is obvious from the masses of the charmed hadrons.

20.1.4 Discovery of other charm-containing hadrons

The charmonium state JΨ has a mass of about 3100 MeV. It is a JP = 1−

state, as we have mentioned. The charmonium state with JP = 0− is called
ηc, and is lighter than the JΨ by more than 100 MeV. Despite being heavier,
the JΨ state was discovered before the ηc. One might wonder, why wasn’t the
ηc observed first, at a lower energy?
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The answer to this question lies in the spin of the state. The experiments
were done with colliding e+-e− beams. In such experiments, the initial parti-
cles would have to go through a virtual photon, which in turn would produce
the cĉ state. Thus, so far as the hadronic states are concerned, it is a transition
from the vacuum state to the meson state through the virtual photon, which
has spin 1. Since the vacuum does not carry any angular momentum, this is
not possible unless the meson also has spin 1. Thus the JΨ can be produced,
but not the ηc. One might notice in this connection that Fig. 20.1 (p 596) has
peaks for the ω and φ mesons, which are members of the 1− nonet, but not
for the π

0 or the η or the η′ which are spinless. The reason is the same. Of
course the argument applies only for the case of a single photon exchange. If
more photons are exchanged, the process is possible, but then also the process
is higher order in e and therefore much weaker. Or alternatively, the ηc can be
produced along with some other particle so that the above argument does not
apply. Historically, the ηc was not discovered through its direct production.
Rather, it was found from the decay of the JΨ:

JΨ→ ηc + γ . (20.18)

Charmonium states like JΨ and ηc do not carry any charm quantum num-
ber. The quantum number cancels between the c quark and its antiquark.
The D mesons, on the other hand, have non-zero charm quantum number.
As discussed before, the masses of the D mesons are a little below 2 GeV.
Hence they are much lighter than the JΨ, or even than the ηc. And yet,
they were discovered later because from e+e− collisions, one cannot produce
a single D meson which carries charm: one must have to produce also a D̂
meson along with it. Hence the total CM energy required in the e+e− beam
would be twice that of the mass of a D meson, i.e., close to 4 GeV. In 1976,
when the energy could be increased to cross this mark, it was observed that
in the products, K−

π
+ CM energies go through a hump at about 1.9 GeV.

According to the method described in §9.6.2, this indicates the presence of
a particle that decays into K−

π
+. This is the D0. Other D mesons were

discovered in similar ways.

2 Exercise 20.3 From the spin and parity of the states, show that the
JΨ is a 3S1 state of the charm quark and its antiquark, whereas the
ηc is a 1S0 state.

20.1.5 Decay of mesons with charm quark

We mentioned earlier that the charmonium states are very narrow. Through
the time-energy uncertainty relation, it implies that their lifetimes are quite
large. The charmonium state JΨ at 3097 MeV has a width of about 93 keV,
as already mentioned. To understand how small it is, compare it with the
fact that the ω meson, with mass 782 MeV, has a width of 8.5 MeV. The
charmonium JΨ, despite being about four times heavier, has a width which is
about 90 times smaller.
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Figure 20.5: The diagram in the left shows how the sbs meson can decay to two
mesons, none of which carries any strangeness. The diagram on the right shows decay
where the decay particles carry strangeness. The diagram to the left is OZI suppressed
with respect to the diagram to the right. The text explains the reason.

If we consider the decay of JΨ to e+e− or any other final state containing
leptons, the discrepancy is easily explained. Leptonic final states must have
to come through electromagnetic interactions, for which the rate must be
smaller compared to typical strong interaction rates. But the JΨ decays mostly
hadronically. In fact, branching ratio of hadronic final states is 87.7%. There
are multi-pion final states, and also final states involving the rho meson, kaons,
etc. Why are these decays much slower than typical strong interaction decays?

The answer lies in the OZI rule that we had mentioned in Ch. 10, but
did not really explain. Let us now try to understand the reason for the OZI
suppression, using the φ meson decay as a paradigm. As we said in Ch. 10,
the φ meson is almost purely an sŝ state. If it has to decay to non-strange
particles, the diagram has to look like Fig. 20.5a. It is important to note that
there have to be at least three gluons exchanged. A single gluon exchange
is impossible since the quark-antiquark pair in the initial state are in a color
singlet combination, and therefore cannot couple to a gluon. Two gluons
are also not possible, because the φ meson is odd under charge conjugation,
whereas a state with two gluons is even. Thus, at least three gluons are
necessary, as shown in Fig. 20.5a, and the amplitude will therefore contain a
factor g6

3, i.e., the rate will contain α6
3. The diagram in Fig. 20.5b, on the other

hand, has a rate proportional to α4
3. Moreover, remember from Ch. 12 that

the value of α3 depends quite strongly on the energy scale. In Fig. 20.5, the
virtual gluons should have 4-momenta of the order of the φ meson mass. On
the contrary, if we consider a decay of the form Fig. 20.5b where the final state
contains the s and the ŝ in two different particles, much smaller momentum
transfer would be involved. At low momentum transfers, the QCD coupling
constant is large, and it falls sharply as the momentum transfer increases.
Hence, each factor of α3 appearing in Fig. 20.5a is much smaller than any α3

in Fig. 20.5b. This is the reason why φ→ ρπ decay is suppressed with respect
to φ→ KK decay.
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Coming back to the question of JΨ decay, we see that the situation here is
worse compared to the φ decay. Here, there is no possible decay mode that
is not OZI suppressed. In other words, the JΨ cannot decay into a particle
containing charm quantum number C = +1 and another one containing C =
−1. There simply isn’t any charmed meson with mass less than half the mass
of the JΨ, or even the ψ(3686). Thus, the c and the ĉ both have to be absent
in the final states, and the final state must be OZI suppressed. This is the
reason the decays are slow, and the resonance is narrow.

2 Exercise 20.4 Using G-parity arguments, show that the JΨ cannot de-
cay to two pions through strong interactions.

Let us now discuss the decay of the D mesons. These carry charm quan-
tum numbers. The decay products cannot, because there are no charmed
particles lighter than the D mesons. So the decays must be weak decays. One
consequence of this fact is that the lifetimes are quite long, of the order of
10−15 s. It also has important implication toward the decay products. The
weak neutral current cannot change flavor, as discussed in Ch. 17. So the
charged current, which contains the CKM matrix elements, must be respon-
sible for the decay. The largest CKM matrix element involving charm quark
is Vcs (in fact, its magnitude is close to unity), so the c quark will decay more
readily to the s quark than to the d quark. Therefore, the dominant decay
channels of the D mesons contain strangeness. For example, 54.7% of D0

decays contains K− in the final state.
There is a related phenomenon, viz., that the branching ratio of D0 decays

containing a K+ is only about 3.4%. The reason for this discrepancy between
K+ and K− decay modes can easily be understood by recalling that K+

contains uŝ whereas K− contains sû. A D meson contains the c quark which
can easily be converted to the s quark, as explained above. An û will then
appear as a member of a quark-antiquark pair that will be produced, as seen
on the right end of Fig. 20.5b. That way, a K− is obtained in the final state.
In order to obtain a K+, the original c quark must go to a d quark which
is highly suppressed because the relevant CKM element is small, and then
somehow lots of quark-antiquark pairs have to be produced, among which
there will be a u and an ŝ.

2 Exercise 20.5 Draw a quark-level diagram to show how a K+ might
appear in the final state of a D0 decay.

2 Exercise 20.6 We said that the lifetimes of the D mesons are of the
order of 10−15 s. What are the widths in energy units?

Decays of D∗ mesons are very different. They can decay strongly to a D
meson, accompanied by a pion or a photon. If the accompanying particle is
a pion, the decay can be mediated by strong interactions, and therefore the
width is large, of the order of a few MeV.
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20.1.6 Decay of baryons with charm quark

Let us start with the JP = 1
2

+
baryons. The Σc baryons have masses around

2455 MeV whereas the Λ+
c mass is 2286 MeV. There is thus enough mass

difference for the decay

Σc → Λ+
c + π (20.19)

to take place. As it happens, this is the only mode for which a strong decay is
allowed. Therefore, the Σc baryons decay almost fully through this channel.

2 Exercise 20.7 If the isospin symmetry were exact, show that one
should expect Γ(Σ++

c → Λ+
c + π

+) = Γ(Σ+
c → Λ+

c + π
0).

The Λ+
c is the lightest charmed baryon, and therefore cannot decay

strongly. Thus it has a much larger lifetime, roughly 2×10−13 s. The weak de-
cays preferentially have final states containing strange particles, as explained
earlier in connection with the decay of the charmed mesons. Thus, the domi-
nant decay modes are of two types. One type consists of proton and strange
mesons in the decay products, like pK̂0 or pK−

π
+. In the other type, the

Λ baryon carries the strangeness, and some non-strange mesons are produced
along with it.

The Ξc and Ξ′
c baryons carry both charm and strangeness, and are the

lightest baryons which have this property. So they have to decay via weak
interactions. As explained in the context of mesons, the charm quark likes to
decay to a strange quark. Add to it the strange quark that was already there
in the initial state, and one gets two units of strangeness in the final state.
Of course, other values of strangeness are possible, but such final states are
CKM suppressed.

Among the charmed baryons with JP = 3
2

+
, all but one should be able to

decay strongly. The exception is Ω++
ccc , which has to decay via weak interac-

tions.

20.2 Bottom quark

Was there any prediction of the bottom quark? The answer is both ‘yes’ and
‘no’. Once the charm quark was discovered, the existence of two generations of
quarks was confirmed. The first generation comprised the u and the d quarks,
the second comprised the c and the s quark. The GIM cancellation between
these two generations explained the smallness of flavor-changing decays or the
KL-KS mass difference. So, in a sense, there was no compelling reason to look
beyond the two generations of quarks.

Except one, perhaps. Kobayashi and Maskawa discovered that gauge inter-
action of fermions cannot explain CP violation unless the number of fermion
generations is at least three. In Ch. 21, we will explain this statement in more
detail. Since CP violation was discovered in 1964, this could have been taken
as a serious hint for third generation quarks. But historically, despite this
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hint, the idea of third generation quarks was not taken very seriously, and
many people thought that CP violation might be explained by some other
means like an extension of the scalar sector of the standard model.

20.2.1 Discovery of bottom-containing hadrons

And so, it was a mild surprise when, in 1977, a team led by Lederman discov-
ered a new resonance in Fermilab while studying the energy of µ

+
µ
− pairs

in a fixed target experiment of proton beam hitting a beryllium target. A
year later, the same resonance was produced in e+e− collision in DESY, and
it was proved that the resonance is a meson. Such a heavy meson could not
be explained with the four quarks that were known at that time, so the hy-
pothesis of the existence of a new quark was necessary. The rise in the R
value above this resonance showed that the electric charge of this quark has
the same magnitude as that of the d and s quarks. In analogy with the name
‘down’, this quark came to be known as the ‘bottom’ quark, or the b quark.
Some people prefer to think that the name is not ‘bottom’ but ‘beauty’, in
the same line as ‘strangeness’ or ‘charm’. Either way, it is the b quark.

The resonance seen was a bb̂ meson. It has mass of 9.460 GeV. Like
the JΨ, it is a state with spin 1. It came to be called the upsilon (Υ), or
more precisely Υ(1S). It is one member of the family of particles which are
tagged by the generic name bottomonium, bound states of bb̂. As for the case
of charmonium, other bottomonium states have also been observed, like the
Υ(2S) at 10.023 GeV and the Υ(3S) at 10.355 GeV.

There have been searches for hadrons containing the bottom quantum
number, and they have been very successful. The B+ meson, with mass
5.279 GeV and quark content ub̂, as well as its antiparticle B+, has been
widely studied. Neutral B mesons like B0 (db̂) and B0

s (sb̂), as well as their
antiparticles B̂0 (bd̂) and B̂0

s (bŝ), have also been discovered and studied
extensively. Charged particles carrying both bottom and charm quantum
numbers have also been discovered. They are called B+

c (cb̂) and B−
c (bĉ),

and have a mass of 6.277 GeV. Some bottom-containing baryons have also
been discovered, like the Λ0

b whose valence quarks are udb, and the Ξ0
b and

Ξ−
b whose valence quarks are usb and dsb respectively.

20.2.2 Decay of bottom-containing hadrons

The bottomonium state Υ(1S) is a very narrow resonance, the width being
only about 54 keV. For the charmonium, the reason for the narrowness is
OZI suppression. For the bottomonium, the reason is the same, with the
additional comment that the Υ is much heavier than JΨ, and so the QCD
coupling constant is even smaller at this scale and the decay rate is smaller.
The width of the Υ(2S) and Υ(3S) states are also comparable to that of
Υ(1S). However, Υ(4S) has a mass of 10.58 GeV, and is heavy enough to
decay into BB̂ mesons, i.e., one meson containing a b quark and another
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b sW
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γ

Figure 20.6: One-loop diagrams for the quark-level process b → s + γ. In any
renormalizable gauge, there are extra diagrams in which one or both of the internal W
bosons are replaced by the unphysical charged Higgs boson.

containing a b̂. Such decays are not OZI suppressed, and so the Υ(4S) has a
large width, 20.5 MeV.

The mesons carrying bottom quantum number turn out to be much longer
lived than the mesons carrying charm quantum number. The reason is that
the charm quark decays to a strange quark, and the corresponding CKM
matrix element is almost equal to unity. On the other hand, the bottom
quark decays to a charm quark, and the relevant CKM matrix element, Vcb,
is quite small, of order λ2 in the Wolfenstein parametrization of the CKM
matrix. Because of this, the amplitudes are suppressed, and the lifetimes of
bottomed mesons are typically of order 10−13 s.

An important process that deserves some attention is the quark-level tran-
sition b→ sγ. At the hadronic level, one might think that the simplest process
to show the effect of this transition would be B+ → K+γ or B0 → K0γ. But
that is not correct. These processes are in fact absolutely forbidden since
they would involve a J = 0 to J = 0 radiative transition. However, the final
state can contain an extra pion. Or else, the final state might contain K∗,
members of the JP = 1− nonet of mesons, instead of the K mesons. The
resulting final state is a two-body state, and hence can be very accurately
studied. The quark-level process can go through one-loop diagrams shown
in Fig. 20.6. Effectively, the transition constitutes a flavor-changing neutral
current, and the GIM cancellation operates here. The intermediate t quark
lines contribute appreciably because the top mass is large.

20.3 Neutral meson–antimeson systems

We have discussed the physics of neutral kaons in Ch. 17. With the discovery
of the third generation of quarks, there arose the possibility of studying other
similar systems consisting of two mesons which are antiparticles of each other.
We will denote the meson states with well-defined quark flavors by M0 and
M̂0. For example, M0 might be B0, in which case M̂0 would be B̂0, and we
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will be studying the physics of the B0-B̂0 system. We can also consider the
system composed of B0

s and B̂0
s , or even of the charmed hadrons D0 and D̂0.

In essence, all such systems are similar to the K0-K̂0 system. Since we have
already described the neutral kaon system in great detail, we will not get into
similar details of these mesons. We will only point out the similarities and
differences with the neutral kaon sector qualitatively.

First, the similarities. The quark structure is similar, as we have already
commented. In the approximation that CP violation is neglected, one combi-
nation of M0 and M̂0 is a CP eigenstate with eigenvalue +1 and another with
eigenvalue −1. The two eigenstates are not exactly degenerate: there is a tiny
mass difference between them, and also a difference in their decay rates, both
induced by weak interaction effects. When CP violation is included, one can
obtain CP-violating phenomena involving such mesons, as will be discussed
in Ch. 21.

Let us now look at the differences with the neutral kaon sector. The biggest
difference lies in the fact that the neutral kaons are not very much heavier than
the combined mass of three pions, so that the three-pion decay mode is quite
suppressed: the decay rate of K0

L is about two orders of magnitude smaller
than that of K0

S . The B mesons, on the other hand, are much heavier, so
the decay rates into the two-pion and three-pion channels are almost equal.
Because of this difference, it makes little sense to call the two eigenstates
by the names ‘short-lived’ and ‘long-lived’. Instead, one usually denotes the
heavier eigenstate by M0

H and the lighter one by M0
L. In the calculation of the

K0
L-K0

S mass difference in the standard model, we found that almost the entire
contribution comes from c quark intermediate lines in the box diagrams. The
t quark contributions were negligible, despite the large t quark mass, because
the mixing angles were very small. If we use Wolfenstein parametrization of
the CKM matrix, we find that VtsVtd ∼ λ5, whereas VcsVcd ∼ λ. For the
B mesons, the relative magnitudes of the mixing matrix elements will not
be similar. Looking at Eq. (17.24, p 488), we find that for Bs mesons, the
relevant combinations of mixing matrix elements are VtsVtb ∼ λ2, and VcsVcb

also goes like the same power of λ. For Bd mesons, the relevant magnitudes
are VtdVtb ∼ λ3 which is smaller than the corresponding quantity for the Bs

mesons, but then VcdVcb is also of the same order. The conclusion is that
both c quark and t quark intermediate lines have to be considered in the
calculation. Since the t quark is more than 100 times heavier than the c
quark, the contributions to the B0-B̂0 or to the B0

s -B̂0
s are large:

∆mB0 = (3.337± 0.033)× 10−10 MeV

= (0.507± 0.004)× 1012 s−1 , (20.20a)

∆mB0
s

= (116.4± 0.5)× 10−10 MeV

= (17.69± 0.08)× 1012 s−1 . (20.20b)

Note that the mass difference is larger for the B0
s -B̂0

s system, a fact that can
be understood from the differences in the power of the Wolfenstein parameter
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λ appearing in the two expressions, explained earlier in the paragraph. For
the D0-D̂0 system, the mass difference is much smaller:

∆mD0 = (1.44+0.48
−0.50)× 1010 s−1 . (20.21)

The main reason for the smaller value is that the predominant contribution
comes from the s quark mass, which is much smaller than the t quark mass.

20.4 Top quark

When the b quark was discovered, it was tempting to assume that there was
also another quark, which has the same electric charge as u and c quarks.
People who thought b as bottom called this new quark the ‘top’ quark. People
who thought b as beauty wanted to call it by the name ‘truth’. So the name
t quark was universally accepted.

However, mere analogy with the other two generations cannot be a proof
of existence of the t quark. Direct detection had to wait till 1994 because the
top quark turned out to be much heavier than the bottom quark. However,
even before the direct detection, it was clearly known that the bottom quark
cannot be a lone quark in the third generation of fermions. The demonstration
came from Z decay. The point was that the branching fraction of Z decaying
to hadrons containing b quarks was measured to be 15.12%. The branching
ratio of Z → e+e− is 3.363%, which means that

Γ(Z → bb̂)

Γ(Z → e+e−)
≈ 4.5 . (20.22)

The decay rate of the Z boson to fermion-antifermion pair was calculated in
§19.2. Using the results given in Eqs. (19.32) and (19.38), we obtain

Γ(Z → bb̂)

Γ(Z → e+e−)
= 3×

(
T

(b)
3L + 2

3 sin2 θW

)2

+
(
T

(b)
3L

)2

(
− 1

2 + 2 sin2 θW

)2
+ 1

4

, (20.23)

where the factor 3 in the numerator is the color factor, which takes into
account the fact that there are three different colors of b that the decay of Z
can produce.

For a rough estimate, we can put sin2 θW = 1
4 . If the b quark were a singlet

of the SU(2) part of the gauge group, the ratio of the decay rates would have
been equal to 1

3 , nowhere close to the experimental result. If, on the other
hand, the b quark is assumed to have T3L = − 1

2 , the ratio comes out to be
4 1

3 , which seems the right choice. With a more accurate value of sin2 θW , the
analytical result agrees perfectly with the experimental one.

2 Exercise 20.8 In §16.7, we calculated the forward-backward asymme-
try in the reaction e+e− going to a fermion-antifermion pair. Show
that this asymmetry would vanish if the b quark happened to be a
singlet of SU(2)L.
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Thus, even before the discovery of the t quark, it was known that the
b quark has T3L = − 1

2 , and therefore it must have a partner in the third
generation of quarks. The actual discovery, however, had to wait quite a
while. The reason is that the ratios of masses of the two quarks in each of the
first two generations lie within a factor of 10 or so. Since the bottom quark
mass is about 4.5 GeV, naively it was expected that the top quark could not
be much heavier than 45 GeV or so. This naive expectation was jolted when
the Z boson was not found to decay into tt̂, signifying that the top quark has
to be heavier than 1

2MZ , leaving hardly any room for its mass to be within an
order of magnitude of the bottom mass. The lower limit was steadily increased
as more and more data was accumulated.

There were upper limits as well. These limits came from the effect of
virtual top quarks in various processes. We have commented that the contri-
bution coming from top quark internal lines is negligible in the calculation of
the K0

L-K0
S mass difference. However, for the B0-B̂0 system, the contribution

of top quark internal lines is dominant, and the measured value of the mass
difference of the neutral B mesons provides an upper limit of the top quark
mass. The ratio of the masses of the W and the Z boson also receives one-loop
corrections from top quark loops, and here also the measured value of the ρ
parameter can be used to estimate an upper bound of the top mass. These
estimates indicated an upper limit of roughly 200 GeV.

There was also the limit that came from the measurement of the W to Z
boson mass ratio, or, more precisely, of the ρ parameter defined in Eq. (19.58,
p 576). In Eq. (19.86, p 583), we showed the contribution to this parameter
that comes from a doublet of fermions. If m1 ≫ m2, the dominant term in
this contribution is

3GFm
2
1

8
√

2π2
= 3.1× 10−3 ×

( m1

100 GeV

)2

, (20.24)

including an explicit color factor. The experimental bounds on the ρ param-
eter indicated that the top mass has to be less than 200 GeV or so.

As the experimental lower limit on top mass was pushed beyond the Z
mass, it was clear that such a heavy top would predominantly decay to a real
W -boson and a b quark:

t→ W+ + b . (20.25)

This channel was searched for in the Tevatron which started operating in
1987. As mentioned in Ch. 9, it is a proton-antiproton collider. A top quark
is produced in such colliders through strong interactions, and is therefore
produced in the pair tt̂. The t̂ decays into W− + b̂. Thus, the production of a
tt̂ pair can be identified from the decay mode containing W+W−bb̂. Searching
from channels containing at least two leptons which arise from the decay of
the W ’s or the b’s, the top quark was finally discovered in 1994.
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2 Exercise 20.9 Ignoring the mass of the b quark, show that the rate of
the top decay process shown in Eq. (20.25) is given by

Γ =
αmt

16 sin2 θW

m2
t

M2
W

„

1 − M2
W

m2
t

«2 „

1 +
2M2

W

m2
t

«

. (20.26)

There is one aspect in which the top quark is very different from any other
quark. The top quark mass is about 173 GeV. Putting it into Eq. (20.26) along
with the values of MW , α and sin2 θW , one obtains that the lifetime is roughly
(1.5 GeV)−1. This is significantly smaller than Λ−1

QCD, since ΛQCD ≈ 200 MeV.
The reason why this comparison is important is the following. Once a quark
is produced in a high energy reaction, it takes some time to hadronize. The
hadronization time is of the order of Λ−1

QCD. Thus, we find that a top quark
produced in a high energy collision process decays before it can hadronize.

20.5 Quark masses

We have discussed the masses of the light quarks — u, d and s — in §18.3.6.
Here, we discuss the masses of the heavy quarks c, b and t. We call these three
quarks “heavy” not only because they are heavier than the other three, but
because their masses are much bigger than the QCD scale ΛQCD. This means
that for discussing processes involving these quarks, the coupling constant can
be taken to be in the perturbative region.

A very rough estimate of the mass of a particular quark can be obtained
by determining the mass of a meson that contains the quark and its antiquark,
and then dividing by two. But this cannot be a good algorithm. For example,
take the charm quark. The cĉ bound state ηc has a mass of 2980 MeV, whereas
the JΨ mass is about 3100 MeV. The excess amount of mass for the JΨ can be
thought of as the energy of an excited state of its constituents. Even if we go
by the lightest meson, we need to remember that a considerable amount of
the mass of a hadron comes from the ocean quarks and gluons. To account
for these things, and also to fit the effects of these masses when these quarks
appear as virtual lines, one usually takes

mc = 1.27 GeV . (20.27)

For the case of the bottom quark, the exercise is simpler because its mass is
much higher:

mb = 4.18 GeV . (20.28)

And for the top quark, the mass is so large that one easily concludes

mt = 173.5 GeV (20.29)

from the minimum energy required for observing top events.
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There is one important point to be mentioned in connection with quark
masses. Earlier in Ch. 12, we argued that the physical coupling constant is
scale-dependent. The mass of any particle, being also a parameter in the
Lagrangian, is also scale-dependent for the same reason. We have never men-
tioned this point so far, because there is a very natural definition of mass:
it is the parameter that appears in the kinematical or dynamical equations
for the relevant particle. For example, if we want to mention the mass of the
electron, we can just see how much it bends in a given magnetic field, and
deduce the mass from that. It is true that the mass parameter that appears
in the Lagrangian will be scale-dependent, but there is an on-shell value of
the mass, which is what we accept as the physical mass.

For quarks, we cannot use this on-shell definition because there are no
free quarks. Thus, the values quoted for the quark masses pertain to some
particular energy scale. We have not mentioned the scales because the vari-
ation with scale is not of much importance in our discussions. However, the
variations are not insignificant.

20.6 Heavy quark effective theory

In Ch. 18, we saw that certain properties of hadrons are easily understandable
by considering the massless limits of the light quarks. Similarly, there are
properties of hadrons containing one or more heavy quarks which can be
understood by considering the limit that the heavy quark masses are infinite.
This is the topic that we discuss in this section.

20.6.1 Symmetries

We will denote heavy quarks by Q, the calligraphic capital Q. We consider
hadrons with only one heavy quark, the remaining quarks or antiquarks being
light. In such systems, even if momentum is exchanged between the heavy
quark and other quarks, the change of the velocity 4-vector will be given by
δv µ = δpµ/mQ, which vanishes in the limit mQ → ∞. Thus, the velocity
4-vector of the heavy quark can be taken to be a conserved quantity, charac-
teristic of the system. This is reminiscent of the standard treatment of the
hydrogen atom, where we can consider the proton to be at rest without any
loss of consistency, because the proton is much heavier than the electron.

It is therefore convenient to deal with quark fields characterized by a ve-
locity 4-vector v µ. To this end, we rewrite the heavy quark field Q(x) in the
form

Q(x) = exp
(
− imQv · x

)(
Qv(x) + Qv(x)

)
, (20.30)

where

Qv(x) = exp
(
imQv · x

) 1 + v/

2
Q(x) ,
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Qv(x) = exp
(
imQv · x

) 1− v/
2

Q(x) . (20.31)

2 Exercise 20.10 Show that P± ≡ 1
2
(1±v/) are orthogonal projection ma-

trices, i.e.,

P 2
+ = P+ , P 2

− = P− , P+P− = P−P+ = 0 . (20.32)

2 Exercise 20.11 Verify that

v/Qv(x) = Qv(x) , v/Qv(x) = −Qv(x) . (20.33)

2 Exercise 20.12 Show that

1 + v/

2
γµ 1 + v/

2
=

1 + v/

2
v

µ 1 + v/

2
. (20.34)

Find the similar equation with a Dirac matrix flanked by 1
2
(1 − v/).

[Note : In fact, it is not necessary to put down two factors of the projection matrix
on the right hand side of Eq. (20.34).]

The significance of the projection matrices appearing in Eq. (20.31) is
straightforward. Note that

1± v/
2

=
m± p/

2m
(20.35)

for any particle with mass m. In the appendix, in §F.2.7, we argue that
these matrices project out the positive energy and negative energy spinors,
i.e., spinors corresponding to particles and antiparticles. Therefore, the field
Qv(x) corresponds to quarks and Qv(x) to antiquarks. It can then be easily
seen that the free Lagrangian of the heavy quark can be rewritten in the form

L0 = Q iγµ∂µQ −mQQQ = Qv iv
µ∂µQv + · · · , (20.36)

using the identity of Eq. (20.34) and omitting the antiquark terms, which
will be suppressed in the heavy mass limit. This shows that the Lagrangian
is independent of the quark mass. Therefore, the physical consequences of
the theory should be independent of the heavy quark mass as well. In other
words, if we consider two different systems, one containing a heavy quark Q1

and the other a different heavy quark Q2, plus other lighter quarks which are
the same in both systems, properties of both systems should be identical to
the extent that corrections involving the inverse of the heavy quark masses
can be ignored. This is called the heavy quark flavor symmetry.

Once again, we can go back to the analogy of the hydrogen atom. An
ordinary hydrogen atom has one proton as its nucleus. Suppose we compare
it with the deuterium and the tritium, whose nuclei contain one and two
neutrons respectively. The energy levels of the electron in these atoms will
be the same as those of the ordinary hydrogen atom, because we consider the
nuclei to be infinitely heavy in all three cases. If we consider the three nuclei
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as different ‘flavors’, this example constitutes a perfect analog of the heavy
quark flavor symmetry for atomic systems.

There are more symmetries in the heavy quark limit. To see them, let us
try to find the propagator of a heavy quark. Starting from the free term seen
in Eq. (20.36), if we follow the method of finding the propagator that was
detailed in Ch. 4, we would obtain the propagator of the Qv field as i/(v · k).
Usually, is presented in the form

1

2
(1 + v/)

i

v · k . (20.37)

The projection matrix, 1
2 (1 + v/), appears here only to remind us that the

associated field contains a projection matrix. It would not matter at all in
the evaluation of any Feynman amplitude involving these fields, because the
vertices involving these fields will contain the projection matrix as well, and
powers of a projection matrix is the matrix itself.

The important point of Eq. (20.37) is that, apart from the projection
matrix that is superfluous, the propagator is just a multiple of the unit matrix.
Similarly, the interaction of the quarks with some gauge bosons V a

µ can also
be written as

gQγµTaQV a
µ = gQv µTaQV a

µ , (20.38)

by using Eq. (20.34). Here also the Dirac matrix reduces to a unit matrix.
Thus, there is nothing in the vertices or in the propagators of heavy quark
fields that can change a particular component of the Dirac field to a different
one. This means that the physical consequences of this theory is independent
of the spin of the heavy quarks. This is called the heavy quark spin symmetry.

20.6.2 Hadron fields

Heavy quark spin symmetry would connect different particles which appear
in different representations of the Lorentz group, e.g., have different spins.
For example, consider a pseudoscalar meson consisting of a heavy quark Q
and a light antiquark q̂. The spin of q̂ should be opposite to the spin of Q
since the total spin of the meson is zero. Now suppose we apply heavy quark
spin rotation. In course of the rotation, the spin of Q can be in the same
direction as that of q̂. In this situation, the total spin of the system cannot
possibly be zero. In fact, it will be 1, so that we will encounter a vector
meson. Thus the pseudoscalar and vector mesons are related through heavy
quark spin symmetry. In general, the spin of a hadron, J , can be written in
the form

J = Sh + Sl , (20.39)

where Sh is the contribution of the heavy quarks and Sl of the light quarks
in the hadron, and the sum has to be performed according to the standard
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methods of addition of angular momenta. The point is that unless sl, the
quantum number corresponding to the eigenvalue for S2

l , is zero, different
values of j are obtained for the same Sh, and hadrons with these different
values of j therefore belong to the same irreducible multiplet under the heavy
quark spin symmetry. For example, as described above, the JP = 0− and
JP = 1− mesons will belong to the same multiplet.

It is therefore convenient to express the JP = 0− and JP = 1− mesons
through the same field. Suppose there is a pseudoscalar meson M containing a
particular heavy quark and some light antiquark. With the same combination
of the heavy quark and the light antiquark, there is a vector meson M∗,
where the asterisk stands for an excited state of the same constituents. We
will denote the corresponding fields by φ(x) and Φµ(x). The field combining
these two, which will be used in the context of heavy quark spin symmetry,
is written in the form

Mv(x) =
1 + v/

2

[
γµΦµ
v (x) + iφv(x)γ5

]
. (20.40)

The fields φv(x) etc are defined in the same manner as Qv was defined in Eq.
(20.31).

Let us explain different aspects of the definition that occurs in Eq. (20.40). First, notice that
we have put in the projection matrix, (1+v/)/2, to ensure that only the meson involving a heavy
quark is relevant here, and not its antiparticle with a heavy antiquark. Second, we have used
the factor of i with the pseudoscalar, so that both terms in the square bracket have the same
kind of hermiticity property. In particular, if any of these two terms is denoted by A, we have
A† = γ0Aγ0. Third, note that the field Mv(x) is in the form of a 4× 4 matrix. This has been
done so that the rows of this matrix can transform as doublets of Sl whereas the columns as
doublets of Sh. In other words,

h

Sh,Mv
i

=
1

2
ΣMv ,

h

Sl,Mv
i

= −1

2
MvΣ , (20.41)

where Σ represents the 4 × 4 generators of rotation which were discussed in some detail in
§14.2.1. Therefore, Eq. (20.39) implies that under a spatial rotation by an amount θ, the
change of the field Mv(x) is given by

δMv = i
h

θ · J,Mv
i

=
i

2

h

θ · Σ,Mv
i

. (20.42)

If we now consider the meson in the rest frame so that v/ = γ0, it is easy to see that δM(x) = 0,
since both γ0 and γ5 commute with all components of Σ. This shows that φ(x) indeed is a
spinless field.

2 Exercise 20.13 From Eq. (20.42), show that, in the rest frame where
v/ = γ0, the change of the field Φ(x) under rotation is given by

δΦ(x) = θ ×Φ(x) , (20.43)

which is the expected transformation property of a vector field.

2 Exercise 20.14 Show that the field Mv(x) satisfies the identities

v/Mv(x) = Mv(x) , Mv(x)v/ = −Mv(x) . (20.44)
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[Hint : For proving the second identity, one needs to use the fact that the spin-
1 particle Mµ

∗ should have a polarization vector orthogonal to its momentum, as
mentioned for example in Eq. (4.28, p 67). In the present case, we can write the
condition as v µM

µ
∗ = 0, which implies M/ ∗v/ = −v/M/ ∗.]

For spin- 1
2 baryons containing a single heavy quark, the formalism is much

less complicated. The reason is that now the light degrees of freedom have
total spin zero. So a baryon alone constitutes an irreducible representation of
the heavy quark spin symmetry, and is described by a spinor field Bv(x) that
satisfies the constraint

v/Bv(x) = Bv(x) . (20.45)

This equation is equivalent to the equation of motion for the spinors, as in
Eq. (4.52, p 71). The spinor solutions of this equation, characterized by the
velocity vector v µ, can be normalized by the relation

u(v , s)γµu(v , s) = 2v µ , (20.46)

which is a special case of the Gordon identity, Eq. (F.123, p 752).

20.6.3 Consequences

There are many consequences of these heavy quark symmetries. We give a
few examples here to convey an idea of the operations involved and of the
results obtained.

a) Decay of pseudoscalar and vector mesons

In §20.6.2, we mentioned that a pseudoscalar and a vector meson consisting
of the same heavy quark and the same light antiquark belong to the same
irreducible representation under the heavy quark spin symmetry. For example,
both D+ meson and D+

∗ meson have the quark content cd̂. Decay rates of
two such mesons should therefore be related in the heavy quark limit.

In §17.6, we discussed how the decay constants for pseudoscalar as well as
vector mesons can be defined. We will now show that if we take a pseudoscalar
and a vector meson, both containing the same heavy quark Q and the same
light antiquark q̂, their decay constants are related by heavy quark spin sym-
metry. The hadronic part of the matrix element is of the form

〈
0
∣∣J µ

∣∣meson
〉
,

where the meson is either the pseudoscalar M or the vector M∗. And the
current is of the form qΓλQ, where Γλ can be either γλ or γλγ5. Note that
we can write

qΓλQ = tr
(

ΓλQq
)
. (20.47)

Replacing the field operator of Q by the field Qv in the heavy quark limit,
we can contemplate how the current will look if we try to express it using
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the irreducible meson field introduced in Eq. (20.40). Whatever is the most
general expression possible, it should contain only one factor of the field Mv,
and it should transform the same way under heavy quark spin symmetry. Of
course, Mv itself transforms like Qq under this symmetry, so the most general
possible form for the current would be

qΓλQv = tr
(
XΓλMv

)
, (20.48)

where X is invariant under the heavy quark spin symmetry. Thus, X can
only contain v , and the most general form for it would be

X = a01+ a1v/ . (20.49)

Recalling the form for the field Mv from Eq. (20.40), we find

tr
(
XΓλMv

)
= (a0 − a1) tr

(
ΓλMv

)
, (20.50)

using cyclic property of trace and Eq. (20.44). Now note that

tr
(
γλMv

)
= 2Φλ

v ,

tr
(
γλγ5Mv

)
= −2iv λφv . (20.51)

Therefore, under heavy quark symmetry, we find that

〈
0
∣∣qγλQ

∣∣M∗(p, ǫ)
〉

= 2
〈
0
∣∣Φλ
v

∣∣M∗(p, ǫ)
〉

= 2(a0 − a1)Nǫλ ,〈
0
∣∣qγλγ5Q

∣∣M(p)
〉

= −2ivλ 〈0 |φv|M(p)〉 = −2iv λ(a0 − a1)N ,

(20.52)

where N depends on the normalization on the states. Comparing these equa-
tions with the equations that define the decay constants for the mesons, and
using v λ = pλ/mM in the heavy quark limit, we find the relation

fM∗ = mMfM . (20.53)

b) The decay Λc → Λe+νe

As mentioned earlier in this chapter, the Λc baryon has the quark content
cud. The Λ, on the other hand, has an s quark in place of the c. Thus, at the
quark level, the decay Λc → Λe+νe implies a process

c→ se+νe . (20.54)

Only weak interactions can inflict such a process. In writing the Feynman
amplitude, there is no trouble with the leptonic part. In fact, exactly a
similar piece appeared when we wrote the amplitude for the decay rate of
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the charged pion. The problem lies with the hadronic part of the Feynman
amplitude, where we encounter a matrix element of the form

〈Λ(p′) |sγµ(1− γ5)c|Λc(p)〉 , (20.55)

that comes from charged currents of weak interactions. As we saw in §17.6,
the most general parametrization of the matrix elements involves six form
factors.

Since the charm quark is a heavy quark, let us check whether the heavy
quark symmetries can bring about any simplification. We replace the field
of the charm quark by cv, as described earlier in this section. The matrix
elements should now be of the form

〈Λ(p′) |sΓµc|Λc(p)〉 = u′XΓµu , (20.56)

where Γµ can be either γµ or γµγ5, and X depends on the velocity 4-vector
v

µ. The most general matrix that can be built up from the vector v µ is of
the form

X = A+Bv/ . (20.57)

It is thus easily seen that both f1 and f̃1 contain a contribution that is equal to
A. As regards the B term, let us note that since the charm quark is very heavy
compared to the other quarks in Λc, its momentum dominates the momentum
of the entire hadron. In other words, pµ ≈ mΛc

v
µ. Then, for example,

u′v/γµu =
1

mΛc

u′
(
p/′ + q/

)
γµu =

1

mΛc

u′
(
mΛγ

µ + q/γµ
)
u , (20.58)

using the Dirac equation for the Λ baryon. But

q/γµ = qαγ
αγµ = qα

(
gαµ − iσαµ

)
. (20.59)

There are similar equations involving an extra factor of γ5. Putting these
back into Eq. (20.56), we find that the six form factors introduced in Eqs.
(17.70) and (17.71) are all given in terms of A and B as follows:

f1 = f̃1 = A+
mΛ

mΛc

B ;

f2 = f3 = f̃2 = f̃3 =
mΛ

mΛc

B . (20.60)

Needless to say, this is a huge simplification of the hadronic matrix element
involved in the decay.
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CP violation

21.1 CP violation and complex parameters

We have discussed CP symmetry in §6.11. We found that if the only in-
teractions in a model are the gauge interactions of fermions, CP cannot be
violated. This puts CP in a special position so far as the standard model is
concerned. Parity and charge conjugation are both broken by gauge interac-
tions, as we have commented in Ch. 16, in particular through Ex. 16.9 (p 470).
The combined symmetry CP cannot be broken in this manner.

In the standard model, there are other interactions, of course. There is a
scalar multiplet which has gauge interactions as well as self interactions. In
addition, there are Yukawa interactions between fermions and scalars.

Let us start with the Yukawa interactions and check if they can be CP-
violating. We start with a general form of such interactions, given by

Lint = ψ1(a+ bγ5)ψ2φ+ ψ2(a∗ − b∗γ5)ψ1φ
† , (21.1)

where the second term is the hermitian conjugate of the first. We now take
the CP conjugate of the first term. Using Eq. (6.165, p 186), we obtain

(C P)ψ1(a+ bγ5)ψ2φ(C P)−1 = η
(1)∗
CP η

(2)
CP η

(φ)
CPψ2(a− bγ5)ψ1φ

† . (21.2)

The Lagrangian of Eq. (21.1) will be invariant under CP if this CP conjugate
of the first term is equal to the second term appearing in that equation, i.e.,
if

a∗

a
=
b∗

b
= η

(1)∗
CP η

(2)
CP η

(φ)
CP . (21.3)

This shows that if a and b are real, we can choose the intrinsic CP phases of
all fermion and scalar fields to be 1 and then CP will be conserved. There
must be some complex parameter in the Yukawa couplings in order that CP
can be violated.

However, it must also be noted that presence of complex parameters, while
a necessary condition for CP violation, is not sufficient. For example, suppose

620
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we have just two fermion fields in the model and their Yukawa interaction as
given in Eq. (21.1). If a and b are complex but have the same phases, i.e., if
a∗/a = b∗/b, we can take the intrinsic phase of the scalar field to be equal to
this value and the intrinsic CP phases of the fermion fields to be 1, and satisfy
Eq. (21.3) this way. One must therefore have complex coupling parameters
with different phases in order that the Lagrangian is CP-violating.

We should warn the reader that the presence of complex parameters with different phases is a
necessary condition for CP violation, but not sufficient. Some phases might be absorbed in the
definitions of various fields. An example of this kind of redefinition will be discussed in §21.2.

We can now understand, in a different way, why gauge interactions do not
violate CP. From the definition of the gauge coupling through the covariant
derivative, it follows that the gauge coupling must be real. So, even gauge
interactions involving scalar particles cannot violate CP.

Finally, there are self-interactions of the scalar multiplet in the standard
model. Since there is only one scalar multiplet, it can be easily seen that the
quartic coupling term λ(φ†φ)2 implies that the coupling constant λ should be
real. So, to summarize, we found that the Yukawa interactions must, somehow
or other, be responsible for CP violation in the standard model.

21.2 Kobayashi–Maskawa theory of CP viola-

tion

For fermions in the first and the second generations, the Yukawa couplings
are very small. For example, let us look at Eq. (16.43, p 471). Since the
vacuum expectation value of the Higgs field is 246 GeV and the electron mass
is 0.51 MeV, the Yukawa coupling of the electron is about 2×10−6. For quarks
in the first generation, the number would be roughly ten times larger. With
such small couplings, any effect of CP violation would be virtually impossible
to observe.

Kobayashi and Maskawa realized that there is a way that the complex
parameters of the Yukawa sector sneak into the gauge sector. The link be-
tween the two sectors is provided by the fact that the Yukawa couplings are
responsible for the fermion masses in the standard model. In general, the mass
terms connect any left-chiral quark field to any right-chiral one, so that mass
matrices are not diagonal. The mass matrices can be diagonalized through
unitary transformations. If now one writes the gauge interactions in terms of
the eigenstates, we find that the charged current gauge interactions contains
a unitary matrix, called the CKM matrix, which was introduced in §17.1.

In §6.11, we showed that CP is conserved if the coupling constants in the
gauge interactions are all real. Now, we find that the gauge couplings involve
the CKM matrix, which is a unitary matrix and can therefore contain complex
elements. Therefore, the gauge currents can be CP-violating. However, we
should also bear in mind the warning issued in §21.1, viz., that complex
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parameters are not necessarily CP-violating. Let us check whether the mixing
matrix indeed contains any complex parameter that can violate CP.

In order to obtain maximum possible insight from this analysis, we do not
fix the number of fermion generations at first. Let the number of generations
be N . The CKM matrix is therefore an N×N unitary matrix. In §3.4.1, it was
shown that such matrices contain, in general, N2 real parameters. If only real
values were allowed for the elements of the mixing matrix, the matrix would
describe a rotation in an N -dimensional space, which requires 1

2N(N − 1)
parameters. The remaining parameters in the unitary matrix are therefore
phases, and there are 1

2N(N + 1) of them.
But not all of these phases have observable effects. The reason is that

the fields involved in the interaction Lagrangian can be defined up to some
arbitrary phase. Thus, by adjusting the phases of the uA fields, we can absorb
one phase from each row of the mixing matrix. Similarly, we can absorb one
phase from each column by adjusting the phases of the down-type quark fields.
It therefore seems that we can absorb 2N phases from the mixing matrix. But
this is not really correct, because if the phases of all up-type and all down-type
quarks are changed and changed by the same amount, there will be no effect
on the mixing matrix. Counting this one exception out, we can now write the
number of physically observable phases in the CKM matrix to be

1

2
N(N + 1)− (2N − 1) =

1

2
(N − 1)(N − 2) . (21.4)

This is an interesting result. It shows that if there were one or even two
generations of fermions, gauge currents could not have violated CP. CP vio-
lation through gauge currents is possible only if the number of fermion gener-
ations is three or more. This was the crucial observation made by Kobayashi
and Maskawa, at a time when there was no experimental signature for the
third generation. Experimental proof of the existence of CP violation was
obtained in 1964. In a sense, Kobayashi and Maskawa indicated that these
observations can be explained if there is a third generation of quarks. With
three generations, Eq. (21.4) tells us that there is only one CP-violating pa-
rameter in the mixing matrix. In §17.3, we discussed different ways of repre-
senting this one CP-violating phase, as well as the three mixing angles. The
Kobayashi–Maskawa theory of CP violation assumes that all CP-violating ef-
fect observed in nature owe their origin to this one parameter in the mixing
matrix.

2 Exercise 21.1 There is only one CP-violating combination of the pa-
rameters in the Lagrangian of Eq. (21.1). Identify it.

2 Exercise 21.2 Redo Ex. 6.25 (p 184), this time allowing for the possi-
bility that a and b might be complex. Verify that the tree-level result
does not show any effect of CP violation, i.e., the CP-violating pa-
rameter identified in Ex. 21.1 does not appear in the result.
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21.3 Rephasing invariant formulation

While counting CP-violating parameters in §21.2, we mentioned that some of
the phases occurring in the mixing matrix can be absorbed in the redefinition
of the fields in the charged current interactions. Since these phases are un-
physical, it would be elegant and helpful if we can build up the theory of CP
violation explicitly in a form that does not depend on these phases.

The charged current interaction between quark fields was given in Eq.
(17.18, p 486). Physical implications of this Lagrangian should not change if
we inflict the following redefinition of the quark fields:

uAL → eiαA uAL , dAL → eiβA dAL . (21.5)

Clearly, under these redefinitions, the elements of the mixing matrix change
by the rule

VAB → ei(αA−βB)VAB . (21.6)

The matrix V contains phases, which undergo changes because of this redefi-
nition. Note that, according to our summation convention announced in §2.1,
there is no implied summation if indices like A or B are repeated.

In principle one can think of a much more elaborate redefinition scheme, in which the different
quark fields with the same electric charge are also mixed, i.e., transformations of the form

uAL →
X

B

UAB uBL , (21.7)

and a similar one for the down-type quarks, where U is a unitary matrix. Such transformations
should also not affect any physical consequence of the theory. However, general transformations
like this are awkward because then one has to work with fields which are not eigenstates of the
Hamiltonian, and also in the end one does not find anything more than what we are going to
describe.

We should now look for combinations of the matrix elements of V which
are invariant under phase transformations of the type shown in Eq. (21.6).
The obvious ones are the absolute squares of the elements, |VAB|2. But these
are all real, and therefore are not responsible for CP violation. Complex
numbers can be obtained in quartic combinations of the form

TABA′B′ ≡ VABVA′B′V ∗
AB′V ∗

A′B (no sum) , (21.8)

which are invariant under rephasing. Note that, although there are N4 such
combinations for N generations of quarks, not all of them are complex. If
A = A′ or B = B′, the corresponding T is real. There are also properties like

TABA′B′ = T ∗
AB′A′B = T ∗

A′BAB′ = TA′B′AB , (21.9)

which cuts down on the number of independent complex numbers. Finally,
there are also the transitive relations

TABA′B′TA′BA′′B′ =
∣∣∣VA′BVA′B′

∣∣∣
2

TABA′′B′ . (21.10)
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Taking all these into account, it can be argued that all independent complex
combinations can be taken as

TAB1N , with A ≤ B, A 6= 1, B 6= N . (21.11)

It can be easily checked that the number of such combination is exactly equal
to the number of CP-violating phases counted in Eq. (21.4). The imaginary
parts of these combinations are rephasing invariant CP-violating parameters.

For three generations of quarks, as is known experimentally, there is only
one such rephasing invariant. It is called the Jarlskog invariant and denoted
by J . According to Eq. (21.11), we can write J = (T2213). In the convention
of Kobayashi and Maskawa, shown in Eq. (17.21, p 487), we obtain

J = (T2213) =
(
V22V13V

∗
23V

∗
12

)
= c1c2c3s

2
1s2s3 sin δ . (21.12)

As we said earlier, the mixing angles are all small, so that their cosines are
close to 1. Thus, the CP-violating parameter turns out to be

J ≈ s21s2s3 sin δ . (21.13)

It is a small parameter because it contains four powers of sine functions of the
different mixing angles. Putting in the experimentally known values of the
parameters in the CKM matrix, we get

J ≈ 3× 10−5 . (21.14)

This parameter will appear in the calculation of all CP-violating observables.
This does not necessarily mean that all CP-violating phenomena are sup-
pressed to the level of one part in 105. In order to obtain a suppression factor
for CP violation, a CP-violating phenomenon has to be compared with a CP-
conserving one. The CP-conserving observable might also be suppressed by
some powers of the different sine functions appearing in the CKM matrix.
The ratio of the two will vary from process to process. For example, we will
see later in this chapter that in the definition of the neutral kaon eigenstates,
there is a CP-violating parameter that is of order 10−3, being a ratio of a
CP-violating matrix element that is of order J and a CP-conserving matrix
element that contains s21. There can be even larger values of CP-violating pa-
rameters if the corresponding CP-conserving parameter is more suppressed.

2 Exercise 21.3 Verify that, if the mixing angles are defined through
Eq. (17.22, p 487), the Jarlskog invariant turns out to be
c12s12c23s23c

2
13s13 sin δ.

2 Exercise 21.4 Verify that in the Wolfenstein parametrization of the
CKM matrix, the Jarlskog invariant is given by A2λ6η.

The expression in Eq. (21.12) shows another interesting feature of CP
violation. If any of the mixing angles vanishes, CP violation disappears. This
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is expected since with one vanishing angle, there is effectively mixing between
the two remaining generations, and Eq. (21.4) shows that there cannot be any
CP violation in this case.

It should be noted that if quarks from two different generations were de-
generate for some reason, the mixing angle between those two generations
would become meaningless. The same argument then applies, and implies
that CP violation should vanish in this case. Therefore, some authors prefer
to define the CP-violating parameter in the following way:

J ′ = FuFdJ , (21.15)

where J is the Jarlskog invariant given above, and

Fu =
(m2

c −m2
u)(m2

t −m2
u)(m2

t −m2
c)

M6
W

, (21.16)

with a similar definition of Fd in terms of the down-type quark masses. The
conceptual point can be appreciated, but this parameter will not be very
useful in our subsequent analysis.

21.4 CP-violating decays of kaons

CP violation was first observed in neutral kaon decays. In this section, we
discuss in some detail the phenomenology associated with such decays.

21.4.1 Observables and experimental results

In §17.9.2, we argued that if CP is conserved, the CP-odd combination of
neutral kaon cannot decay into two pions. The CP-even combination can,
and therefore it becomes short-lived. Clearly then, if one observes that the
long-lived eigenstate experiences the decay mode K0

L → 2π, that will signal
CP violation. Indeed, this was how CP violation was first discovered by Fitch,
Cronin, Christenson and Turley in 1964. Dimensionless measurables for CP-
violating 2π decay modes can be taken to be the amplitude ratios

η+− ≡
〈
π

+
π

−∣∣TT
∣∣K0

L

〉
〈
π+π−

∣∣TT
∣∣K0

S

〉 , η00 ≡
〈
π

0
π

0
∣∣TT
∣∣K0

L

〉
〈
π0π0

∣∣TT
∣∣K0

S

〉 . (21.17)

The symbol TT appearing in the middle of each matrix element signifies the T-
matrix , whose matrix element between two states give the Feynman amplitude
of passing from one state to the other. Experimentally, one obtains the results

|η+−| = (2.232± 0.011)× 10−3 ,

|η00| = (2.220± 0.011)× 10−3 ,

arg(η+−) = (43.51± 0.05)◦ ,

arg(η00) = (43.52± 0.05)◦ . (21.18)
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There can be other decays that will signal CP violation. For example, the
K0

L decays to the channels π
+ℓ−ν̂ℓ and π

−ℓ+νℓ where ℓ is either the muon
or the electron. These two final states are CP conjugates of each other. If CP
is conserved, K0

L would be a CP eigenstate, and therefore its decay rate into
these two semileptonic modes would be equal. Thus the ratios

δ(ℓ) ≡
Γ(K0

L → π
−ℓ+νℓ)− Γ(K0

L → π
+ℓ−ν̂ℓ)

Γ(K0
L → π−ℓ+νℓ) + Γ(K0

L → π+ℓ−ν̂ℓ)
(21.19)

would constitute measures of CP violation. Experiments show that

δ(e) ≈ δ(µ) = (3.32± 0.06)× 10−3 . (21.20)

21.4.2 Identifying sources of CP violation

In §17.9, we showed that, with the assumption of CPT invariance, the eigen-
states of the Hamiltonian of the K0-K̂0 system are the combinations

∣∣K0
S

〉
= p

∣∣K0
〉

+ q
∣∣∣K̂0

〉
,

∣∣K0
L

〉
= p

∣∣K0
〉
− q

∣∣∣K̂0
〉
, (21.21)

normalized with the relation |p|2 + |q|2 = 1. The parameters p and q were
defined in Eq. (17.89, p 506) through the effective Hamiltonian of the neutral
kaon system.

We took the phase convention of the states
∣∣K0

〉
and

∣∣K̂0
〉

such that

CP
∣∣K0

〉
=
∣∣∣K̂0

〉
. (21.22)

In this convention, we showed that CP conservation implies p = q. The
relative phase between p and q can be changed by redefining the states

∣∣K0
〉

and
∣∣K̂0

〉
, as discussed in Ex. 21.7 below. The absolute values cannot be

changed this way, so that if we define the quantity

δ ≡ |p|2 − |q|2 , (21.23)

any non-zero value of δ will be a signature of CP violation. This is called
CP violation from mixing by some people, and indirect CP violation by some
others.

It should be noticed that Eq. (21.21) implies
D

K0
S

˛

˛

˛K0
L

E

= δ, i.e., the two eigenstates are not

orthogonal if δ 6= 0. They are not expected to be so, because the effective Hamiltonian of Eq.
(17.89, p 506) does not commute with its hermitian conjugate unless |p| = |q|. In other words,
for |p| 6= |q|, the effective Hamiltonian is not a normal matrix.

In general, for a matrix M one can define the right and left eigenstates by the equations

M |a〉 = α |a〉 , 〈b|M = β 〈b| , (21.24)

where α and β are numbers. If a matrix is not normal, its left eigenstates are not the same as
its right eigenstates. What is guaranteed, however, is that, the right and the left eigenstates
can be made to satisfy orthogonality conditions of the form

〈bi |aj 〉 = δij (21.25)

by choosing proper normalization of the states.
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2 Exercise 21.5 Show that the Hamiltonian matrix given in Eq. (17.89,
p 506) is a normal matrix only if δ = 0, where δ is defined in Eq.
(21.23).

2 Exercise 21.6 Find the left eigenstates of the matrix H given in
Eq. (17.89, p 506) and show that the orthogonality conditions of Eq.
(21.25) are indeed satisfied.

2 Exercise 21.7 Suppose, instead of taking the phase convention of Eq.
(21.22), we choose the phases of the states such that

CP
˛

˛K0¸

= eiζ
˛

˛

˛

bK0
E

. (21.26)

Show that this implies

CP
˛

˛

˛

bK0
E

= e−iζ
˛

˛K0
¸

. (21.27)

In this convention, show that CP invariance implies the relation

q = p eiζ . (21.28)

There may be other sources of CP violation. To identify them, let us
consider the decay amplitudes of the neutral kaon states to a certain final
state f and to its CP conjugate state f̂ . The amplitudes will in general be
different depending on whether the initial state is

∣∣K0
〉

or
∣∣K̂0

〉
. Let us denote

these amplitudes by

Af ≡
〈
f
∣∣TT
∣∣K0

〉
, Âf ≡

〈
f
∣∣∣TT
∣∣∣ K̂0

〉
,

A
bf ≡

〈
f̂
∣∣∣TT
∣∣∣K0

〉
, Â

bf ≡
〈
f̂
∣∣∣TT
∣∣∣ K̂0

〉
. (21.29)

If the Lagrangian is CP-conserving, the T-matrix will also be CP-conserving.
From this, it is easy to deduce that if CP is conserved, then, in our phase
convention implied in Eq. (21.22),

Af = Â
bf , Âf = A

bf . (21.30)

More generally, without committing ourselves to any particular phase conven-
tion, we can write the consequences of CP conservation as

∣∣∣Af

∣∣∣ =
∣∣∣Â

bf

∣∣∣ ,
∣∣∣Âf

∣∣∣ =
∣∣∣A

bf

∣∣∣ . (21.31)

If these relations are not satisfied by the amplitudes, then also CP will be
violated. Some people call it direct CP violation, and some call it simply CP
violation from amplitudes.

2 Exercise 21.8 If we use the definition of the phases of the states as
in Eq. (21.26), show that CP invariance implies the relations

Af = eiζ
bA

bf , A
bf = eiζ

bAf , (21.32)

from which Eq. (21.31) follows. [Hint : Follow the derivation of Eq. (17.96,
p 507).]
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There is a very important difference between between direct and indirect
CP violation. The indirect violation comes from the complexity of the off-
diagonal element of the effective Hamiltonian matrix in the K0-K̂0 basis.
Since K0 has strangeness S = +1 and K̂0 has the opposite, this kind of
CP violation requires a |∆S| = 2 effective operator. On the other hand,
since kaons are the lightest hadrons carrying strangeness, their decay products
should all be non-strange, and therefore the transition matrix elements should
induce |∆S| = 1. We will see later how such operators arise in the standard
model.

In the direct sector, if we want to define convenient dimensionless param-
eters which signal CP violation, we should know what kind of final state we
are talking about. We will have two kinds of final states in our mind: the 2π

decays and the semileptonic Kℓ3 decays, and we will take them up shortly.
Finally, we want to note that there is another possible way that CP can

be violated in decays of mesons. Consider, for example, the ratio

λf ≡
q

p

Âf

Af
, (21.33)

where the final state f is a CP eigenstate. It is to be noted that such ratios
have a very interesting property. Suppose we change the phase of the state∣∣K̂0

〉
by an arbitrary amount α, without making any change in the phase

of the state
∣∣K0

〉
. Off-diagonal elements of the effective Hamiltonian matrix

will now change. The elements would now be given by p′2 = eiαp2 and
q′2 = e−iαq2. Thus, q′/p′ = e−iαq/p. But the relative phases of Af and Âf

would also change, and in fact would change exactly in a way that the effect is
canceled in the ratio λf . Thus, λf is independent of the relative phase factor

in the definition of the states
∣∣K0

〉
and

∣∣K̂0
〉
, and there lies its importance.

The value of λf can therefore be obtained in any phase convention between∣∣K0
〉

and
∣∣K̂0

〉
. In the phase convention that we have been using all along,

CP conservation implies Eqs. (17.96) and (21.30), i.e., λf = 1. It must be true
then that λf 6= 1 is a signal of CP violation no matter what phase convention
we use. Note that, for an arbitrary phase convention, absence of direct and
indirect CP violation merely ensures that |λf | = 1. If λf 6= 1 although
|λf | = 1, we say that it is a phenomenon of interference CP violation.

21.4.3 CP violation in semileptonic decays

It is easy to relate the leptonic CP asymmetry, defined in Eq. (21.19), to the
parameters in the effective Hamiltonian of the neutral kaon sector. Notice
that the ∆S = ∆QH rule, proved in §17.7, tells us that

a(K0 → π
+ℓ−ν̂ℓ) = 0 , a(K̂0 → π

−ℓ+νℓ) = 0 . (21.34)
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Thus, the amplitudes for the decays involved can be written as

a(K0
L → π

−ℓ+νℓ) = p a(K0 → π
−ℓ+νℓ) ,

a(K0
L → π

+ℓ−ν̂ℓ) = −q a(K̂0 → π
+ℓ−ν̂ℓ) , (21.35)

because of the way K0
L is defined, Eq. (21.21). Further, note that CPT in-

variance would imply

a(K0 → π
−ℓ+νℓ) = a(K̂0 → π

+ℓ−ν̂ℓ) . (21.36)

Thus we obtain, from the definitions in Eqs. (21.19) and (21.23), the result

δ(ℓ) =
|p|2 − |q|2
|p|2 + |q|2 = δ . (21.37)

Measurement of this asymmetry, Eq. (21.20), tells us right away that the
indirect CP violation is small compared to usual weak interaction strengths
which guides each of the decays involved in defining the asymmetry parameter
δ(ℓ).

21.4.4 CP violation in decays into two pions

a) The CP-violating parameters ǫ and ǫ′

Kaons and pions have no spin. So the two pions in the final state must be
in a state of zero orbital angular momentum. This state is symmetric in
an exchange of the two pions. Because of the generalized Pauli principle,
the two pions should also be in a symmetric state with respect to isospin.
Since pions have I = 1, the combination of two pions can have I = 0, 1, 2.
Of these, the states I = 1 are antisymmetric, and hence are not allowed
in this case because of Bose symmetry. There are, therefore, basically four
transition matrix elements, with either K0

L or K0
S in the initial state, and the

two different isospin states of two pions in the final state. We will denote the
final states by (ππ)I , with I = 0 or 2. Of course, by

∣∣(ππ)2
〉
, we mean the

state with I = 2 and I3 = 0, because only this state will be electrically neutral
and can be the final state in the decay of a neutral kaon.

Dimensionless quantities can be defined by taking ratios of matrix ele-
ments. There will be three independent ratios, and we take them as follows:

ω ≡
〈
(ππ)2

∣∣TT
∣∣K0

S

〉
〈
(ππ)0

∣∣TT
∣∣K0

S

〉 , ǫI ≡
〈
(ππ)I

∣∣TT
∣∣K0

L

〉
〈
(ππ)0

∣∣TT
∣∣K0

S

〉 , (21.38)

with I = 0 or 2. The parameter ω quantifies the relative strength of transition
to the I = 2 state with respect to the I = 0 state, and need not signal CP
violation. The other two are both indicators of CP violation. The quantity
ǫ0 is often shortened to just ǫ, without any subscript.

Let us now see how these ratios can be expressed in terms of the quantities
defined in Eq. (21.29). As argued earlier, the two-pion state is a CP eigenstate,



630 Chapter 21. CP violation

so f and f̂ that appears in the general notation of Eq. (21.29) are identical in
this case. However, because the two-pion state can be in two different isospin
combinations, it is useful to define the matrix elements specific to isospin
eigenstates, viz.,

A′
I =

〈
(ππ)I

∣∣TT
∣∣K0

〉
, Â′

I =
〈

(ππ)I

∣∣∣TT
∣∣∣ K̂0

〉
. (21.39)

CPT invariance would imply some relation between these amplitudes. To find
it, we assume that the CPT transformation properties of K0 and K̂0 are given
by Eq. (17.85, p 506). Then, using Eq. (7.45, p 196) which shows how matrix
elements transform under CPT, we can write,

〈
(ππ)I

∣∣TT
∣∣K0

〉
=
〈
K̂0
∣∣∣TT
∣∣∣Θ(ππ)I

〉
, (21.40)

since the TT-matrix is hermitian, a property that follows from the hermiticity
of the Lagrangian. Obviously we have used the notation

|Θ(ππ)I〉 ≡ Θ |(ππ)I〉 (21.41)

in writing the relation above. The question now is, what is this quantity?
We have already argued that a neutral two-pion state is an eigenstate of

CP with eigenvalue +1. Therefore, the action of Θ, or CPT, on the state is the
same as the action of the time-reversal operator. The time-reversal operator
turns an outgoing state into an incoming state and vice versa. There is strong
interaction between two pions, so that even with just two pions coming in, the
state going out finally into infinity is not exactly the same state, but rather
related by a phase factor:

∣∣(ππ)out
I

〉
= e2iδI

∣∣(ππ)inI
〉
. (21.42)

In Eq. (21.40), the two-pion state on the right hand side of the equation
appears as an in-state whereas that on the left hand side in an out-state.
More explicitly, we can write

〈
(ππ)out

I

∣∣TT
∣∣K0

〉
=
〈
K̂0
∣∣∣TT
∣∣∣ (ππ)inI

〉

= e2iδI

〈
K̂0
∣∣∣TT
∣∣∣ (ππ)out

I

〉

= e2iδI

〈
(ππ)out

I

∣∣∣TT
∣∣∣ K̂0

〉∗
. (21.43)

It is the out-state of the two pions that is relevant in the definition of Eq.
(21.39). So Eq. (21.43) tells us that the consequence of CPT invariance is
given by

A′
I = e2iδI Â′∗

I . (21.44)

There is a notationally neater way of saying the same thing. We define

AI ≡ e−iδIA′
I , ÂI ≡ e−iδI Â′

I , (21.45)
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so that the condition for CPT invariance reads

A∗
I = ÂI . (21.46)

In a sense, this notation has also some conceptual advantage because the
matrix elements given in Eq. (21.39) are now denoted by

〈
(ππ)I

∣∣TT
∣∣K0

〉
= AIe

iδI ,
〈

(ππ)I

∣∣∣TT
∣∣∣ K̂0

〉
= ÂIe

iδI . (21.47)

This, by the way, is not a way to express a complex number, the amplitude, by
its magnitude and phase. In fact there is nothing so far in our discussion that
tells us that even these newly defined objects, AI and ÂI , are not complex.
They are, in general. Eq. (21.45) merely separates out a part of the phase
of the amplitude. For two-pion elastic scattering in which we have two pions
both in the initial and in the final states, the phase shift is 2δI , as defined in
Eq. (21.42). Here we are discussing a process in which the two pions appear
only in the final state. The phase shift due to the final-state interactions
between these pions is half the phase shift that appears in Eq. (21.42), which
is what has been separated out in the definitions of the amplitudes in Eq.
(21.47), which allows us to deal with the rest of the amplitude much more
easily.

2 Exercise 21.9 With the definitions of the CPT and CP transforma-
tion properties given in Eqs. (17.85) and (17.93), show that both AI

and bAI should be real if CP and CPT are both conserved.

2 Exercise 21.10 Eq. (21.46) expresses the constraint of CPT invari-
ance in the phase convention chosen in Eq. (17.85, p 506). More
generally, one can take

Θ
˛

˛K0¸

= eiν
˛

˛

˛

bK0
E

, (21.48)

where Θ ≡ CPT . Show that this implies

Θ
˛

˛

˛

bK0
E

= eiν
˛

˛K0
¸

. (21.49)

In this convention, find the equivalent of Eq. (21.46).

2 Exercise 21.11 Show that, irrespective of the phase factor defined in
Eq. (21.48), the following relations hold if CPT invariance holds:

A∗
0A2 = bA0

bA∗
2 , A0

bA∗
2 = bA∗

0A2 , (21.50)

and, of course, |AI | = | bAI |.

Using Eq. (21.21), we can then immediately write

〈
(ππ)I

∣∣TT
∣∣K0

L

〉
= (pAI − qÂI)eiδI ,

〈
(ππ)I

∣∣TT
∣∣K0

S

〉
= (pAI + qÂI)eiδI . (21.51)



632 Chapter 21. CP violation

Hence, using the shorthand

δS ≡ δ2 − δ0 , (21.52)

we obtain from the definitions given in Eq. (21.38) the following relations:

ǫ ≡ ǫ0 =
1− λ0

1 + λ0
, ǫ2 =

1− λ2

1 + λ0

A2

A0
eiδS , (21.53)

and

ω =
1 + λ2

1 + λ0

A2

A0
eiδS (21.54)

where the λI ’s are the quantities λf , defined in Eq. (21.33), for the two-pion
final states, i.e.,

λI ≡
q

p

ÂI

AI
. (21.55)

Arguments given earlier confirm that no matter how we define the phase of the
state

∣∣K0
〉
, we obtain the same value for the λI ’s as well as the ratio A2/A0.

The difference of the phase shifts, denoted by δS , is a measurable parameter,
free from any arbitrariness. Consequently, the definitions of ǫI and ω are also
free from any phase convention.

In the next step, we note that the isospin states
∣∣(ππ)0

〉
and

∣∣(ππ)2
〉

are
superpositions of the states

∣∣π+
π

−〉 and
∣∣π0

π
0
〉
, connected by the Clebsch–

Gordan co-efficients. Inverting these equations, we can obtain equations of
the type

∣∣π+
π

−〉 = a |(ππ)0〉+ b |(ππ)2〉 ,∣∣π0
π

0
〉

= c |(ππ)0〉+ d |(ππ)2〉 . (21.56)

for known co-efficients a, b, c, d. Then we can write

〈
π

+
π

− ∣∣TT
∣∣K0

L

〉
= a

〈
(ππ)0

∣∣TT
∣∣K0

L

〉
+ b

〈
(ππ)2

∣∣TT
∣∣K0

L

〉

= a(pA0 − qÂ0)eiδ0 + b(pA2 − qÂ2)eiδ2 , (21.57)

and similarly other matrix elements that appear in the definitions of the quan-
tities η+− and η00, defined in Eq. (21.17). With their help, we find

η+− =
a(pA0 − qÂ0) + b(pA2 − qÂ2)eiδS

a(pA0 + qÂ0) + b(pA2 + qÂ2)eiδS

=
a(pA0 − qÂ0) + b(pA2 − qÂ2)eiδS

(a+ bω)(pA0 + qÂ0)

=
a

a+ bω
ǫ+

b

a+ bω
ǫ2 . (21.58)
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Now comes another important point. Kaons have I = 1
2 . Thus, going

to the I = 0 two-pion state involves |∆I| = 1
2 , whereas going to I = 2

state involves |∆I| = 3
2 . Standard model interactions can easily inflict the

former kind of transitions because an s quark, for example, can change to a
u quark through charged current interaction. But |∆I| = 3

2 has to be more
complicated, and therefore suppressed. So both ǫ2 and ω should be much
smaller than unity. Thus we can write

1

a+ bω
=

1

a

(
1 +

b

a
ω

)−1

≈ 1

a

(
1− b

a
ω

)
(21.59)

and neglect terms which involve ǫ2ω. This allows us to write

η+− = ǫ +
b

a
(ǫ2 − ǫω) . (21.60)

We can write it as

η+− = ǫ+ ǫ′ (21.61)

by defining a new parameter ǫ′. The ratio η00 would also involve the combina-
tion (ǫ2 − ǫω), and will therefore have a term proportional to ǫ′. Calculation
of η00, keeping the correct Clebsch–Gordan co-efficients, yields

η00 = ǫ− 2ǫ′ . (21.62)

2 Exercise 21.12 Clebsch–Gordan co-efficients tables give

|(ππ)2〉 =
1√
6

„

˛

˛(π+
π

−)
¸

− 2
˛

˛π
0
π

0¸

+
˛

˛(π−
π

+)
¸

«

,

|(ππ)0〉 =
1√
3

„

˛

˛(π+
π

−)
¸

+
˛

˛π
0
π

0¸

+
˛

˛(π−
π

+)
¸

«

. (21.63)

Note that here distinction has been made between
˛

˛

˛(π+
π

−)
E

and
˛

˛

˛(π−
π

+)
E

, where the first one means that some arbitrarily assigned

particle 1 is π
+ and the other one is π

−, where in the ket
˛

˛

˛(π−
π

+)
E

the tags are just the opposite. Experimentally, there is no difference
between the two states: you get one π

+ and one π
−. So it is best to

use

˛

˛π
+
π

−¸

≡ 1√
2

„

˛

˛(π+
π

−)
¸

+
˛

˛(π−
π

+)
¸

«

, (21.64)

which does not refer to these arbitrary tags. Use this to find the
values of the co-efficients a, b, c, d defined in Eq. (21.56) and hence
derive Eq. (21.62) from a definition of ǫ′ that fixes Eq. (21.61).
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b) Experimental determination of parameters

We find that the CP-violating observables can be expressed in terms of ǫ and
ǫ′. We note from Eqs. (21.61) and (21.62) that the quantities η+− and η00
would be equal if ǫ′ = 0. Indeed, Eq. (21.18) tells us that these two quantities
differ by only a very small amount, indicating that |ǫ′| ≪ |ǫ|. Thus, taking
only first order effects in the ratio ǫ′/ǫ, we can write

|η+−| = |ǫ|
(

1 + (ǫ′/ǫ)
)
,

|η00| = |ǫ|
(

1− 2 (ǫ′/ǫ)
)
. (21.65)

Comparing these expressions with the experimental values given in Eq.
(21.18), one obtains

|ǫ| = (2.228± 0.011)× 10−3 ,

(ǫ′/ǫ) = (1.66± 0.23)× 10−3 . (21.66)

In the original experiment that discovered CP violation, only ǫ could be mea-
sured. In other words, the results were consistent with ǫ′ = 0 within the error
bars. The value of ǫ′/ǫ has been measured much later, in the 1990’s, with the
increase of precision.

The phase of ǫ can be derived from experimentally measured rates by
neglecting ǫ′ once again. We will see presently that this implies neglecting
direct CP violation, and in this case the decay asymmetry defined in Eq.
(21.23) is given by

δ(ℓ) =
2 ǫ

1 + |ǫ|2 . (21.67)

From the measured value of δ(ℓ) given in Eq. (21.20), we therefore obtain
ǫ ≈ 1.66 × 10−3. Comparing this result with the value of |ǫ|, one can

obtain the value of arg(ǫ). The value quoted in the literature, taking error
bars into account, is

arg(ǫ) = (43.52± 0.05)◦ . (21.68)

2 Exercise 21.13 In absence of direct CP violation when Eq. (21.30)
holds, show that

q

p
=

1 − ǫ

1 + ǫ
, (21.69)

and use it to derive Eq. (21.67), using the smallness of ǫ.

It is also important to discuss the values of the CP conserving parameters
which are relevant for two-pion decays of neutral kaons. If CP were conserved,
the amplitudes AI would have been real, as noted in Ex. 21.9 (p 631). Their
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values could then be estimated from the CP-conserving decay KS → ππ.
The general formula for two-body decays, given in Eq. (4.168, p 97), gives

Γ(K0
S → ππ) =

1

16πmK

√
1− 4m2

π

m2
K

∣∣〈ππ

∣∣TT
∣∣K0

S

〉∣∣2 , (21.70)

where the final state, denoted by ππ , can contain either charged pions or
neutral pions. For the present purpose, we can ignore CP-violating effects
and take KS to be the CP-even state defined in Eq. (17.97, p 507). Then,

〈
ππ

∣∣TT
∣∣K0

S

〉
=

1√
2

( 〈
ππ

∣∣TT
∣∣K0

〉
+
〈
ππ

∣∣∣TT
∣∣∣ K̂0

〉)
. (21.71)

Using the Clebsch–Gordan co-efficients a, b, c, d defined in Eq. (21.56), we
obtain

〈
π

+
π

− ∣∣TT
∣∣K0

S

〉
=

1√
2

(
a(A0 + Â0)eiδ0 + b(A2 + Â2)eiδ2

)
,

〈
π

0
π

0
∣∣TT
∣∣K0

S

〉
=

1√
2

(
c(A0 + Â0)eiδ0 + d(A2 + Â2)eiδ2

)
. (21.72)

The quantities AI and ÂI are related through Eq. (21.46) because of CPT in-
variance. Therefore, remembering the small mass difference between charged
and neutral pions, we can write

Γ(K0
S → π

+
π

−)

Γ(K0
S → π0π0)

=

√
m2

K − 4m2
π+

m2
K − 4m2

π0

∣∣∣∣
a A0 + beiδS A2

c A0 + deiδS A2

∣∣∣∣
2

. (21.73)

Recall that the parameter ω is not CP-violating. Thus, in its definition of Eq.
(21.38), if we put the CP-conserving values p = q = 1/

√
2, we get

ω =
A2 + Â2

A0 + Â0

eiδS =
A2

A0
eiδS . (21.74)

Therefore we can write

Γ(K0
S → π

+
π

−)

Γ(K0
S → π0π0)

=

√
m2

K − 4m2
π+

m2
K − 4m2

π0

∣∣∣∣
a+ bω

c+ dω

∣∣∣∣
2

. (21.75)

Eq. (21.74) tells us that, apart from small corrections that might come
from CP violation, the phase of ω is equal to δS . This phase is measured in
pion-pion elastic scattering, and its value is obtained to be

δS = (−41.4± 8.1)◦ . (21.76)

Now, using the experimentally measured branching ratios,

B(K0
S → π

+
π

−) = (69.20± 0.05)% ,

B(K0
S → π

0
π

0) = (30.69± 0.05)% , (21.77)
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we can find |ω|. After that, we can use this value and the measured decay
rate of K0

S decays, to obtain | A0|. Since CP violation is small, we can also
say that |A0| ≈ | A0|.

2 Exercise 21.14 Do the arithmetic. Show that

|ω| = 0.045 , (21.78)

|A0| = 4.71 × 10−4 MeV . (21.79)

Use TableB.4 (p 721) for the masses of the kaons and pions.

c) Identifying direct and indirect CP violation

Let us try to see whether it is direct or it is indirect CP violation that gives
rise to ǫ and ǫ′. First, check ǫ′, which is equal to ǫ2− ǫω apart from an overall
factor. Using the definitions of these quantities and amplitudes of the form
given in Eq. (21.51), we find

ǫ2 − ǫω =
2pq(Â0A2 −A0Â2)eiδS

(pA0 + qÂ0)2
. (21.80)

From Eq. (21.30) (or more generally from Eq. (21.32)), we see that this ex-
pression vanishes if there is no direct CP violation, irrespective of whether
there is any other kind of CP violation. Therefore, ǫ′ is a measure of direct
CP violation.

Let us now look at ǫ. Even if direct CP violation vanishes, this quantity
can still be non-zero provided there is indirect CP violation, i.e., p 6= q.
It is therefore a measure of indirect CP violation. Of course, it can also
contain effects of direct CP violation, but from the smallness of ǫ′/ǫ, it is
clear that such effects must be small. The dominant contribution to ǫ comes
from indirect CP violation.

d) Indirect CP violation and the effective Hamiltonian

Indirect CP violation must be expressible in terms of the elements of the
effective Hamiltonian matrix. For this, we note that the definition of p and q
in Eq. (17.89, p 506) implies

q

p
=

√
H21

H12
=

√
M∗

12 − i
2�∗

12

M12 − i
2�12

, (21.81)

where in writing the last step, we have used the definition in Eq. (17.82, p 505),
and the fact that both M and � are hermitian matrices.

Let us now write

M12 −
i

2
�12 ≡ µ1 + iµ2 . (21.82)
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The break-up on the right hand side is not into real and imaginary parts.
Rather, we take

µ1 = M12 −
i

2
�12 , µ2 = M12 −

i

2
�12 , (21.83)

so that both µ1 and µ2 are in general complex. Clearly,

M∗
12 −

i

2
�∗

12 = µ1 − iµ2 . (21.84)

Note that the condition of CP invariance was the equality of the off-diagonal
elements of the effective Hamiltonian, Eq. (17.96, p 507). Since the matrices
M and � are hermitian by definition, this condition is obtained if both M12

and �12 are real, i.e., if µ2 vanishes. Any non-zero value of µ2 signals CP
violation. Since CP violation is small, we can write

q

p
=

√
1− iµ2/µ1

1 + iµ2/µ1
≈ 1− iµ2

µ1
, (21.85)

taking the square root that produces the value unity in the CP-conserving
limit. Also, let us write

A0 = |A0|eiξ0 , (21.86)

so that, using the consequence of CPT conservation from Eq. (21.46), we can
write

Â0

A0
= e−2iξ0 . (21.87)

We now go back to Eq. (21.53). Since λ0 = 1 if CP is conserved, and since
CP violation is small, we can write

ǫ =
1

2
(1 − λ0) . (21.88)

Using the definition of λ0 from Eq. (21.55), we now obtain

ǫ =
1

2

(
1− (1− iµ2

µ1
)(1− 2iξ0)

)
≈ i

2

(µ2

µ1
+ 2ξ0

)
. (21.89)

Using the definitions of µ1 and µ2, we can now write

ǫ =
i

2

(
M12 − i

2 �12

M12 − i
2 �12

+ 2ξ0

)
. (21.90)

Obviously, the ξ0 term represents the contribution of direct CP violation to
ǫ. The rest is the contribution from indirect CP violation.

Putting in more phenomenological knowledge, we can simplify Eq. (21.90)
further. First, we should write the denominator in terms of observable quan-
tities. Ignoring CP violation, M12 and �12 are real, and the eigenstates of the
Hamiltonian are the following.
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1. The CP-even state, K0
(+) ≈ K0

S , with eigenvalue H11 + H12.

2. The CP-odd state, K0
(−) ≈ K0

L, with eigenvalue H11 −H12.

The experimental numbers given in Eq. (17.101, p 509) and Eq. (17.128, p 516)
show that the K0

L is the heavier state and also it has a smaller decay rate.
Thus, if we define the absolute values of the mass difference and decay rate
difference of the two eigenvalues by ∆mK and ∆γK , we get

M12 = −1

2
∆mK , �12 =

1

2
∆ΓK . (21.91)

Next we note that the experimental values quoted also show that

∆ΓK ≈ 2∆mK . (21.92)

Since the mass difference as well as the dominant decay modes come from
CP-invariant physics, we can write

M12 −
i

2
�12 =

1

2

(
−∆mK −

i

2
∆ΓK

)
≈ −e

iπ/4

√
2

∆mK . (21.93)

We now turn our attention to Γ12. For this, we look back at Eq. (17.84,
p 505). For kaons, the contribution of the I = 0 two-pion intermediate state is
so overwhelming compared to that of any other state that, as a first approx-
imation, one can ignore all other intermediate states. With this assumption,
one obtains

Γ12

Γ11
=

〈
K0
∣∣Hw

∣∣(ππ)0
〉 〈

(ππ)0
∣∣Hw

∣∣K̂0
〉

〈
K0
∣∣Hw

∣∣(ππ)0
〉 〈

(ππ)0
∣∣Hw

∣∣K0
〉 =

Â0

A0
= e−2iξ0 , (21.94)

using Eq. (21.87) in the last step. To a first approximation, we can use the
CP-positive combination of the neutral kaon fields, shown in Eq. (17.97, p 507),
to evaluate Γ11. Then we can use

∣∣∣
〈
(ππ)0

∣∣Hw

∣∣K0
〉 ∣∣∣

2

≈ 1

2

∣∣∣
〈
(ππ)0

∣∣Hw

∣∣K0
S

〉 ∣∣∣
2

, (21.95)

giving Γ11 ≈ 1
2ΓS ≈ 1

2∆ΓK , since ΓL ≪ ΓS . So we obtain

Γ12 ≈
1

2
e−2iξ0∆ΓK . (21.96)

Noting that ξ0 must be small since CP violation is small, we can keep only
up to the first order term in it and write

Γ12 ≈ −ξ0∆ΓK ≈ −2ξ0∆mK . (21.97)

Putting these things back into Eq. (21.90), we obtain

ǫ =
e

iπ/4

√
2

(
− M12

∆mK
+ ξ0

)
. (21.98)
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From this, it seems that arg(ǫ) = π/4 assuming the combination in parenthe-
ses to be positive. This is a result of the relation between ∆mK and ∆ΓK

given in Eq. (21.92). Since that relation is only approximately obeyed by
experimental data, the phase of ǫ is a little away from π/4, about 43.5◦.

2 Exercise 21.15 Show that, if one does not assume Eq. (21.92), one
obtains

ǫ =
exp

`

i tan−1 r
´

√
1 + r2

„

− M12

∆mK
+ ξ0

«

, (21.99)

where

r =
2∆mK

∆ΓK
. (21.100)

e) Direct CP-violating parameter

We can start from the expression of Eq. (21.80), and multiply it by b/a, where
a and b were defined in Eq. (21.56), to obtain ǫ′. This gives

ǫ′ =

√
2pq(Â0A2 −A0Â2)eiδS

(pA0 + qÂ0)2
=

√
2eiδS

(1 + λ0)2
A2

A0
(λ0 − λ2) , (21.101)

according to the definition of λI in Eq. (21.55). Note that the same definitions
imply A2λ2/A0 = Â2λ0/Â0. We can use this relation to eliminate λ2 and write

ǫ′ =

√
2λ0e

iδS

(1 + λ0)2

(
A2

A0
− Â2

Â0

)
=

√
2λ0e

iδS

(1 + λ0)2

(
A2

A0
− A∗

2

A∗
0

)
, (21.102)

using Eq. (21.50) in the last step. CP-violating effects are small, so we can
take them only to first order. In other words, we substitute the CP conserving
values for every factor that is non-zero even if CP is conserved. This gives

ǫ′ =
ieiδS

√
2

(A2/A0) . (21.103)

2 Exercise 21.16 Show that ω can be given through an expression quite
similar to that in Eq. (21.103),

ω = eiδS (A2/A0) , (21.104)

neglecting CP-violating effects.

We thus see that the phase of ǫ′ is related to δS . As for the magnitude,
we can write ∣∣∣∣

ǫ′

ǫ

∣∣∣∣ =
(A2A

∗
0)√

2 |ǫA2
0|

=
A2 A0 − A2 A0√

2 |ǫA2
0|

. (21.105)

Since CP violation is small, we should expect | AI | ≪ | AI |, which
implies that AI ≈ |AI |, so that we obtain

∣∣∣∣
ǫ′

ǫ

∣∣∣∣ =
A2 − |ω| A0√

2 |ǫA0|
. (21.106)
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This shows that the imaginary parts of the amplitudes are responsible for
direct CP violation, in accordance with the result indicated in Ex. 21.9 (p 631).
Putting in the experimentally determined values of |ω|, |ǫ| and |A0|, we obtain

∣∣∣∣
ǫ′

ǫ

∣∣∣∣ =
A2 − 0.045 A0

1.48× 10−6 MeV
. (21.107)

21.4.5 Standard model estimates

a) Estimating ǫ

From Eq. (21.98), we understand that the task of estimating ǫ reduces to the
task of estimating M12, since ξ0 pertains to direct CP violation, which is
much smaller than indirect CP violation. This result can be easily read off
the calculations that we had performed in §17.9.4. In particular, let us look
at Eq. (17.115, p 514). For the purpose of estimating the mass difference, we
assumed the CKM matrix elements to be real. All we have to do now is to
relax this assumption and take the imaginary part of the result. The terms
involving mu can still be neglected safely because of the extreme smallness of
mu. For the other terms, we use the fact that all mixing angles are small, so
we put their cosines equal to unity. Then, in terms of the parametrization of
the CKM matrix given in Eq. (17.21, p 487), we obtain

(V ∗
csVcd)2 ≈ 2s21s2s3sδ , (21.108a)

(V ∗
tsVtd)2 ≈ 2s21s

2
2s3sδ(s2 + s3sδ) , (21.108b)

(V ∗
csVcdV

∗
tsVtd) ≈ s21s2s3sδ , (21.108c)

where sδ ≡ sin δ. The expression on the left hand side of Eq. (21.108c) is J ,
the Jarlskog parameter. Factoring it out from other terms as well, we can
write

∑

A,B

ΛAΛBruA
ruB

f(ruA
, ruB

) = 2J

[
r2cf(rc, rc)− rcrtf(rc, rt)

−s2(s2 + s3cδ)r2t f(rt, rt)

]
. (21.109)

As mentioned in §17.9.4, each term in the square bracket should in fact be
multiplied with a strong interaction correction factor.

The important thing to note is that the expression in Eq. (21.109) has an
overall factor of s21s2s3sδ. The real part of the same sum was discussed in
§17.9.4, and was given to a very good approximation by

∑

A,B

ΛAΛBruA
ruB

f(ruA
, ruB

) ≈ Λ2
cr

2
cf(rc, rc)

≈ s21r2cf(rc, rc) . (21.110)
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ud

us

W

ud

us

W

Figure 21.1: Tree diagram for du →
su which contributes K0 → 2π transi-
tion.

Figure 21.2: Example of a diagram
that adds to the contribution of Fig. 21.1.

Therefore, from Eq. (21.98), we obtain

ǫ ≈ e
iπ/4

√
2
s2s3sδ

[
1− rtf(rc, rt)− s2(s2 + s3cδ)

r2t
rc
f(rt, rt)

]
, (21.111)

using f(rc, rc) ≈ 1/rc. This shows why CP violation is small. The CP-
violating phase δ need not be small. The point is that the CP-violating
parameter ǫ contains the product of two small angles. Because of this, the
magnitude of ǫ is of order 10−3, as shown in Eq. (21.66).

2 Exercise 21.17 Using the Wolfenstein parametrization, show that the
expression on the left hand side of Eq. (21.109) contains an overall
factor A2λ6η.

b) Estimating ǫ′/ǫ

From Eq. (21.103), we see that the contributions to ǫ′ come from the decay
amplitudes, which have |∆S| = 1. At the quark level, this involves a d+X →
s+X transition, where X stands from other quarks and antiquarks which are
constituents of the final state pions.

The simplest diagram for a dX → sX type of transition has been shown in
Fig. 21.1. This is, in fact, a du→ su transition. If we neglect the momentum
dependence in the W boson propagator, the amplitude of this diagram is given
by

iM1 =

(−ig√
2

)2
i

M2
W

V ∗
usVud

[
sγµLu

][
uγµLd

]
, (21.112)

or

M1 = −GF√
2

ΛuO1 , (21.113)

where Λu = V ∗
usVud, and O1 is the quark-level operator

O1 =
[
sγµ(1 − γ5)u

][
uγµ(1− γ5)d

]
. (21.114)
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However, the contribution of this simplest diagram to A0 and A2 cannot
induce CP violation because the CKM matrix elements appearing in this
amplitude are real, as seen from the parametrization of the CKM matrix
given in Eq. (17.21, p 487) or Eq. (17.22, p 487). More generally, one can say
that the co-efficient involves effects of only two generations, and that is not
enough to inflict CP violation. So we need to look for other diagrams.

There are of course QCD corrections, through gluon exchanges, to the
simple diagram. An example has been shown in Fig. 21.2. There are similar
diagrams involving gluon exchange between other fermion lines. It should be
noted that there is a qualitative difference between this diagram and the tree-
level diagram given earlier. The point is that, in Fig. 21.1, the quark color
cannot change on any of the two fermion lines. So, in Eq. (21.114), the color
indices are the same for the quark fields within the same bilinear. In Fig. 21.2,
the gluon can induce color change, so that the quark-level operator obtained
from this diagram would contain the bilinears

[
sαγ

µ(1− γ5)λa
αβuβ

][
uα′γµ(1 − γ5)λa

α′β′dβ′

]
, (21.115)

where the primed and unprimed α, β are color indices, and the index a runs
over the eight gluons. The λa’s appear from the gluon vertices. They satisfy
the completeness relation given in Eq. (10.18, p 259), which can be used to
express the operator of Eq. (21.115) as − 2

3O1 + 2O2, where

O2 =
[
sαγ

µ(1− γ5)uβ

][
uβγµ(1− γ5)dα

]
. (21.116)

However, this diagram and similar ones with gluon exchanges between other
pairs of quark lines do not contribute to ǫ′ either, for the same reason as that
mentioned in context of Fig. 21.1.

There are other diagrams, of course. One such diagram is shown in
Fig. 21.3a. These are called penguin diagrams because, with some small reori-
entations, the diagram can be made to look like a cartoon of a bird. [Hint :
Rotate the diagram clockwise by 90◦, think of the d and s lines as the wings, the gluon

line as the torso, and use some imagination.] This also justifies the name of double-
penguin diagrams shown in Fig. 17.7 (p 517).

Note that the external fermions line attached to the gluon in Fig. 21.3 have
been non-committally marked q, because it can be any flavor of quark. Sec-
ondly, there are self-energy diagrams shown in Fig. 21.3b which must be added
with the penguin diagram in order to obtain finite results. The amplitude of
these diagrams involves the following operators:

O3 =
[
sγµ(1− γ5)d

]∑

q

[
qγµ(1− γ5)q

]
,

O4 =
[
sαγ

µ(1− γ5)dβ

]∑

q

[
qβγµ(1− γ5)qα

]
,

O5 =
[
sγµ(1− γ5)d

]∑

q

[
qγµ(1 + γ5)q

]
,
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(a)

d

s
q

q

(b1)

q

ds W

uA

(b2)

q

ds W

uA

Figure 21.3: (a) Gluonic penguin diagram; (b) Self-energy diagrams with gluon
exchange which should be added to the gluonic penguin diagram in order to obtain a
gauge invariant result.

O6 =
[
sαγ

µ(1− γ5)dβ

]∑

q

[
qβγµ(1 + γ5)qα

]
. (21.117)

Note that now there are quark-level bilinears with V + A structure as well.
The reason is easily understood if one notes that the gluon couples to quarks
vectorially, and a vector bilinear can be written as a sum of a V −A and a V +A
bilinear. The penguin diagrams can contribute to CP-violating amplitudes,
because the loop can involve up-type quarks from all three generations.

There are other diagrams where the gluon is replaced by a photon or a Z
boson. These are called electroweak penguin diagrams. Since the electromag-
netic coupling is proportional to the quark charge, and the Z boson coupling
also has a term proportional to the quark charge, these diagrams introduce
amplitudes with the following new operators:

O7 =
[
sγµ(1− γ5)d

]∑

q

Qq

[
qγµ(1− γ5)q

]
,

O8 =
[
sαγ

µ(1− γ5)dβ

]∑

q

Qq

[
qβγµ(1− γ5)qα

]
,

O9 =
[
sγµ(1− γ5)d

]∑

q

Qq

[
qγµ(1 + γ5)q

]
,

O10 =
[
sαγ

µ(1− γ5)dβ

]∑

q

Qq

[
qβγµ(1 + γ5)qα

]
, (21.118)

where the electric charge of the quark q is eQq.
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Combining all contributions, we can write the matrix elements in the form

AIe
iδI = −GF√

2

10∑

n=1

[
Λuz

(u)
n − Λtz

(t)
n

] 〈
(ππ)I

∣∣On

∣∣K0
〉
. (21.119)

Note that the factor Λu appeared in Eq. (21.113) from the vertices. The
quantity Λt occurs the same way. From the diagrams in Fig. 21.1 (p 641) as
well as in Fig. 21.2 (p 641), the CKM matrix elements would come only in the
combination Λu, and so we can say that

z
(t)
1 = z

(t)
2 = 0 (21.120)

in Eq. (21.119). Contributions from all other diagrams would involve charm
and top quarks in the loops, and would therefore contain terms proportional
to Λc and Λt. However, Λu + Λc + Λt = 0 because of unitarity, which can
be used to eliminate any one of the three. In writing Eq. (21.119), we have
chosen to eliminate Λc.

The co-efficients zn appearing in Eq. (21.119) contain, first of all, factors
that come from the evaluation of the diagrams shown. Moreover, they also
contain results from QCD corrections to those diagrams, obtained by adding
extra gluon lines, which should be comparable in magnitude in the low en-
ergy limit where the QCD coupling constant is not small. Results of these
corrections are incorporated in multiplicative constants which are called Wil-
son co-efficients . They are estimated through lattice calculations. We will
not discuss the details of the procedure in this book.

By now it should be clear why the estimation of ǫ′ is so much more difficult
than that of ǫ. There are ten different quark level operators, and we will have
to take their matrix elements between an initial state K0 and a final state of
two pions. The final state pions can be in two different states of total isospin,
and the matrix elements would be different for the two states. There is some
consolation in noting that

〈
(ππ)2

∣∣On

∣∣K0
〉

= 0 for n = 3, 4, 5, 6 , (21.121)

since the qq̂ pair produced in the QCD penguins is produced from a vertex
with gluons, which can produce them only in an I = 0 state. Still, there is
a huge number of hadronic matrix elements to be computed, compared to
only one for the case of ǫ. And the difference is not just in the volume of
work to be performed. As mentioned during the estimation of ǫ, the matrix
elements of quark-level operators cannot be determined very reliably. So, if
each matrix element is uncertain by some amount, the overall result must be
very uncertain.

Despite these uncertainties, we should at least try to make some estimate
and try to ascertain that |ǫ′| comes out to be much smaller than |ǫ|, consistent
with experimental results presented in Eq. (21.66). For this, it is convenient
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to rewrite Eq. (21.105) in the form

∣∣∣∣
ǫ′

ǫ

∣∣∣∣ =

(
A2Λ∗

u(A0Λ∗
u)∗
)

√
2 |ǫA2

0Λ2
u|

≈ (A2Λ∗
u)− |ω| (A0Λ∗

u)√
2 |ǫA0Λu|

. (21.122)

Then we multiply Eq. (21.119) by Λ∗
u and take the imaginary parts of both

sides. On the right hand side, there will be some terms which will contain〈
(ππ)I

∣∣On

∣∣K0
〉
. These are the parts which give rise to the phase shift,

and should be equated with the term involving sin δI on the left hand side.
The other terms give the CP-violating parts of the amplitude, and are as
follows:

(AIΛ∗
u) cos δI =

GF

2|ǫA0Λu|
(ΛtΛ

∗
u)

〈
(ππ)I

∣∣On

∣∣K0
〉
. (21.123)

Note that the Jarlskog parameter is given by

J = (ΛtΛ
∗
u) (21.124)

according to the definition given in §21.3. So we obtain

∣∣∣∣
ǫ′

ǫ

∣∣∣∣ =
GF J

|ǫA0Λu|
∑

n

z(t)
n

[ 〈
(ππ)2

∣∣On

∣∣K0
〉

cos δ2
− |ω|

〈
(ππ)0

∣∣On

∣∣K0
〉

cos δ0

]
.

(21.125)

To obtain a rough estimate for the matrix elements, we use a factorization
ansatz:

〈
π(k1)π(k2)

∣∣J1J2

∣∣K0(p)
〉

= 〈π(k1) |J1| 0〉
〈
π(k2)

∣∣J2

∣∣K0(p)
〉
,

(21.126)

where J1 and J2 are two bilinears of quark field operators, and the division
of the operators On into J1 and J2 has to be done in all possible ways. For
example, if we consider O1, we can write

〈
π(k1)π(k2)

∣∣O1

∣∣K0(p)
〉

=
〈
π(k2)

∣∣sγµ(1− γ5)u
∣∣K0(p)

〉

×〈π(k1) |uγµ(1− γ5)d| 0〉 . (21.127)

These matrix elements can be written down in the general forms given in
§17.6. The contributing parts of the matrix elements are

〈π(k1) |uγµγ5d| 0〉 =
√

2ifπk
µ
1 ,〈

π(k2)
∣∣sγµu

∣∣K0(p)
〉

= f1pµ + f2k2µ . (21.128)

Using p · k1 = 1
2m

2
K and k1 · k2 = 1

2m
2
K −m2

π
, we can then write

〈
π(k1)π(k2)

∣∣O1

∣∣K0(p)
〉
∼ fπm

2
K . (21.129)



646 Chapter 21. CP violation

Matrix elements of other operators are expected to be of the same order of
magnitude. Folding in all factors together, we obtain

∣∣∣∣
ǫ′

ǫ

∣∣∣∣ .
GF J

|ǫA0Λu|
fπm

2
K , (21.130)

ignoring the factors z
(t)
n in this expression. There are estimates for the z

(t)
n ’s,

and they are all small. Hence the less than sign in the above expression.
Putting in the known values of the quantities that appear in this estimate,

we obtain the value of |ǫ′/ǫ| to be about 0.035. This already shows that the
value should be small. As said earlier, this is as much as we can do without
having a reliable way of estimating the matrix elements.

21.5 Other signals of CP violation

21.5.1 Decays of mesons involving heavier quarks

We have discussed in detail signatures of CP violation in neutral kaon decays.
CP violation has been observed in decays of other mesons as well, and we
discuss the main ideas here.

a) Similarities and dissimilarities with kaon sector

Neutral kaons are either dŝ or d̂s. Similar mesons involving the bottom quark
are called B0

q ≡ b̂q or B̂0
q ≡ bq̂, where q means either the d quark or the s

quark. Because of quark flavor violating amplitudes such as those which arise
from the box diagrams analogous to the ones shown in Fig. 17.5 (p 510), the
physical eigenstates will be linear combinations of B0

q and B̂0
q . If we neglect

the effects of CP violation, one of the eigenstates will be CP-even, and the
other CP-odd. A signature of CP violation would consist of two-pion decays
of the eigenstate that is predominantly CP-odd.

The analysis is very similar to that for neutral kaon decays, and need not
be repeated. We only point out the differences between the kaon case and the
neutral B meson case. First, the eigenstates in the neutral kaon sector were
earmarked by their decay rates, one of them being much longer lived than the
other. It should be realized that such huge differences in decay rates occur
in the neutral kaon sector because, barring the small effect of CP violation,
the CP-odd eigenstate can decay only into three pions, and the masses of
the pions and the kaons are such that the phase space is very small for this
decay. This is a peculiarity of the kaons that is not expected to be present
for more massive mesons. For B mesons which are much heavier, there are
many channels available for decay, so the lifetimes for both eigenstates are
comparable. For this reason, the eigenstates of the neutral B mesons are
tagged not by their lifetimes, but by their masses. Thus, for the non-strange
mesons, the eigenstates are called B0

H and B0
L, where the subscript ‘L’ now



§21.5. Other signals of CP violation 647

stands for ‘light’ and not ‘long-lived’ as in the case for kaons, whereas the
subscript ‘H’ signifies ‘heavy’. Experimentally, one obtains

m(B0
H)−m(B0

L) = (3.337± 0.033)× 10−10 MeV . (21.131)

For the neutral B mesons carrying strangeness, the corresponding value is

m(B0
sH)−m(B0

sL) = (117.0± 0.8)× 10−10 MeV . (21.132)

2 Exercise 21.18 From the experimental values given in Eqs. (17.128),
(21.131) and (21.132), note that

m(B0
sH) −m(B0

sL) ≫ m(B0
H) −m(B0

L) ≫ m(K0
L) −m(K0

S) .(21.133)

Explain this hierarchy qualitatively by looking at Eq. (17.126, p 516)
and making educated guesses for similar equations for the other
mesons.

The second characteristic of the kaon sector that need not be identical to
other neutral mesons is the fact that the predominantly CP-odd eigenstate is
heavier in mass. As shown in §17.9.4, the mass difference between two neutral
eigenstates depends on a combination of elements of the CKM matrix. The
sign of the mass difference will depend on the signs of these CKM elements.

Another characteristic of the kaon sector, already mentioned in connection
with the first one, is that neutral kaons can decay hadronically only into pions.
In case of heavier mesons, many other decay modes are possible, some of
which, like the two-pion mode, consist of a CP eigenstate in the final state.
Therefore, CP violation can also be studied by looking at the decay of the
two neutral meson eigenstates into such channels. Examples of such channels
will be given shortly.

The analysis of CP violation for different final states will have some obvious
differences. For the case of kaon decay into two pions, we have considered
tree diagrams as well as penguin diagrams while estimating the direct CP
violation. Both type of diagrams need not exist for an arbitrary final state.
In some cases, only one or the other type might exist. In some others, neither
might exist, and CP violation would come only from the box diagrams. In
Ex. 21.19, we give some examples of different kinds of processes.

2 Exercise 21.19 For neutral kaons decaying into two pions, there are
tree diagrams and penguin diagrams. For each of the following decays
of the neutral meson B0

d (i.e., the bound state bbd), identify the quark-
level process and argue that only the mentioned combinations of tree
and qcd-penguin diagrams are possible.

a) B0
d → K+

π
− : Both tree and qcd-penguin diagrams possible.

b) B0
d → bD0

π
0 : No penguin diagram, only tree diagrams.

c) B0
d → K0

bK0 : No tree diagram, only qcd-penguin diagram.

d) B0
d → K−

π
+ : Neither penguin nor tree diagram.
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There can be similar studies involving the D mesons. The neutral D
mesons contain cû and ĉu. However, the effects are expected to be much
smaller than for kaon or B meson systems. Let us try to understand the
reason by considering the box diagrams. We recall that the expression of
Eq. (21.109) for the kaon system has a sum over the two intermediate quark
lines. The amplitude of the diagram, apart from overall constant factors and
the function f that comes from loop integration, contains factors of the form
F

(K)
q ≡ VqdV

∗
qsm

2
q apart from where q is an up-type quark. In fact, there are

two such factors, coming from the two internal quark lines. For the B meson
system, similarly, there are two factors of the form F

(B)
q ≡ VqdV

∗
qbm

2
q. On the

other hand, for the neutralD meson system, this factors are F
(D)
q ≡ VcqV

∗
uqm

2
q,

where now q is a down-type quark, because these are the quarks now appearing
in the loop. Let us now compare these quantities, using the Wolfenstein
parametrization of the CKM matrix that was presented in Eq. (17.24, p 488):

q belongs to
Approximate value of

F
(K)
q F

(B)
q F

(D)
q

1st generation λm2
d λ3m2

u λm2
d

2nd generation λm2
s λ3m2

c λm2
s

3rd generation λ5m2
t λ3m2

t λ5m2
b

(21.134)

Recall that λ is the sine of the Cabibbo angle, and its value is about 0.22.
The masses of the various quarks have been given in §18.3 and §20.5. It is
clearly seen that the values of Fq are much smaller for the D meson system
compared to the K or B meson systems. Thus, according to known physics,
the effects in the D meson system must be very small.

b) Time-dependent CP violation effects

However, in B meson dcays, CP violation need not be searched for in channels
with only pions in the decay products. There can be other strategies for
seeing CP-violating signals. One such strategy involves study of the decay
of a neutral meson and its antiparticle to the same final state f which is an
eigenstate of CP. In order to keep the notation as general as possible, we
will denote the meson by M0 and its antiparticle by M̂0. Thus, M0 can be
either B0 (i.e., B0

d) or B0
s . In a collision process, an M0-M̂0 pair is produced

together. For example, an B0-B̂0 pair can be produced in the decay of an
Υ(4S) meson. If one of the members of the pair is identified by observing its
decay into a semi-leptonic mode, we know for sure what the other member
is. For example, suppose we find that one member decays into a charged
antilepton, ℓ+, and something else, which we call X . The B0 meson contains
the antiquark b̂, which can go to ĉ+W+, and the W+ can decay to ℓ+ and a
neutrino. If the meson contain the quark b, such decays would have produced
a charged lepton, ℓ−. Thus, if we obtain ℓ+ in the decay mode of one member
of the pair B0-B̂0, we can be sure that it is the B0, and therefore the other
member must be B̂0. The evolution of this other member in time can then
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be studied. This procedure of identifying a particle, through the decay of
another particle in a well-defined pair, is called tagging.

In order to develop a formalism and identify CP-violating parameters, we
start from the definitions of the eigenstates:

∣∣M0
H

〉
= p

∣∣M0
〉

+ q
∣∣∣M̂0

〉
,

∣∣M0
L

〉
= p

∣∣M0
〉
− q

∣∣∣M̂0
〉
. (21.135)

It resembles Eq. (21.21), though of course the parameters p and q will be
different for different systems. We do not put explicit indications of the system
in the notations for the parameters p and q.

Inverting these equations, we obtain

∣∣M0
〉

=
1

2p

( ∣∣M0
H

〉
+
∣∣M0

L

〉 )
,

∣∣∣M̂0
〉

=
1

2q

( ∣∣M0
H

〉
−
∣∣M0

L

〉 )
. (21.136)

Thus, if a particle is produced as M0 at t = 0, after a time t its state will
become

∣∣M0(t)
〉

=
1

2p

(
e−imHt−γHt

∣∣M0
H

〉
+ e−imLt−γLt

∣∣M0
L

〉 )
, (21.137)

where mH ,mL are the masses and γH ,γL the lifetimes of the eigenstates.
Using Eq. (21.135), this state can be rewritten in the form

∣∣M0(t)
〉

= R+(t)
∣∣M0

〉
− q

p
R−(t)

∣∣∣M̂0
〉
, (21.138)

where

R± =
1

2

(
e−imHt−γHt ± e−imLt−γLt

)
. (21.139)

Therefore, for a certain final state f , the matrix element for transition from
the state M0(t) would be given by

〈
f
∣∣TT
∣∣M0(t)

〉
= R+(t)Af −

q

p
R−(t)Âf , (21.140)

with the obvious definitions for Af and Âf . The similar equation for a state

that originated as M̂0 is given by
〈
f
∣∣∣TT
∣∣∣ M̂0(t)

〉
= R+(t)Âf −

p

q
R−(t)Af . (21.141)

The absolute square of these amplitudes contain the quantities

|R±|2 =
1

2
e−γt

[
cosh

1

2
∆γ t± cos ∆mt

]
,

R∗
±R∓ = −1

2
e−γt

[
sinh

1

2
∆γ t± i sin ∆mt

]
, (21.142)
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where

γ =
1

2
(γH + γL) , ∆γ = γH − γL . (21.143)

2 Exercise 21.20 Verify Eq. (21.141).

For the rest of the discussion, we will assume that ∆γ = 0, in view of the
fact that the lifetimes are nearly equal, as commented earlier. Then,

∣∣∣
〈
f
∣∣TT
∣∣M0(t)

〉 ∣∣∣
2

∝ |Af |2 [1 + Cf cos ∆mt− Sf sin ∆mt] ,

∣∣∣
〈
f
∣∣∣TT
∣∣∣ M̂0(t)

〉 ∣∣∣
2

∝ |Âf |2
|λf |2

[1− Cf cos ∆mt+ Sf sin ∆mt] , (21.144)

with the same constant of proportionality, and with

Cf =
1− |λf |2
1 + |λf |2

, Sf =
2 λf

1 + |λf |2
. (21.145)

Clearly, any non-zero value of either Cf or Sf signals CP violation, since
CP conservation requires λf = 1, as argued in §21.4.2. The important point

is that even if there is no indirect CP violation so that |Âf | = |λfAf |, we
can still obtain CP-violating effects. This is an example of interference CP
violation. The magnitude of CP asymmetry in the decays will be given by

ACP =

∣∣∣
〈
f
∣∣TT
∣∣M0(t)

〉 ∣∣∣
2

−
∣∣∣
〈
f
∣∣TT
∣∣M̂0(t)

〉 ∣∣∣
2

∣∣∣
〈
f
∣∣TT
∣∣M0(t)

〉 ∣∣∣
2

+
∣∣∣
〈
f
∣∣TT
∣∣M̂0(t)

〉 ∣∣∣
2

= Cf cos ∆mt− Sf sin ∆mt . (21.146)

2 Exercise 21.21 Evaluate the left hand sides of Eq. (21.144) and find
the constant of proportionality that has been omitted in writing both
expressions.

Evidences for such CP violation have been found for a large number of final
states. An example of such final state is JΨ+K0

S. In absence of CP violation,
K0

S is a CP-even eigenstate. The charmonium state JΨ, as mentioned in
Ex. 20.3 (p 603), is a 3S1 state of the charm quark and its antiquark, and is
therefore CP-odd, according to the parity and charge conjugation properties
of fermion-antifermion bound states expounded in §6.7. So the overall state
is an eigenstate of CP, with eigenvalue −1. Measurements of CP-violating S
or C parameters, for B0 or B̂0 decaying to this and other CP eigenstates, are
summarized in Table 21.1. It is to be noted that, unlike the parameters δ, ǫ
and ǫ′ encountered in the kaon sector, these measures of CP violation are not
very small.
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Table 21.1: Time-dependent CP-violating effects in B0 and bB0 decays. Note that
the list is not exhaustive: only some sample channels are shown.

Final state Parameter
Experimental

value

JΨK0
S S 0.679±0.020

JΨπ
0 S −0.93±0.15

π
+

π
− C −0.36±0.06

η′K0
S S 0.59±0.07

D+D− S −0.98±0.17

21.5.2 CP-violating correlations

Certain correlations between momentum and/or spin in various processes can
signal CP violation. Obviously, one needs to consider correlations in two
different processes involving the CP conjugates of each other. We have al-
ready discussed such an example in Ex. 7.6 (p 198) concerning the decay of µ

−

and µ
+. The neutrinos and antineutrinos emitted in the decays cannot be de-

tected, so we can only measure the spin of the decaying µ
± in their rest frame,

and the spin and the momentum of the e± produced in the decay. With these
measurable quantities, the most general parametrization of the differential
decay rates of µ

− and µ
+ was written in Eq. (7.56, p 198). CP conservation

implies some relations between the parameters. Since momentum changes
sign under parity and angular momentum doesn’t, CP transformation would
convert an electron’s 3-momentum to a positron’s 3-momentum in the oppo-
site direction. With such arguments, we can easily show that CP conservation
would imply the relations

R+
0 = R−

0 , A− = −A+, B− = −B+, C− = C+, D− = −D+,

(21.147)

for the parameters that appear in Eq. (7.56, p 198).
Of course this example involves leptons, and cannot occur at any appre-

ciable level unless there is some source of CP violation in the leptonic sector,
a topic that will be discussed in Ch. 22. Similar correlations can in principle
be devised for processes involving hadrons. However, carrying out such an
experiment to see any signature of CP violation is not easy since the corre-
lations would involve polarized beams, and making such beams is not easy
since the lifetimes of baryons are very short.

21.5.3 Electric dipole moment

In §6.9.3 and §7.7, we argued that the presence of non-zero electric dipole
moment (EDM) of a fermion signals violation of parity and time-reversal
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dAdA W

uBuB

dAdA

W

uB

Figure 21.4: 1-loop diagram that generates an effective coupling of fermions with
the photon, involving weak vertices in the loop.

symmetries. If CPT is assumed to be conserved, violation of time-reversal
symmetry would be equivalent to CP violation. Therefore, a non-zero EDM
of a particle can be taken as a signature of CP violation, provided of course
that CPT is conserved.

Pure electromagnetic interactions do not violate CP. So, the electric dipole
moment must come from diagrams that has some weak vertices as well. The
simplest coupling with the photon that involves an internal weak vertex is the
one-loop diagram shown in Fig. 21.4.

However, it is easy to see that this one-loop diagram cannot produce any
CP-violating effect. The reason is simple. Imaginary part in the amplitude
can come only from the CKM matrix elements. However, with the fermions
shown in the figure, one vertex will contain a factor of VBA whereas the
other will have V ∗

BA. Thus the amplitude will contain |VBA|2 and will be
real. It has been argued that even two-loop diagrams cannot produce a CP-
violating for factor assuming that the CKM matrix is the only source for
CP violation. Thus, contributions to electric dipole moments can come from
three-loop diagrams. This means that such contributions must be very much
suppressed, not only because CP violation is small, but also by loop factors
and the coupling constants that appear in these high-loop diagrams.

Of course we do not observe free quarks. But the point is that if the
u or the d quark has an electric dipole moment, it can contribute to the
electric dipole moment of the neutron. Very sensitive experiments have been
performed to find the electric dipole moment of the neutron. They are all null
experiments, and produce only an upper bound:

d
(neutron)
E ≤ 2.9× 10−26 e cm . (21.148)

However, because only high-order loops might be responsible for a non-zero
value, the theoretical estimate is smaller than this upper bound by many
orders of magnitude. So, unless there is some other source of CP violation, it
does not look probable that the electric dipole moment of the neutron will be
found experimentally in the near future.
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V u
d
V

∗
u
b

VtdV ∗
tb

VcdV
∗
cb

ϕ1, β

ϕ2, α

ϕ3
, γ

Figure 21.5: A schematic representation of the unitarity triangle. There are two
kinds of notations used for the angles of the triangle. Both have been shown in the
figure.

21.6 Unitarity triangle

There is another way of representing CP violation, which works well because
there are three generations of quarks. Unitarity of the CKM matrix elements
implies that different rows (or columns) of the matrix must be orthogonal.
For example, we can write

VudV
∗
us + VcdV

∗
cs + VtdV

∗
ts = 0 . (21.149)

On the complex plane, if we draw arrows corresponding to the complex num-
bers VudV

∗
us etc, and arrange the tip of one arrow to coincide with the base

of another, the three arrows will form a triangle. Such triangles are called
unitarity triangles.

If there is no CP violation, all elements of the CKM matrix can be taken
to be real. In this case, each of the three terms on the left hand side of Eq.
(21.149) would be real, and the only way they can add up to zero is that one of
them has the opposite sign compared to the other two, and has the magnitude
equal to the sum of the other two. In other words, the name unitarity triangle
would not have been appropriate in this case, because it would have been a
collapsed triangle with vanishing area. Because of CP violation, this does not
happen: the three sides of the triangle are really different, and the triangle
encompasses a finite area. Thus, the area of the unitarity triangles is a measure
of CP violation.

Eq. (21.149), as it stands, is the statement of orthogonality of the first two
rows of the CKM matrix. One can consider other pairs of rows, or even of
columns, to obtain other relations of the same type. These will give different
unitarity triangles. However, the area of all such triangles are equal. In fact,
it can be easily shown that the area is half of the Jarlskog invariant introduced
in Eq. (21.12).

The shape of the unitarity triangle, as dictated by present data, has been
shown in Fig. 21.5, using the orthogonality of the first and the third columns
of the CKM matrix. There are two different notations for the angles that
exist in the literature, and we present both, along with their expressions in



654 Chapter 21. CP violation

terms of the CKM matrix elements in the Wolfenstein parametrization.

β ≡ ϕ1 = arg

(
−VcdV

∗
cb

VtdV ∗
tb

)
≈ arg

(
1

1− ρ− iη

)
, (21.150a)

α ≡ ϕ2 = arg

(
− VtdV

∗
tb

VudV ∗
ub

)
≈ arg

(
−1− ρ− iη

ρ+ iη

)
. (21.150b)

γ ≡ ϕ3 = arg

(
−VudV

∗
ub

VcdV ∗
cb

)
≈ arg (ρ+ iη) . (21.150c)

Note that the angles do not depend on the parameters λ and A that appear
in the Wolfenstein parametrization.

2 Exercise 21.22 Show that, if we rescale and reorient the axes in the
complex plane such that the vertices containing the angles ϕ3 and ϕ1

have co-ordinates (0, 0) and (1, 0) respectively, the co-ordinates of the
vertex containing the angle ϕ2 should be (ρ, η).

2 Exercise 21.23 We have made a statement in the text that the area
of any unitarity triangle is given by 1

2
J, where J is the Jarlskog in-

variant. Prove the statement.

The angles of the unitarity triangle can be estimated in a variety of ways.
Take, for example, the angle ϕ2. It can be estimated from the decay of B0

(i.e., B0
d) and B̂0 to π

+
π

−. By definition, the parameter λ for this decay will
be given by

λ(B0→π+π−) =
q

p

〈
π

+
π

−∣∣TT
∣∣B̂0

〉

〈
π+π−

∣∣TT
∣∣B0

〉 , (21.151)

where q and p are the parameters in the effective Hamiltonian matrix for the
B0-B̂0 system. The value of this ratio can be read from Eq. (21.81). Recalling
that |�12| ≪ |M12| for the B system, we can write

q

p
=

√
M∗

12

M12
. (21.152)

Contributions to M12 come, as for the kaon system, through box diagrams.
For the B system, the box diagrams with internal t quark lines should domi-
nate because of the huge mass of the top quark, and so the contribution should
be proportional to (V ∗

tdVtb)2. Hence q/p ∼ (VtdV
∗
tb)/(V ∗

tdVtb). On the other
hand, the decay amplitudes are dominated by tree diagrams. For example,
the decay B̂0 → π

+
π

− involves b → duû at the quark level, which occurs
through W boson exchange with a factor VubV

∗
ud. Similarly, the B0 → π

+
π

−

comes with a factor V ∗
ubVud. Combining all factors, we obtain

λ(B0→π+π−) ∼
VtdV

∗
tb

V ∗
tdVtb

VubV
∗
ud

V ∗
ubVud

≈ Vtd

V ∗
ub

Vub

V ∗
td

, (21.153)
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using the fact that all diagonal elements of the CKM matrix are very close to
unity. Thus,

argλ(B0→π+π−) = arg

(
Vtd

V ∗
ub

)
+ arg

(
Vub

V ∗
td

)
= 2 arg

(
Vtd

V ∗
ub

)
, (21.154)

which is related to ϕ2 since, if we put the diagonal CKM elements to be equal
to unity, Eq. (21.150b) says that ϕ2 = arg(−Vtd/V

∗
ub). Similarly, ϕ1 can be

estimated from the decays B0 → JΨ + KS and B̂0 → JΨ +KS.
There is one reason why the unitarity triangles provide a very convenient

way of detecting and measuring CP violation. The absolute values of the
elements of the CKM matrix are obtainable from the rates of CP conserving
processes. If we collect data of the absolute values of the elements that ap-
pear, e.g., in Eq. (21.149) and find the absolute values of the three terms in
that equation, we obtain the lengths of the three sides of the triangle. From
elementary geometry, we know that the sides of a triangle determine the tri-
angle uniquely, apart from its orientation in a plane. In particular, the area of
a triangle can be found from the length of its sides. Thus, information about
CP violation can be obtained by measuring CP conserving processes only.

21.7 CP violation and T violation

We have always assumed CPT invariance in our analysis. With this assump-
tion, CP violation is equivalent to time-reversal (or T) violation. Experimen-
tally, however, one cannot take any principle to be sacrosanct. We should
therefore be critical about whether results described in this chapter are mea-
surements of CP violation really, or of T violation.

As already emphasized, presence of a non-zero electric dipole moment
of any fermion is really a signature for T violation. On the other hand,
results obtained from various decay processes are definitely signatures of CP
violation: they do not say anything directly about T violation since it is not
possible to perform an experiment in the opposite direction, where two or
more particles come together and fuse into one particle.

Other tests of T violation have been suggested in analogy with the CP
violation tests described in §21.5.1(b) involving time-dependent effects in B
meson decays. In that section, we looked at the time evolution of the flavor
states M0 and M̂0, which have well-defined bottom quantum number, i.e.,
contains either a bottom quark or its antiquark. The bottomness was deter-
mined by looking at the decay of its partner which was produced in the same
reaction, and which must have the opposite value of bottomness.

While discussing CP violation in §21.5.1(b), we used tagging the mesons
by their leptonic decay modes. Exactly in a similar way, we can tag by other
properties as well. This realization opens up the possibility of a lot of other
tests for checking different discrete symmetries. The idea is explained in
Fig. 21.6 for T violation. Consider the left panel. At t = t0, a B0-B̂0 pair
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ℓ+

X

JΨ

K0
S

time
t0 t1 t2

JΨ

K0
L

ℓ−

X

time
t0 t1 t2

Figure 21.6: Schematic diagram for test of T violation. Time flows to the right of
each diagram, as indicated by the arrow. The dashed lines correspond to some fixed
values of time. Similar strategy can be employed for testing CP or CPT symmetries, as
described in the text.

is produced, let us say from Υ(4S) decay. At time t = t1, we see a decay to
ℓ+X , i.e., a charged antilepton and anything else. As explained in §21.5.1(b),
this means that the decay occurs to a B0. The other particle that survives
is therefore a B̂0. Let us suppose that we detect it finally at time t = t2
through the decay channel JΨK0

S. As discussed earlier, apart from small CP-
violating effects in the kaon sector, this decay product is an eigenstate of CP
with eigenvalue −1. For this reason, we can call the B state that decays into
it as B(−). This chain of events has been indicated by the entry of the first
column of the first line in Table 21.2 (p 657).

If we are interested in CP violation, we would compare this process with
the process where the decay at t = t1 produced ℓ−X , the rest being equal.
This was the discussion of §21.5.1(b). Now, if we are interested in T violation,
we would look for the time-reversed process of a B(−) transforming into a B̂0.
In this case, we want to look at a process in which the decay at t = t1 occurred
for the state orthogonal to B(−), which is a CP-even eigenstate, barring small
CP-violating effects in the kaon sector. Thus, it would decay into JΨK0

L. The

surviving B(−), after traveling for a time t2− t1, would have a B̂0 component
in it, which will be identified by the decay product ℓ−X . In a similar way, we
can also test CPT symmetry by choosing suitable final states, as indicated in
Table 21.2.
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Table 21.2: Examples of different kinds of taggings required for tests of different
discrete symmetries. In each case, we show in square brackets the decay products by
which the first particle is tagged, and the decay product that identifies the final particle.

Original process
Conjugated process under

T CP CPT

B̂0 [ℓ+X ]

B(−) [JΨKS]

B(−) [JΨKL]

B̂0 [ℓ−X ]

B0 [ℓ−X ]

B(−) [JΨKS ]

B(−) [JΨKS ]

B0 [ℓ−X ]

B(+) [JΨKS ]

B0 [ℓ+X ]

B0 [ℓ−X ]

B(+) [JΨKL]

B(+) [JΨKS ]

B̂0 [ℓ−X ]

B̂0 [ℓ+X ]

B(+) [JΨKL]

Following the analysis presented in §21.5.1(b), we can easily deduce the
expression for matrix elements of the form

〈
B(β)

∣∣TT
∣∣B(α)

〉
, where B(α) and

B(β) are states like B0, B̂0, B(+), B(−), which appear in the argument given
above. If we assume ∆γ = 0, i.e., γH = γL ≡ γ, the general form of such
matrix elements is given by

〈
B(β)

∣∣TT
∣∣B(α)

〉
∝ e−γt [1 + Cα,β cos ∆mt+ Sα,β sin ∆mt] . (21.155)

One can find out the co-efficients Cα,β and Sα,β for different initial and final
states by looking at the decay products. If the results for these co-efficients
are different in a process and its T-conjugated process, that would indicate T
violation. For example, if

C
bB0,B(−)

6= CB(−), bB0 , (21.156)

it would signal T violation. Similar inequality with the S co-efficients would
also signal the same thing. The BaBar collaboration has reported evidence
of T violation through such data in 2012.

21.8 Strong CP problem

21.8.1 Effective θ-parameter

We have focused on weak interactions while discussing CP violation. The
reason is simple: CP-violating effects are very small. In fact, they are weaker
than usual weak interactions, as the smallness of CP-violating parameters
like ǫ indicates. Naively, one should expect such effects to come out of weak
interactions.
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However, in §12.8, we pointed out that the QCD Lagrangian admits of a
term that violates parity as well as time reversal. This term, shown in Eq.
(12.204, p 376), can be written as

Lnew =
θQCDg

2
3

32π2
Ga†

µν G̃
µν
a , (21.157)

where θQCD is a parameter, g3 is the coupling constant of QCD and G denotes
the QCD field-strength tensor. The factor g2

3/32π2 has been put in in view
of Eq. (12.230, p 381): if the gauge fields have a fixed winding number, the
integral of this new term would be θQCD times the winding number.

It is important to realize that one cannot get rid of this term by simply
postulating that the QCD Lagrangian conserves parity or time reversal. The
reason for this can be understood from our discussion of chiral symmetries in
Ch. 18. In particular, in Eq. (18.125, p 552), we showed that, even if all quarks
are massless, the axial U(1) current is not conserved. It has an anomaly given
by

∂µJ̃
µ =

g2
3NF

16π2
Ga†

µν G̃
µν
a , (21.158)

where NF is the number of quark flavors. Thus, if we perform an axial ro-
tation by an amount β on each quark field, as shown in Eq. (18.80, p 544),
the Lagrangian changes by an amount (β/NF )∂µJ̃

µ according to Eq. (4.108,
p 82), which means that a term like that in Eq. (21.157) will be induced by
the axial transformation.

This is not merely an esoteric point. In §17.1, we described how, starting
from doublets of the SU(2) part of the electroweak gauge group, a bi-unitary
transformation is needed to obtain the physical quark fields. As explained
there, a bi-unitary transformation means different transformations on the left-
chiral and right-chiral fields, which must involve an axial transformation. In
order to identify the U(1) part of the axial transformation involved in this
process, let us go back to Eq. (17.15, p 485). As described in §3.3, the diago-
nalizing matrices UL and UR can be written in the form

UC = U ′
CXC , (21.159)

where C = L,R, with U ′
C being a matrix of unit determinant and XC a

multiple of the unit matrix. The former matrix inflicts transformations on
the flavor SU(N) group for N generations of fermions, whereas the latter one
inflicts U(1) transformations. Clearly,

XC = ei∆C/N1 , (21.160)

where ei∆C is the determinant of UC . This means that the quantity β men-
tioned after Eq. (21.158) is ∆R −∆L.

To express this amount using the mass matrix, we can use Eq. (21.159) to
rewrite Eq. (17.13, p 485) in the form

M = U ′
LXLDX

†
RU

′†
R . (21.161)
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Since U ′
L and U ′

R have unit determinants, this implies

detM = detD · detXL/ detXR = detD · ei(∆L−∆R) . (21.162)

Recall that the matrix D is a diagonal matrix whose elements are the physical
masses of the down-type quarks, so its determinant is real. Thus we obtain

arg detM = ∆L −∆R , (21.163)

which is the amount of chiral rotation on the quarks.
In the discussion so far, we have used formulas from §17.1 where we had

assumed that we have taken a basis of the doublets such that the mass ma-
trix of the up-type quarks is diagonal. More generally, we can start from an
arbitrary basis where both up-type and down-type quarks have non-diagonal
Yukawa couplings, then there will be an extra contribution to the chiral ro-
tation coming from the up-type quark matrices. Denoting the up-type and
down-type quark matrices by M (u) and M (d) in an arbitrary basis, we can
write the chiral U(1) rotation amount as arg detM (u) +arg detM (d), or, more
succinctly, as arg det(M (u)M (d)). Adding this to the QCD contribution, we
find that the effective value of the θ parameter is given by

θeff = θQCD + arg det(M (u)M (d)) . (21.164)

The mass matrices of the quarks have to be complex in order to accommodate
weak CP violation, so the second term on the right hand side cannot be
zero. Clearly, the effective θ cannot be zero in that case, because two effects
coming from two very different sectors of the theory cannot possibly cancel
each other. The effective θ parameter will give rise to CP-violating effects,
which we discuss next.

21.8.2 Physical effects of θ

Let us consider the CP-violating effect which we have discussed in most detail
in this chapter, viz., CP violation in the neutral kaons. Let us consider, e.g.,
the parameter ǫ corresponding to indirect CP violation, and ask ourselves the
question: can it have a contribution from the θ parameter?

The answer is ‘no’, and the reason is the following. The parameter ǫ
appears in the superposition of K0 and K̂0 in the mass eigenstates. Both
K0 and K̂0 have the same parity properties, hence parity properties do not
change because of the superposition. Thus, the superposition is CP-violating
because it is C-violating. In short, the parameter ǫ violates C and T, but not
P. The θ parameter, on the other hand, is the co-efficient of an operator that
violates P and T, but not C.

Physical effects of θ must therefore be sought for in measurables which
violate P and T, but not C. Such a parameter is the electric dipole moment
(EDM) of a particle. The parameter θ can contribute to the EDM of strongly
interacting particles.



660 Chapter 21. CP violation

Let us try to estimate the contribution to the EDM of a nucleon. To the
lowest order, the contribution must be linear in θ. The contribution must
also have one power of the QED coupling constant e because of the coupling
to the photon. If chiral symmetry were exact in the Lagrangian, a chiral
rotation would have been physically inconsequential, and so θ would have
been an irrelevant parameter. However, if chiral symmetry were exact in the
Lagrangian and spontaneously broken, the pion mass would have been zero.
So, the explicit breakdown of chiral symmetry is connected to the value of m2

π
,

and the contribution should involve this as a factor. Combining everything,
we can write

d(N) ∼
eθeffm

2
π

m3
N

, (21.165)

where mN is the nucleon mass, which is the only factor that can make the
dimensions right. The experimentally known upper bound on the EDM of
neutron, given in Eq. (21.148), then implies that the effective θ parameter is
constrained by

|θeff | . 10−9 . (21.166)

This is the best empirical bound on the parameter.

21.8.3 Can θ be irrelevant?

Thus, if θ exists, its value will have to be very tiny. Very tiny parameters
are always uncomfortable from a theoretical point of view, because it is hard
to expect that two contributions from very different sectors of the theory
could cancel to such a good accuracy. Besides, even if one insists on such a
cancellation at the lowest level, it is not clear that higher order contributions
would not destabilize it. Such problems are called fine tuning problems in a
theory.

It would be helpful therefore if there is some symmetry that would guaran-
tee the cancellation and will imply θeff = 0 exactly. As mentioned in §21.8.2,
chiral symmetry can do the job. However, the standard model does not have
chiral symmetry: the Yukawa couplings do not obey this symmetry. However,
instead of the standard model which has only one doublet of scalar fields, let
us consider a model with two doublets called φu and φd, and Yukawa couplings
given by

LY = −
∑

A,B

(
h

(d)
ABqALφddBR + h

(u)
ABqALφ̃uuBR

)
+ h.c. (21.167)

Notice that in this case, the mass of the up-type quarks would come from the
VEV of φu whereas the mass of the down-type quarks would come from the
VEV of φd. The notable thing is that these Yukawa couplings are invariant
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under the following transformations:

qL → qL , dR → eiβdR , uR → eiβuR ,

φd → e−iβφd , φu → eiβφu . (21.168)

We have omitted the generation indices, implying that the same transforma-
tions should be applied to quarks belonging to all generations. Clearly, the
left-chiral and the right-chiral quarks transform differently, so this involves an
axial symmetry; and the symmetry is U(1), because it is flavor-blind. This
symmetry is called the Peccei–Quinn symmetry after the people who first
talked about it.

Obviously, the problem with the strong CP violation disappears with a
Lagrangian that possesses Peccei–Quinn symmetry, because chiral transfor-
mations render the θ-term irrelevant. However, a new problem arises from the
fact that when φu and φd develop VEVs to break the gauge symmetry and
to give masses to fermions, the Peccei–Quinn symmetry breaks spontaneously
as well, and that would imply that there should be a Goldstone boson in the
particle spectrum. Because of its link with the axial symmetry, this Goldstone
boson is called the axion.

To be precise, the axion would not be exactly massless. The reason is
that the axial U(1) is anomalous, as we have discussed in §18.4.2. The same
reason that makes η′ heavier than the mesons in the flavor octet would give
the axion some small mass. An estimate of the mass is not important for our
discussion.

In §15.3, we showed that the interactions of any Goldstone boson are sup-
pressed by inverse powers of the VEV responsible for the symmetry breaking
that gives rise to the Goldstone boson. The VEVs of the multiplets φu and
φd will both contribute to the W boson mass, and instead of the expression
of Eq. (16.16, p 464), we will obtain

M2
W =

1

4
g2(v2

u + v2
d) (21.169)

for the model with two doublets. This will imply that
√
v2

u + v2
d = 246 GeV,

so that the VEVs are in the range of a couple of hundred GeVs at the most.
From this, one can estimate their couplings, and hence the rate for decay of
a hadron, or even of a nuclear excited state, by axion emission. Experiments
were carried out to look for such processes, and they were not found.

In fact, the kind of processes alluded to can take place in the core of a star
as well, and the resulting axion would then escape from the star, causing en-
ergy loss of the star. From known bounds on stellar energy loss and lifetimes,
one can put an upper bound on the couplings of such light scalars. The result
is that, if the Peccei–Quinn symmetry is broken by a VEV vPQ, the couplings
can be small enough if

vPQ & 109 GeV . (21.170)
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Therefore, if the Peccei–Quinn idea has to be implemented to get rid of the
strong CP problem, one needs to break the Peccei–Quinn symmetry at a very
high scale, consistent with Eq. (21.170). This can be done by VEVs of extra
scalars which carry axial U(1) charges, and which are standard model singlets
so that the VEVs do not break the electroweak gauge group at the high scale.
There are various models with this general idea. We do not give the details
since so far there has not been any experimental indication favoring any of
these ideas.
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Neutrino mass and lepton mixing

For a long time it was believed that the neutrinos are massless fermions.
Experiments were consistent with zero mass of neutrinos, although each ex-
periment had its error bar. Around 1970 or so, astrophysical and cosmological
motivations for neutrino mass were felt. Around the turn of the millennium,
the existence of neutrino masses was firmly established, although the mass
values are not quite known yet. In this chapter, we will discuss theoretical
and experimental ramifications of neutrino mass.

While discussing the standard electroweak theory in Ch. 16, we assumed
the neutrinos to be massless. One can ask whether the conclusions reached
in that chapter are reliable since the assumption has been proved wrong ex-
perimentally. The answer is in the positive: although neutrinos have mass,
the masses are so small that in most situations they can be neglected. They
become important only because there are some phenomena which would be
impossible without non-zero neutrino masses. Some such phenomena will be
discussed in this chapter. And since the neutrinos are massless in the standard
model, we need to go beyond the standard model in these discussions.

22.1 Simple extension of standard model

In §17.1, we discussed how quarks obtain masses in the standard model. Why
can’t the neutrinos obtain masses in the same way?

The answer is simple. It takes a left-chiral and a right-chiral field to con-
struct a mass term. For each flavor of quark, we have the left-chiral component
in an SU(2)L doublet and the right-chiral component in a singlet. The same
is true for charged leptons, as seen from Eq. (16.40, p 470), and indeed the
charged leptons also obtain masses the same way the quarks do, i.e., through
the Yukawa coupling after symmetry breaking. But the same equation shows
us that we did not put in a right-chiral neutrino. So, no wonder that the
neutrinos remain massless in the standard model.

This was not an oversight on the part of the people who proposed the
standard model. Neutrino helicity was measured in different experiments, as

663
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indicated in §14.2, and the result was found to be consistent with −1. In
other words, there was no experimental indication that a neutrino can be
right-handed. In gauge theories, one has to specify the gauge transformation
properties of right-chiral and left-chiral fermion fields. If one admits only left-
chiral neutrinos and not right-chiral ones, that would imply that the neutrinos
are massless, and then helicity and chirality would mean the same thing, as
explained in §14.2. Thus, absence of right-chiral neutrinos would explain why
neutrinos cannot be found with right-handed helicity in any experiment. For
this reason, right-chiral neutrinos were not considered part of the physical
reality and not introduced in the standard model in its original version.

There were, however, some indirect indications of neutrino mass from as-
trophysics and cosmology. In addition, there was the aesthetic point that
the fermion content of the standard model looks lopsided without a right-
chiral neutrino. We can rectify the situation by introducing a right-chiral
neutrino field for each generation of fermions. Like the right-handed quarks
and charged leptons, they can be assumed to be SU(2)L singlets. The electric
charge formula given in Eq. (16.18, p 465) then tells us that its weak hyper-
charge should be zero, i.e., it should be invariant under the U(1)Y part of the
gauge group as well. There is thus no extra gauge interaction because of the
introduction of these fields.

But there will be new Yukawa interactions. Within a single generation, in
addition to the Yukawa terms shown in Eq. (16.41, p 471), the following extra
terms are allowed by gauge invariance:

L ′
Y = −h′ψLφ̃νR − h′∗νRφ̃

†ψL , (22.1)

where φ̃ was defined in Eq. (17.4, p 483). When the scalar doublet obtains a
VEV, the neutrino obtains a mass in a way that is exactly similar to the way
that quarks and charged leptons obtain masses.

When we consider multiple generations of fermions, we obtain one extra
feature. In the case of quarks, we found that the up-type and the down-
type quark mass matrices are not diagonalized by the same transformation,
which led to the phenomenon of quark mixing. Similarly, there is no reason
why the neutrino mass matrix and the charge lepton mass matrix should be
diagonalized by the same transformations. This implies lepton mixing.

The field that shares space in a doublet with a charged lepton ℓ can still
be called νℓ, i.e., the partner of eL in the SU(2)L can still be called νe. The
point is that these fields will not be eigenstates of the Hamiltonian. Let us
denote the eigenstates by νA for A = 1, 2, 3. These two sets of states should
be related through a unitary matrix:

νℓL =
∑

A

UℓAνAL . (22.2)
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Since νℓL and ℓL form a doublet, the interaction of the W bosons with the
leptons can be written as

Lcc = − g√
2

∑

ℓ

ℓLγ
µW−

µ νℓL + h.c. (22.3)

Using Eq. (22.2), we can rewrite this equation as

Lcc = − g√
2

∑

ℓ,A

(
ℓLγ

µW−
µ UℓAνAL + νALγ

µW+
µ U

∗
ℓAℓL

)
. (22.4)

The matrix U , similar to the CKM matrix for quarks, is called the PMNS
matrix in the context of leptons. The acronym is derived from the names of
the scientists Pontecorvo, Maki, Nakagawa and Sakata, who were the early
proponents of the possibility of lepton mixing.

Neutrino mass and lepton mixing therefore go hand in hand. We are not
saying that the Yukawa couplings described in Eq. (22.1) constitute the full
story of neutrino mass. In fact, in §22.6, we will argue that it is more likely
that neutrinos obtain masses from some other mechanism. But, no matter
how the masses are obtained, the source is different from the source of masses
of charged leptons, and therefore there is no reason that the mass matrices of
charged leptons and of neutrinos should be diagonalized by the same unitary
matrix. This means that there would be lepton mixing.

22.2 Neutrino oscillation

The only observed consequence of lepton mixing is flavor oscillation of neu-
trinos, often abbreviated to neutrino oscillation. In this section, we discuss
the theoretical framework for understanding the phenomenon and the exper-
imental findings.

22.2.1 Theoretical analysis

Suppose we have produced a neutrino in an experiment through a charged
current interaction. We know that a particular flavor of charged lepton ℓ was
annihilated in the process or its antiparticle has been produced. Through
Eq. (22.3), it means that the state νℓL has been produced. If there is lepton
mixing, this is not an eigenstate of the Hamiltonian. Rather, this is a super-
position of different eigenstates, as shown in Eq. (22.2). We can call each such
superposition a flavor state, meaning that each one couples to a particular
flavor of charged lepton through the charged current. If this state now evolves
in time, at time t the state will be

|νℓ(t)〉 =
∑

A

UℓAe
−iEAt |νA〉 , (22.5)
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where EA is the energy of the eigenstate νA. If the neutrinos are emitted
with a momentum of magnitude p,

EA =
√
p2 +m2

A , (22.6)

where mA is the mass of νA. Since the energies of different eigenstates are
not equal, the state at time t is not, in general, the same state as that given
in Eq. (22.2). So, at time t, the state will be a different superposition of the
eigenstates, which will contain other flavor states as well. The situation is
similar to kaon oscillations described in §17.9.3: strangeness eigenstates K0

and K̂0 are produced in strong interaction, but neither of them is an eigenstate
of the Hamiltonian.

To be more quantitative, let us make a few simplifying assumptions. First,
we suppose that there are only two generations of fermions, and denote the
neutrino flavors by νe and νµ. In this case, the PMNS matrix is of the form

U =

(
cos θ − sin θ
sin θ cos θ

)
. (22.7)

Second, we assume that the neutrino masses are very small compared to the
momenta. If the magnitude of neutrino momentum is p, we can write

EA = p +
m2

A

2p
, (22.8)

ignoring higher order corrections in mass. If the neutrino is produced in the
state

∣∣νe

〉
, then, after a time t, the state will evolve to

|νe(t)〉 = e−ipt
[
e−im2

1t/2p cos θ |ν1〉 − e−im2
2t/2p sin θ |ν2〉

]
. (22.9)

Once again, we emphasize that this is not the state
∣∣νe

〉
. This is the state in

which an initial
∣∣νe

〉
state has evolved after time t. The probability of finding

the state
∣∣νe

〉
in this beam is

Pνeνe
(t) ≡

∣∣∣ 〈νe |νe(t) 〉
∣∣∣
2

= 1− sin2 2θ sin2

(
∆m2

4p
t

)
, (22.10)

where

∆m2 ≡ m2
2 −m2

1 . (22.11)

This can be called the survival probability. The opposite would be the con-
version probability, i.e., the probability of finding a νµ from this beam. Ob-
viously, this would be

Pνeνµ
(t) = 1− Pνeνe

(t) . (22.12)

Because each of the probabilities shown in Eqs. (22.10) and (22.12) has an
oscillating factor in t, the phenomenon is called neutrino oscillation.
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2 Exercise 22.1 Consider more than two generations of neutrinos and
allow for phases in the mixing matrix. Show that the probability of
finding a neutrino flavor νℓ′ at a time t after producing a neutrino
flavor νℓ is given by

Pνℓν′
ℓ
(t) =

X

A,B

˛

˛

˛

˛

Cℓℓ′AB

˛

˛

˛

˛

cos

„

(m2
A −m2

B)t

2p
− argCℓℓ′AB

«

, (22.13)

where

Cℓℓ′AB = UℓAUℓ′BU
∗
ℓ′AU

∗
ℓB . (22.14)

In a real experiment, neutrinos cannot be monochromatic. There should
be some distribution of the momentum values. Let us say that the fraction of
neutrinos having momentum values between p and p + dp is Φ(p)dp, so that

∫
dp Φ(p) = 1 . (22.15)

Then the survival probability of a neutrino beam of a pure flavor would be

Psurv(t) = 1− sin2 2θ

∫
dp Φ(p) sin2

(
∆m2

4p
t

)
. (22.16)

Using the dimensionless variable

r ≡ ∆m2

4 〈p〉 t (22.17)

where 〈p〉 is the mean value of p, Eq. (22.16) can be rewritten as

Psurv(t) = 1− 1

2
sin2 2θ

∫
dp Φ(p)

[
1− cos(2r 〈p〉 /p)

]
. (22.18)

The corresponding formula for the conversion probability should be obvious.
If r≫ 1, the cosine term will fluctuate wildly with p, so that its integral will
vanish and we will obtain

Psurv(t) = 1− 1

2
sin2 2θ (22.19)

irrespective of the detailed nature of Φ(p). In the other extreme, if r ≪ 1, we
can keep only the first non-trivial dependence in r in the cosine term, which
would give

Psurv(t) = 1−Kr2 sin2 2θ , (22.20)

where K is independent of t.
Experiments are of two basic kinds. In one kind, one tries to measure

the survival probability, i.e., produces a beam of a certain flavor and tries to
find, after some time, whether the probability of finding that flavor is still
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Figure 22.1: Contours of equal probability for two different values of the conversion
probability. A Gaussian energy spectrum has been assumed, with a standard deviation
of 0.2 〈p〉.

unity. Such experiments are called disappearance experiments . The other
experiments where one looks for a flavor of neutrino that was not there in the
original beam, are called appearance experiments . In either kind, the data are
analyzed by using the momentum distribution function Φ(p) from the design
of the experiment, the probability is measured, and it is found out which set
of values of ∆m2 and θ is consistent with the data.

As an illustrating example, let us consider a Gaussian distribution of mo-
menta in an incoming beam of neutrinos. The nature of the equi-probability
contours for this case have been shown in Fig. 22.1. Thus, for example, if a
disappearance experiment finds that the disappearance probability at a cer-
tain distance lies between the two values marked in the figure, the region
between the two lines is allowed. Using the values of t and 〈p〉, this allowed
region can be mapped into a region in the parameters ∆m2 and θ.

2 Exercise 22.2 Show that K =
˙

p2
¸ ˙

1/p2
¸

in Eq. (22.20).

2 Exercise 22.3 In Fig. 22.1, check that for large r, the lines of equal
probability are consistent with Eq. (22.19), and that the slopes of the
lines for r ≪ 1 are consistent with Eq. (22.20).

Inspired by the theory of neutrino oscillation, some authors raised the question of whether there
can be a similar oscillation phenomenon with charged leptons. This does not make much sense.
We talk about flavor oscillation of neutrinos in situations where we know which charged lepton
(or antilepton) has been produced in a reaction, but do not know which neutrino (or antineutrino)
eigenstate has been produced. Without a knowledge of the neutrino eigenstate, all we can say
is that the produced state is a superposition of eigenstates which matches with its charged
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counterpart. By the same token, in order to talk about a charged lepton oscillation experiment,
we need to imagine a situation where we know that a particular eigenstate of neutrino has
been produced but do not know which charged lepton accompanies it. If the neutrinos and the
charged leptons had comparable masses, such a situation would not have been inconceivable.
However, the neutrino masses are much smaller than the masses of the charged leptons. With
the amount of precision that would be necessary to identify a particular eigenstate of neutrino,
it is virtually impossible not to know which charged lepton accompanies it. So, the idea of
charged lepton oscillation is an unreal idea.

22.2.2 Experimental data

We classify the experimental data depending on the source of neutrinos. Thus,
when we talk of solar neutrino data, it means the measurements were done on
neutrinos that were produced in the sun and detected on the earth. For ter-
restrial searches, the source and the detector are both earth bound. Although
terrestrial experiments can be the most controlled ones, a lot about neutrino
oscillation was learned from extra-terrestrial sources of neutrinos. In fact, the
experiments with extra-terrestrial sources gave data on neutrino oscillations
much before any terrestrial experiment did.

a) Solar neutrinos

The sun produces electron-neutrinosin nuclear reactions. In the first stage of
nuclear reactions taking place in the sun or any comparable star, two protons
fuse to form a deuteron:

p+ p→ d+ e+ + νe . (22.21)

The resulting neutrino, being only weakly interacting, does not experience
rescattering within the sun and comes out. There are also neutrinos pro-
duced from reactions involving nuclei with higher mass numbers. The nuclear
physics of these neutrino production mechanisms are well-studied in terres-
trial experiments, and the cross-sections of such reactions are known to a good
accuracy. Based on such data, one can calculate numerically the number of
neutrinos produced from the sun and their energy distribution. Since the
1960s, experiments were set up to detect these solar neutrinos. The earliest
experiment was led by Davis at the Homestake mines in South Dakota, USA.
They detected neutrinos through the inverse beta decay reaction

νe + 37Cl→ e− + 37Ar , (22.22)

and found that they were getting about one-third of the number of neutri-
nos that was predicted from the solar models. After that, the Kamiokande
group in Japan tried detection of solar neutrinos through elastic neutrino–
electron scattering. They also did not find as many neutrinos as expected.
Interestingly, their result was about half the expected flux, different from the
depletion observed in the Homestake experiment. Later, various other exper-
iments were set up, and the experimental results always fell short of the solar
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model expectation. The ratio of observed flux and expected flux was different
in different experiments. The solar model was suspected for a while, but as
data from different experiments accumulated, it became clear that changes
in the solar model cannot possibly explain the results of all experiments that
detected solar neutrinos.

The other possibility was that the neutrinos have some property beyond
the standard model. In particular, if neutrinos are massive and they mix, there
can be flavor oscillations. The sun can produce only νe’s: the reactions going
on in the solar interior are fusion reactions, like that shown in Eq. (22.21),
which are nuclear processes involving binding energies of the order of a few
MeV, and these energies are not high enough to produce a νµ or a ντ with
the associated charged lepton. With neutrino mixing, the νe would oscillate
on its way from the sun to the earth, and the beam would not contain as
many νe’s as are produced in the sun. This can explain why the experiments
detected fewer neutrinos than expected from a theory in which neutrino mass
and mixing had not been taken into account. Further, since the oscillation
probability depends on the neutrino energy, such a scenario would also explain
why different experiments, which were set up to detect neutrinos in different
energy ranges, showed different depletion of νe flux.

The question of depletion arose because the detection processes employed
by the various experiments were biased toward electron-neutrinos.In the case
of the Homestake experiments, only νe’s could be detected, because it was
not possible to produce a muon or a tau through an inverse beta decay
reaction with the energies carried by the neutrinos. Such was the case of
many other detectors as well, which used radiochemical methods of detection,
i.e., inverse beta decay processes involving some nucleus or other. For the
electron-scattering detectors like the Kamiokande, muon-neutrinos could also
be detected, but the scattering cross-section of νµ’s with the electron is much
smaller than the cross-section of νe-e scattering. Hence there was a bias here
as well.

The matter was settled by the SNO (Sudbury Neutrino Observatory) group
in Canada, whose detector contained heavy water. They detected neutrinos
through a number of reactions, including some of the reactions used by ear-
lier groups. However, they had an extra channel of detection, through the
decomposition of deuteron:

ν+ d→ ν+ n+ p . (22.23)

This reaction takes place through neutral current weak interaction, and there-
fore has the same cross-section for all neutrino flavors. Thus, even if the νe

oscillates to some other flavor of neutrino like the νµ or the ντ, this reaction
should be able to detect it. Indeed, they found depletion in electron-scattering
and other channels where the νe’s are preferentially detected, but the flux
agreed with the solar model calculations when the neutral current detection
channel was used.
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b) Atmospheric neutrinos

Atmospheric neutrinos also presented some anomaly. By atmospheric neu-
trinos , we mean neutrinos that are produced by cosmic rays hitting the at-
mosphere. Cosmic ray particles are predominantly protons. When they hit
nuclei in the atmosphere, pions are produced. Charged pions decay, almost
entirely into muons and associated neutrinos. Subsequently, the muons decay.
The chain of these reactions can be depicted as follows:

p+X → π± + Y

�- µ± + “νµ”

�- e± + “νe” + “νµ”

(22.24)

where X and Y denote nuclei. We have put quotation marks around the
neutrinos to indicate that the particle might be either a neutrino or an an-
tineutrino: the distinction is not made in the detection process. We see that
twice as many muon-type neutrinos will be produced compared to the number
of electron-type neutrinos. This ratio can be modified a bit because of other
secondary interactions, and can also depend on the energy of the neutrinos.
Such effects can be calculated to a fairly good degree of accuracy. Experi-
ments were set up, first by the Kamiokande group, to detect these neutrinos.
It was observed that the flux of muon-type neutrinos was less than what was
expected. Again, this can be explained if the muon-type neutrinos oscillate
into some other neutrino flavor.

c) Terrestrial searches

Not surprisingly, all early terrestrial experiments gave null results. Of course,
within the error bars, neutrino oscillation was allowed, but all data was also
consistent with no oscillation. First terrestrial evidence of neutrino oscillation
came from the KamLAND experiment in Japan. This is a disappearance
experiment, in which researchers used electron-type antineutrino (ν̂e) beams
from several reactors at distances between 150 and 200 km from the detector.
The energies of these antineutrinos are in the range of a few MeVs, peaking
at about 3.5 MeV. In the detector, they looked for the survival probability of
the ν̂e’s and found a depletion from the original number. Their results have
been shown in Fig. 22.2, where L is the distance between the production point
and the detection point of the neutrinos.

It should be noted that the results show data points for values of L/E
spanning almost a factor of 5. This is achieved because the experiment could
measure energies of the antineutrinos. Depletion rates have been calculated
for antineutrinos with different energies, giving a wide range of values of L/E.
The oscillatory behavior of the survival probability as a function of L/E is
obvious from the figure. Fig. 22.2 shows the best fit values for ∆m2 and θ cor-
responding to the KamLAND data only. We don’t present these values here.
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Figure 22.2: KamLAND result. The blobs are the data points, after making sub-
tractions for the background and from geo-neutrinos. The fit, with the best values sug-
gested by KamLAND, has been shown with a histogram and with a continuous curve.
[Reprinted with permission from: The KamLAND collaboration, Phys. Rev. Lett. 100

(2008) 221803; c© (2008) by the American Physical Society.]

In §22.2.4, we will present a summary of results from all different experiments
taken together.

The KamLAND experiment, along with other experiments on solar and
atmospheric neutrinos, helped determine two of the three mixing angles of the
PMNS matrix, and it turned out that both these angles are quite large. The
remaining angle θ13 that governs the 13 element of the PMNS matrix is small.
Until very recently, all experimental data was consistent with the 13 element
being zero. The situation changed when three different experiments published
their results almost at the same time in 2012: the Daya Bay experiment based
in China, the RENO experiment in Korea, and the double Chooz experiment
in France. These are all disappearance experiments which used ν̂e’s from
reactors, and a combination of near and far detectors to infer a depletion of
the flux of the antineutrinos. The value of θ13 was found to be approximately
9◦. We will mention the result more accurately in §22.2.4 when we summarize
all results regarding neutrino mass and mixing.

d) Order-of-magnitude analysis

Eq. (22.18) gives the expression for the survival probability in a neutrino
oscillation experiment. In a given experiment, the time t can be replaced, in
the natural units, by the source-to-detector distance x which is known. Also
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known is the energy distribution of the neutrinos used. Clearly then, a given
experiment is most efficient in detecting neutrino oscillations if the value of
∆m2 is such that r ∼ 1, i.e., if ∆m2 ∼ m2, where

m2 =
4 〈p〉
x

. (22.25)

This quantity is usually called the figure of merit of a neutrino oscillation
experiment. Putting in relevant conversion factors, we can write

m2

1 eV2 = 7.92× 10−4

( 〈p〉
1 MeV

)
×
( x

1 km

)−1

. (22.26)

For the KamLAND experiment, using the average energy and path length
as mentioned, we find that m2 ∼ 10−5 eV2, and indeed, the experiment found
some allowed region in the ∆m2 vs θ parameter space around that value of
∆m2. For atmospheric neutrinos, energies are of order GeV or so, whereas
the path length is a few thousand kilometers for neutrinos coming through the
earth after being produced in the atmosphere near the diametrically opposite
point. Thus, evidence of atmospheric neutrino oscillations would provide an
allowed region around ∆m2 ∼ 10−3 eV2. For solar neutrinos, however, the
same analysis gives a figure of merit of order 10−10 eV2. However, there are
other allowed regions, because our analysis so far has neglected one aspect
of neutrino oscillations that becomes very important for solar neutrinos. We
discuss it next.

22.2.3 Matter effects

Neutrinos are produced mainly in the core region of the sun, where the tem-
perature is high. On the way out of the sun, they must pass through regions
of high density of matter. Wolfenstein pointed out that, when neutrinos travel
through a medium, coherent forward scattering with the particles forming the
medium can change the effective neutrino Hamiltonian. To quantify this con-
tribution, let us consider a normal medium consisting of electrons, protons and
neutrons. Consider first the interactions with the electrons in the medium.
The effective Lagrangian for neutrino–electron interactions was given in Eq.
(14.78, p 426). When the electrons belong to the medium, we need to average
over them in order to obtain the contribution that is quadratic in the neutrino
fields. This term is

Lmat = −√2GF

〈
ψ(e)γ

µ(cV − cAγ5)ψ(e)

〉[
ψ(ν)γµLψ(ν)

]
, (22.27)

where the angular brackets indicate the averaging. Let us assume the electrons
in the medium are non-relativistic, an excellent approximation for the sun
whose core temperature is a few keVs. In this limit, the spatial parts of the
axial vector currents average to spin. If we assume that the medium does
not have any overall spin, this part is zero. The temporal part of the axial
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vector current is negligible. The spatial part of the polar vector currents is
proportional to the average velocity, which should also be negligible. So we
are left with only the temporal part of the polar vector current, which gives
the number density. Thus,

Lmat = −√2GFnecV

[
ψ(ν)γ0Lψ(ν)

]
. (22.28)

If we augment the free Lagrangian of neutrinos by this quadratic term and
write the equation of motion of the neutrino field, the effective energy of the
neutrino comes out to be

E =
√

p2 +m2 +
√

2GFnecV . (22.29)

2 Exercise 22.4 Add the term shown in Eq. (22.28) to the free Dirac
Lagrangian and show that the plane wave solutions of the resulting
equation obey the dispersion relation of Eq. (22.29).

This is for one flavor of neutrino. Suppose now we consider the time
evolution of a state involving two flavors of neutrinos, e.g., the νe and the νµ.
The effective 2×2 Hamiltonian of the system should have a density-dependent
term for each flavor, with the appropriate value of cV . Reading the values of
cV from Eqs. (16.56) and (16.61), we find that the effective Hamiltonian has
a contribution proportional to ne which is given by

√
2GFne

( 1
2 + 2 sin2 θW 0

0 − 1
2 + 2 sin2 θW

)
(22.30)

in the νe-νµ basis.
There are also terms that depend on the number densities of protons and

neutrons in the medium. These arise from neutral current interactions, and
are therefore equal for νe and νµ. In the 2 × 2 basis used above, these
contributions will produce a term proportional to the unit matrix. Adding
these, and also writing some part of the ne term as a multiple of the unit
matrix, we can write the effective Hamiltonian as

H̃ = H + a1+

(√
2GFne 0

0 0

)
, (22.31)

where H is the Hamiltonian in absence of all matter effects, i.e., the Hamilto-
nian for neutrinos traveling through the vacuum, the case that was discussed
in §22.2.1. All contributions to a, the co-efficient of the unit matrix 1, have
not been calculated really. The reason is that they are irrelevant for our
purpose, as we will see shortly.

What is H? The eigenvalues were given in Eq. (22.8), in the approxima-
tion that we have employed. If we take the eigenstates as basis states, the
Hamiltonian matrix would have been diagonal, with the eigenvalues as diag-
onal entries. But Eq. (22.31) has been written by using νe and νµ as basis
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states. Using Eq. (22.2), we find that in this basis, the Hamiltonian matrix
should be given by

H = U

(
E1 0
0 E2

)
U † . (22.32)

Using the form of U given earlier, we obtain

H̃ = a′1+
1

4p

(
−∆m2 cos 2θ + 2A ∆m2 sin 2θ

∆m2 sin 2θ ∆m2 cos 2θ

)
, (22.33)

where

A = 2
√

2GFnep , (22.34)

and a′ contains not only a but also some other terms, like the term p and
terms proportional to the sum of the mass squares, which are also of the
form of a multiple of the unit matrix. This matrix can be diagonalized by
similarity transformation involving a matrix Ũ which looks like the matrix U
of Eq. (22.7), with the angle θ replaced by θ̃, given by

tan 2θ̃ =
2H̃12

H̃22 − H̃11

=
∆m2 sin 2θ

∆m2 cos 2θ −A . (22.35)

This is part of the reason why the exact expression of a′ is not necessary: the
effective mixing angle is independent of this contribution. The other part of
the reason has to do with the fact that the eigenvalues of the matrix H̃ are
given by

a′ +
1

4p

[
A±

√(
∆m2 cos 2θ −A

)2

+
(

∆m2 sin 2θ
)2
]
, (22.36)

so that the difference of the eigenvalues, which is responsible for oscillation
phenomena, is also independent of a′.

The important point is that the eigenvalues as well as the mixing angle
depend on the density of ambient matter through A. In the sun, the neutrinos
are produced near the core, where the mixing angle can be much different
from the mixing angle outside the sun because of these matter effects. This
can affect the survival and conversion probabilities significantly. To get a
quantitative feeling for the effect, suppose that the mixing angle is θ̃0 at the
point where the neutrinos are created. At this point, the eigenstates are, say,
ν̃1 and ν̃2, with

νe = ν̃1 cos θ̃0 + ν̃2 sin θ̃0 . (22.37)

Thus, there is a probability of cos2 θ̃0 that the produced νe is in eigenstate 1,
and a probability of sin2 θ̃0 that it is in eigenstate 2. If adiabatic conditions
prevail, the eigenstate 1 (corresponding to the eigenvalue with a negative sign
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before the square root in Eq. (22.36)) remains eigenstate 1, although with the
change in ambient density it becomes a different superposition of νe and νµ

because the mixing angle changes. Finally, the neutrinos are detected on the
surface of the earth, where matter density is negligible, the mixing angle is
equal to its vacuum value θ. This means that the νe is the combination

νe = ν1 cos θ + ν2 sin θ , (22.38)

in terms of the vacuum eigenstates ν1 and ν2. Now, if we have a detection
system that is sensitive only to νe, we will have a probability of cos2 θ of
detection if the neutrino is in eigenstate 1, and sin2 θ if the neutrino is in
eigenstate 2. Combining the probabilities at production and detection points,
we obtain that the survival probability of neutrinos is given by

P (ad)
surv = cos2 θ̃0 cos2 θ + sin2 θ̃0 sin2 θ =

1

2

[
1 + cos 2θ0 cos 2θ

]
. (22.39)

There are two assumptions that go into this formula. First, there is a wide
spectrum of neutrino energies in the beam, so that the oscillating terms av-
erage out when we integrate over the energies. This is the reason we added
probabilities instead of adding amplitudes and then squaring the sum. The
second one is that adiabatic conditions prevail, which is indicated by the dec-
laration ‘ad’ in the formula.

If the second assumption does not hold, i.e., if there is a probability X of jumping from one
eigenstate to another, the survival probability would be given by

Psurv = (1 −X)P
(ad)
surv +XP

(ad)
conv =

1

2

h

1 + (1 − 2X) cos 2θ0 cos 2θ
i

. (22.40)

The jumping probability X can be obtained once the nature of variation of density is known,
but the expression is not necessary for the ensuing discussion.

The important point is that the conversion from one neutrino flavor to
another can be much more efficient in the background of a changing density.
To see an example, consider that the neutrino was produced in a region of
infinite density, so that θ̃0 = π/2. Eq. (22.39) then gives a survival probability
of sin2 θ. In the vacuum background, Eq. (22.19) tells us that the energy-
averaged survival probability is 1− 1

2 sin2 2θ. The difference is dramatic if θ
is small.

The reason for this big difference is that the neutrinos on their way out of
the sun cross a region where the electron number density satisfies the equa-
tion ∆m2 cos 2θ = A, so that the effective mixing angle becomes π/4. The
effective mass-squared difference also attains a minimum at this point. This is
a resonance. The phenomenon can be called resonant oscillation At and near
this point, oscillations are very efficient and therefore the original νe beam
converts largely into another flavor.

The resonant oscillation phenomenon will occur as long as the denominator
of the right side of Eq. (22.35) goes through the value zero. On the earth,
where the neutrino is detected, we have A ≈ 0 and therefore the denominator
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is positive. Thus, in order that the denominator passes through zero, matter
density at the point of production of neutrinos should be high enough so that
A0 > ∆m2 cos 2θ, A0 being the value of A at the point of production. Using
the fact that the matter density near the solar core is about 150 g/cm

3
and

that typical energies of neutrinos coming out of the sun are of the order of a
few MeV, this means that

∆m2 cos 2θ . 10−4 eV2 . (22.41)

Indeed, solutions consistent with all solar neutrino experiments are obtained
for values of ∆m2 close to this upper bound, as we will summarize presently.

22.2.4 Summary

Result of analysis of data from terrestrial, atmospheric and solar neutrino
experiments are shown in Fig. 22.3. Here, we summarize the allowed values
of different mass and mixing parameters. First, from the solar neutrino data,
one obtains

∆m2
⊙ = (7.50± 0.20)× 10−5 eV2 , (22.42a)

sin2 2θ⊙ = 0.857± 0.024 . (22.42b)

The atmospheric neutrino data suggest the following values:

∆m2
atm = (2.32+0.12

−0.08)× 10−3 eV2 , (22.42c)

sin2 2θatm > 0.95 . (22.42d)

Finally, the terrestrial ν̂e-disappearance experiments described in §22.2.2(c)
imply

sin2 2θ13 = 0.098± 0.013 . (22.42e)

Obviously, the ∆m2 values dictated by atmospheric neutrinos and solar
neutrinos cannot pertain to the same pair of neutrino eigenstates. This means
that the neutrino oscillations responsible for these two phenomena do not
occur between the same two pairs of neutrino flavors. For the case of solar
neutrino, we know that the sun produces νe only, so this must be one of
the flavors involved in the oscillation phenomenon. On the other hand, for
atmospheric neutrinos, the two flavors involved must be νµ and ντ, because
at the relevant value of ∆m2, there is no appreciable oscillation of νe’s, as
has been confirmed by terrestrial experiments.

The neutrino eigenstates responsible for the depletion of solar νe’s can be
called ν1 and ν2, with the convention that m2 > m1, so that we can identify
the parameters of the solar neutrino oscillation as ∆m2

⊙ = ∆m2
21 ≡ m2

2 −m2
1

and θ⊙ = θ12. The atmospheric neutrino data then provides information
about the absolute value of the mass-squared difference ∆m2

13 or ∆m2
23 and
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Figure 22.3: Summary of solutions of data coming from terrestrial, atmospheric and
solar neutrino experiments. For each experiment, the data has been analyzed with the
assumption that oscillation occurs only between two neutrino flavors. [Reprinted with
permission from: Particle Data Group, Phys. Rev. D86 (2012) 010001; c© (2012) by
the American Physical Society.]
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Figure 22.4: Two possible hierarchies for neutrino masses. In the plot on the left
side, we show the masses as functions of m1, where there are two possible solutions for
m3, one for normal hierarchy (NH), the other for inverted hierarchy (IH). On the right
side, we show schematically the arrangement of eigenvalues in the two hierarchies.

mixing angle θ23. The allowed values of these parameters are given in Eq.
(22.42).

With the three mixing angles determined, we can therefore write the
PMNS matrix if CP violating phases can be ignored. Using the central values
of the results shown in Eq. (22.42) for θ12 and θ13, and using θ23 = π/4, this
matrix is given by

U =




0.820 0.551 0.159
−0.487 0.524 0.698
0.301 −0.649 0.698


 . (22.43)

Let us now turn to the information on mass eigenvalues. Because of the
smallness of the allowed value of ∆m2

21, the masses m2 and m1 must be very
close together. The other mass, m3, must be somewhat apart from the first
two. Since the atmospheric neutrino experiments give only the absolute value
of ∆m2

13 or ∆m2
23, it is not clear whether this third eigenstate is heavier

or lighter than the former two. Thus, there can be two possible patterns
of neutrino mass eigenvalues. The first one, with m3 > m2,m1, is called
normal hierarchy because naively one expects that smaller masses should
involve smaller mass-squared differences. The alternative pattern, with a
small m3, is called inverted hierarchy. Both possibilities have been shown in
Fig. 22.4.

Naively, if we assume that each mass squared difference is dominated
by only one eigenvalue, we see that one mass eigenvalue should be of or-
der 10−1 eV, another around 10−2.5 eV, and the third one much smaller than
that. It is, however, not impossible that in either hierarchy pattern, the mass
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values are in fact much larger than these benchmark values, and the values
of ∆m2 turn out to be small because the neutrinos are nearly degenerate, as
depicted by the right end of the graph in Fig. 22.4. However, even in this
case, there are cosmological and astrophysical bounds which imply that none
of the known neutrinos can be heavier than about 1 eV.

This raises a question: why are neutrinos so light? Consider the first
generation of fermions. The electron, the up and the down quarks all have
masses within an order of magnitude of 1 MeV. The electron neutrino mass is
at least six or seven orders of magnitude smaller. The same story continues
in other generations. Of course one can add right-chiral neutrino fields in the
standard model and produce neutrino masses through the VEV of the Higgs
field in much the same way as one produces masses from charged leptons and
quarks. In this case, the smallness of neutrino masses can be attributed to the
smallness of the relevant Yukawa couplings. But it is difficult to understand
why these couplings have to have such minuscule values compared to all other
couplings. This is one of the puzzles of neutrino mass.

The second puzzle is neutrino mixing. As seen from oscillation experi-
ments, two out of three mixing angles are very large. In the quark sector,
the mixing angles are all very small. The phenomenon of lepton mixing must
then have some characteristics which are very different from those of quark
mixing.

Such oddities are not totally unexpected given the fact that the neutrinos
differ from all other elementary fermions in one important aspect. They do
not have any electric charge. Also, they do not carry color. Thus, they do
not transform under the unbroken gauge group of fundamental interactions,
SU(3)c ×U(1)em. Interactions of this unbroken gauge group therefore cannot
distinguish a neutrino from its antiparticle. This opens up a new possibility
that the neutrinos might be their own antiparticles.

22.3 Majorana fermions

If a fermion is its own antiparticle, it is called a Majorana fermion. In this
section, we discuss the formalism associated with Majorana fermions.

22.3.1 Definition

In §4.4, we tried to construct quadratic invariants of a fermion field of the form
ψ†Mψ, where M is some fixed matrix. We found that the choice M = γ0 gives
us an invariant, and we used this invariant in the Dirac Lagrangian. Since
this term is quadratic in fields and does not contain any derivative, it was
identified as the mass term for the fermion field ψ.

We disregarded the fact that there can be other kinds of quadratic invari-
ants involving fermion fields. For scalar fields, both φ2 and φ†φ are invariant
quadratics. For fermion fields, we seemed to have tried the second kind, but
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not the first one. Of course, a fermion field carries a spinor index, which
must be contracted between the two fields in order that we obtain a Lorentz
invariant. Thus we can ask whether we can make any invariant of the form
ψaAabψb, which can be written as ψ⊤Aψ in matrix notation, where A is a
constant matrix.

Using the Lorentz transformation property of a fermion field from Eq.
(4.73, p 76), we find

ψ′⊤(x′)Aψ′(x′) = ψ⊤(x) exp

(
− i

4
ωµνσ⊤

µν

)
A exp

(
− i

4
ωµνσµν

)
ψ(x) .

(22.44)

Examining the first order terms in the transformation parameters ωµν , we see
that invariance will be achieved if the matrix A satisfies the condition

σ⊤
µνA+Aσµν = 0 , (22.45)

i.e., if

σ⊤
µν = −AσµνA

−1 . (22.46)

Comparing this with Eq. (6.56, p 161), we find that we can choose

A = C−1 , (22.47)

i.e., ψ⊤C−1ψ is a Lorentz invariant.
We might ask ourselves why we did not try to incorporate this kind of

invariant earlier. The answer does not come from Lorentz invariance. Her-
miticity also cannot be an impediment: although the term by itself is not
hermitian, we are free to add its hermitian conjugate in the Lagrangian. The
problem is that, if the field ψ is charged, the invariant ψ⊤C−1ψ can annihilate
two units of this charge, and would therefore defy any charge conservation. If
we deal with electrons, e.g., we cannot put in this kind of invariant just be-
cause of electric charge conservation. For quarks, the same argument holds.

But how about neutrinos? They do not have electric charge. So, can we
consider this new kind of invariant for them? If lepton number is conserved, we
cannot, because that is one charge that the neutrinos carry. But we discussed
in Ch. 18 that there is nothing sacred about lepton number: it is just an
accidental symmetry of the standard model, and can easily cease to be so
if there are extra fields in the model. So, for neutrinos, it is worthwhile to
consider the possibility of this kind of term.

We mentioned that for scalars there can be two kinds of non-derivative
quadratic terms, φ2 (and its hermitian conjugate φ†φ†) and φ†φ. The two
types of quadratic terms are equivalent if φ = φ†, i.e, if the field φ(x) is a
real scalar field. We can ask what is the corresponding condition for fermion
fields. In all earlier chapters, we have dealt with quadratic terms of the form
ψψ. Now we encounter ψ⊤C−1ψ. Both are Lorentz invariant. However, the



682 Chapter 22. Neutrino mass and lepton mixing

field operator ψ⊤C−1ψ is not hermitian, so it might be accompanied with a
phase factor. So the equality of two kinds of mass terms requires

ψ = eiα ψ⊤C−1 . (22.48)

Taking the transpose of both sides and using the antisymmetry of the matrix
C which was first seen in Eq. (6.60, p 162) and proved in Appendix F, we can
write it in the form

ψ̂ = eiαψ , (22.49)

where ψ̂ = γ0Cψ∗, as defined in Eq. (6.49, p 160). Fermion fields satisfying
this condition are called Majorana fermion fields.

2 Exercise 22.5 Deduce Eq. (22.49) from Eq. (22.48).

2 Exercise 22.6 Argue that the choice of A given in Eq. (22.47), al-
though made by comparing only the first order terms in ωµν, ensures
the invariance of ψ⊤(x)Aψ(x) to all orders in ωµν.

A real scalar field can likewise be defined by the relation

φ† = φ . (22.50)

Using this condition on the plane wave expansion of a general real field given in Eq. (4.15,

p 65), we can easily find that a(p) = ba(p), which reduces the plane wave expansion to that of

a real scalar field given in Eq. (4.12, p 64). It means that the particle and the antiparticle are

annihilated by the same operator. Similarly, they are created by the same operator. In short, it

means that the particle is the same as its antiparticle.

2 Exercise 22.7 A more general definition of a real scalar field can be
taken as

φ† = eiαφ . (22.51)

With this definition, verify that the annihilation operators for “par-
ticles” and “antiparticles” differ by a phase, which means that a so-
called “antiparticle” state with a certain momentum is nothing but
the particle state with the same momentum, multiplied by an extra
constant phase factor.

Eq. (22.49) implies that a Majorana fermion is its own antiparticle. This
means that such a fermion cannot carry any conserved charge, and that is why
bilinears of the form ψ⊤C−1ψ can be allowed in the Lagrangian, as discussed
earlier.

22.3.2 Feynman rules

Looking back at the plane wave expansion of a Dirac field given in Eq. (4.65,
p 72) and imposing the Majorana condition Eq. (22.49) on it, we find that the
plane wave expansion of a Majorana field is of the form

ψ(x) =
∑

s

∫
D3p

(
ds(p)us(p)e−ip·x + λ∗d†s(p)vs(p)e+ip·x

)
, (22.52)
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Table 22.1: Feynman rules for external Majorana fermion lines.

Operator Feynman rule for
responsible incoming outgoing

ψ up,s λ∗vp,s

ψ λvp,s up,s

noting that the u-spinors and the v-spinors satisfy the conjugation relations

vs = γ0Cu∗s , us = γ0Cv∗s , (22.53)

which have been proved in Appendix F. Comparison with Eq. (22.49) shows
that

λ = eiα . (22.54)

The quantity λ∗ is called the creation phase factor by some authors because
it appears along with the creation operator. But this name makes no sense,
since the phase could just as well be put with the other term. It is better to
call α the intrinsic Majorana phase in view of its appearance in the definition
of Eq. (22.49), or eiα the intrinsic Majorana phase factor .

It should be noted that the intrinsic Majorana phase is not a physical
quantity. It can always be taken to be zero by transferring the phase into
the field. To be precise, instead of taking ψ(x) that appears in Eq. (22.52) as
the field, if we take eiα/2ψ(x) as the field, the Majorana phase would be zero,
i.e., the phase factor would be unity. However, the freedom with the phase
is sometimes useful, so we keep it in our discussion, at least to show that it
does not contribute to physical amplitudes.

Looking at Eq. (22.52), we find that the field operator ψ(x) can annihilate
as well as create a Majorana particle. So can ψ(x). The Feynman rules for
Majorana particles are therefore a bit more elaborate than those for Dirac
fields. When we first wrote the Feynman rules in Table 4.1 (p 91), we assumed
the fermions to be Dirac particles, so that there was one set of rules for
fermions and one set for antifermions. Since a Majorana fermion is the same
as its antiparticle, both sets of rules would apply for a Majorana fermion. In
other words, an incoming fermion line can contribute either us(p) or vs(p) to
the Feynman amplitude. An outgoing Majorana fermion line, similarly, can
contribute either us(p) or vs(p). The contribution depends on which field
operator is annihilating or creating the fermion: ψ or ψ, as elaborated in
Table 22.1.

To see a concrete example, consider the decay of a boson to two neutral
fermions, with 3-momenta p1 and p2. Suppose the interaction Lagrangian
contains the bilinear ψFψ, where F is some numerical matrix. It is possible
that the field operator ψ has created the particle with momentum p1 and
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ψ has created the other particle with momentum p2; but it can also be the
other way around. Reading the Feynman rules for these two possibilities from
Table 22.1, we conclude that the Feynman amplitude for the process will be
of the form

M = λ∗
[
u(p1)Fv(p2)− v(p1)Fu(p2)

]
M0 , (22.55)

where M0 is a factor that comes from the field operator of the initial state
particle. The minus sign between the two terms in Eq. (22.55) appears for the
usual reason: taking two fermions in opposite order. If the final state were
the particle-antiparticle pair of a Dirac fermion, the amplitude would have
contained only one of these two terms, depending on which one is particle
and which one is antiparticle.

Eq. (22.55) can be written in a more useful form by using Eq. (22.53) to
deduce

v(p1)Fu(p2) = u⊤(p1)C−1Fγ0Cv∗(p2) . (22.56)

Further, since the expression is ultimately a number, we can also write it
as the transpose of the matrix expression on the right hand side. Using the
properties of the matrix C to be found in Appendix F, we obtain

M = λ∗ u(p1)
[
F + CF⊤C−1

]
v(p2)M0 . (22.57)

2 Exercise 22.8 Show that Eq. (22.57) can be deduced from Eq.
(22.55).

We can easily check explicitly how this form of the Feynman amplitude
affects the decay width of the Z boson. Purely from kinematical considera-
tions, we found that the decay rate should be proportional to (a2 + b2) if the
final particle mass is neglected, where a and b are the strengths of the polar
and axial vector couplings in the interactions, as in Eq. (19.26, p 565). The
associated algebra was performed in §19.2 for a Dirac particle-antiparticle pair
in the final state. If, instead, the final state particles are Majorana neutrinos,
the Feynman amplitude derived from the same interaction Lagrangian would
be different because of the extra term in Eq. (22.57). When we add this extra
term, we find that the polar vector term does not contribute to the Feynman
amplitude at all because of the definition of the matrix C appearing in Eq.
(6.57, p 161). Due to the same definition, the axial vector term gets a contri-
bution two times bigger in the Feynman amplitude. In other words, instead
of Eq. (19.28, p 566), the amplitude turns out to be

M = 2b u1(p1)γµγ5v2(p2)ǫµ(k) , (22.58)

where ǫµ(k) denotes the polarization vector of the Z boson. In the square of
the amplitude, instead of the factor (a2 + b2), we should obtain a factor 4b2.
There is also an extra factor of 1/2! since we now have two identical particles
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W W

γ

Figure 22.5: One-loop diagram for the process µ → e + γ. In any renormalizable
gauge, there are extra diagrams in which one or both of the internal W bosons are
replaced by the unphysical charged Higgs boson.

in the final state, as explained right after Eq. (5.45, p 123) in the context of
electron–electron scattering. Thus, the decay rate into two Majorana neutri-
nos can be obtained from Eq. (19.32, p 566) by replacing the factor (a2 + b2)
by 2b2.

Now, here comes the punch line. Neutrino coupling to the Z boson is
purely left-chiral, i.e., a = b. Therefore, (a2 +b2) is equal to 2b2. The intrinsic
Majorana phase does not appear in the expression for the rate, which confirms
our earlier comment that this phase is unphysical. So, after this entire exercise,
we see that the Dirac or Majorana nature of the neutrino does not make any
difference in the Z boson decay rate. This is a statement that is correct only
if the neutrino mass is zero. For non-zero masses, there will be corrections
in the expression for the decay rate, and the rate will depend on the Dirac
or Majorana nature of the neutrino. However, for practical purposes this
difference is useless since the corrections would contain the factor mν/MZ ,
which is tiny. We therefore have to look for other kind of signatures in order
to distinguish between the Dirac or Majorana nature of neutrinos, a topic
that will be discussed in §22.5.

22.4 Consequences of lepton mixing

We have already discussed neutrino oscillations, which are consequences of
neutrino mixing. Here, we discuss more processes which might occur because
of lepton mixing. None of these processes has been observed yet.

22.4.1 Lepton flavor violation

Lepton mixing implies that the generational lepton numbers are not conserved.
One can think of many such processes. The most easily observable would be
processes in which the initial and final states do not contain any neutrino. No
such process has been observed so far. We discuss some processes which are
expected, and discuss what sort of rates to expect for them.
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a) Radiative decays

For example, the muon might decay into the electron with the emission of a
photon:

µ→ e + γ . (22.59)

Of course it cannot happen at the tree level. Fig. 22.5 shows how the process
might occur at the one-loop level. There can be similar decays of the τ lepton,
where the final state can contain either the muon or the electron.

Experimentally, only an upper bound is known for the branching ratio of
the process in Eq. (22.59):

B(µ→ e+ γ) < 2.4× 10−12 . (22.60)

Let us see how much we can guess about the amplitude and rate for the
process without actually evaluating the diagrams. In §5.7.1, we found the
most general form for the electromagnetic vertex involving the same fermion
in the initial and final states. The result was shown in Eq. (5.121, p 140). The
same analysis can be carried out for the case when the initial and the final
fermions are different. The outcome of the analysis is that the vertex function
will be of the form

Γλ =
(
F + F5γ5

)
σλρq

ρ , (22.61)

where q is the photon momentum, and F and F5 are form factors, both of
which can be functions of q2 if we consider the general case where the photon
need not be on-shell.

2 Exercise 22.9 Prove that the most general form of the electromag-
netic vertex function is given by Eq. (22.61) when two different
fermions are involved at the vertex. [Hint : Start from the most gen-
eral form allowed by Lorentz invariance, and use the gauge invariance condition of
Eq. (5.120, p 140).]

2 Exercise 22.10 From the expression of the vertex function, show that
the decay rate of the process f → f ′ + γ is given by

Γ =
(m2 −m′2)3

8πm3

„

|F |2 + |F5|2
«

. (22.62)

For the physical process of radiative decay as shown in Eq. (22.59), we
have q2 = 0 of course. So we need the values of F (0) and F5(0). Since these
are constants, it is easy to take inverse Fourier transform and go back to the
co-ordinate space representation, which immediately tells us that both F (0)
and F5(0) have mass dimension −1.

With this in mind, let us see what are the factors that will definitely occur
in the amplitude. Since internal W lines are involved, their propagators and
couplings should provide factors of g2/M2

W , i.e., a factor of order GF . The
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charged current Lagrangian of Eq. (22.4) shows that there should also be the
factors UAµU

∗
Ae from the two weak vertices. The photon vertex gives a factor

of e.
Moreover, Eq. (22.61) shows that the effective operator contains the bi-

linears ψ(e)σλρψ(µ) and ψ(e)σλργ5ψ(µ), which connect a left-chiral field to a
right-chiral field, as seen in Eq. (14.26, p 417). Thus, either the initial muon
has to be right-chiral and the final electron left-chiral, or just the other way
around. However, only left-chiral fields participate in charged current gauge
interactions. The only term in the Lagrangian that can change the chirality
of a fermion is the mass term. The implication is that the amplitude must
contain a factor of the mass of the external fermions. If we neglect the electron
mass compared to the muon mass, only the muon mass can appear. Thus, if
me = 0, the initial state contains a right-chiral muon, which turns left-chiral
just because chirality is not conserved for massive particles. This left-chiral
muon then participates in charged current weak interactions. In the effective
operator, we must then have F (0) = F5(0) so that we can start with a right-
chiral muon. Combining all these arguments, we see that the amplitude must
be of the form

F = F5 = eGFmµ

∑

A

UµAU
∗
eA f(MW ,mνA

) , (22.63)

where f denotes some function which depends on the masses of the internal
particles, and whose form can be obtained only by evaluating the diagrams
carefully.

From the dimensional argument given earlier, it follows that the function
f has to be dimensionless. Therefore, instead of two separate parameters MW

and mνA
, it can depend only on their ratio. Since each end of the neutrino

line comes with the left-chiral projector L from the vertex, the mass term in
the numerator of the neutrino propagator cannot contribute. The only de-
pendence on the neutrino mass comes from the denominator, where the mass
appears as squared. In summary, the function f can depend only on the ratio
(mνA

/MW )2. The ratio is bound to be small, so we can think of expanding
the function f as a power series in it. The constant term will not contribute
at all in the amplitude: because of the unitarity of the mixing matrix, the
sum over A will vanish for the constant term. This is the phenomenon of GIM
cancellation that we have encountered in case of quarks earlier. It occurs for
the same reason here: although the matrix is not the quark mixing matrix, it
is a unitary matrix.

The linear order terms in the power series expansion do not cancel, so we
obtain

F = F5 ∼ eGFmµ

∑

A

UµAU
∗
eA

(
mνA

MW

)2

. (22.64)
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µ
−(p) νA e−(p1)

e−(p2) νB e+(−p3)

W+W−

Figure 22.6: One-loop box diagram for the process µ → 3e. Recall our convention
of arrows described in §5.2, by which the inward going arrow on the positron line with
momentum −p3 implies an outgoing positron with momentum p3. In any renormalizable
gauge, there are extra diagrams in which one or both of the internal W bosons are
replaced by the unphysical charged Higgs boson. In addition, there is another set of
diagrams in which the two outgoing electron momenta are interchanged.

Using Eq. (22.62) and comparing with the usual muon decay mode given in
Eq. (14.117, p 434), we obtain

B(µ→ e+ γ) ∼ 192π3α

∣∣∣∣∣
∑

A

UµAU
∗
eA

(
mνA

MW

)2
∣∣∣∣∣

2

. (22.65)

For any acceptable value of neutrino masses, this branching ratio is well be-
low 10−20, and therefore is far from the presently known limit shown in Eq.
(22.60). This explains why the process has not been seen so far. In fact, if it is
observed in the near future, it will necessitate some new and unusual physics
beyond just neutrino mass and mixing.

Processes like τ → µ+γ and τ → e+γ are also expected to occur because
of neutrino mixing. They are also expected to be very suppressed for exactly
the same reason.

b) Purely leptonic decays

We can also contemplate decay processes involving charged leptons and an-
tileptons only, e.g.,

µ
− → e− e− e+ (22.66)

and its charge conjugate, as well as similar decays of the τ lepton where the
final state can contain both muons and electrons. The process written in Eq.
(22.66) is often dubbed µ→ 3e, knowing fully well that whoever reads or hears
about it would know that one of the final state particles must be oppositely
charged from the other two because of electric charge conservation. This
process can occur at the one-loop level. One possible diagram is obtained
by attaching an outgoing e+e− pair to the photon line of Fig. 22.5 (p 685),
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whereby the photon line itself becomes an internal virtual line. There are
other possibilities shown in Fig. 22.6.

c) Processes involving neutrinos

There can be flavor-changing processes involving neutrinos as well. For ex-
ample, all but the lightest neutrino should decay to a lighter neutrino and a
photon:

νA → νB + γ . (22.67)

The diagrams will be similar to that in Fig. 22.5 (p 685), except that the
charged lepton lines and the neutrino lines are interchanged. Because the
charged lepton appears as an internal line, the photon can also come out of
that line instead of the W boson line. The analysis is very similar to that of
the process µ→ e + γ. The rates are very small, not only because of GIM
cancellation, but also because the neutrino masses are very small.

d) Processes involving hadrons

Hadronic decay products can also reveal lepton flavor violation. No such
process has been observed. We give here some examples of such decay chan-
nels, along with the experimental upper bound for the branching ratio of each
channel. The list is, of course, not exhaustive.

B(π0 → µ
+e−) < 3.8× 10−10 ; (22.68a)

B(η → µ
+e−) < 6× 10−6 ; (22.68b)

B(K+ → π
+

µ
+e−) < 1.3× 10−11 ; (22.68c)

B(K0
L → µ

±e∓) < 4.7× 10−12 . (22.68d)

22.4.2 CP violation in leptonic sector

In §21.2, we found that the mixing matrix in the quark sector can be responsi-
ble for CP violation. In the same way, the leptonic mixing matrix can contain
observable phases which can induce CP violation.

The number of such phases would be exactly the same as that in the quark
sector if the neutrinos are Dirac fermions. If the neutrinos are Majorana
particles, the story would be different. In §21.2, we mentioned that, for N
generations of fermions, we can remove N phases from the mixing matrix by
redefining the phases of the up-type quark fields, and N more by redefining
the phases of the down-type quark fields, with one constraint. In the leptonic
sector, if the neutrinos are Majorana particles, we cannot redefine their phases.
Thus, only N phases can be removed, and we are left with

1

2
N(N + 1)−N =

1

2
N(N − 1) (22.69)



690 Chapter 22. Neutrino mass and lepton mixing

µ
−(p) νA e+(−p3)

e−(p2) νB e−(p1)

W−W−

Figure 22.7: Extra box diagrams for the process µ→ 3e if the neutrinos are Majorana
particles. There are several accompanying diagrams, as described for Fig. 22.6.

phases which can inflict CP violation. In other words, compared to the Dirac
case, there are N − 1 extra phases. These extra phases are often called Ma-
jorana phases for CP violation. The presence of such phases would mean,
among other things, that even with two generations of fermions one can ob-
serve CP-violating effects. For three generations of fermions, we should expect
three CP-violating phases of which two would be Majorana phases, provided
the neutrinos are Majorana fermions.

For a while, it was believed that the Majorana phases can only be ob-
servable in lepton number-violating processes, since these appear only if the
neutrinos are Majorana particles, and the existence of Majorana particles
requires lepton number violation. It was later realized that it need not be
so. For example, consider µ → 3e, which can proceed through the diagram
of Fig. 22.6. However, with Majorana neutrinos, diagrams like the one in
Fig. 22.7 are also possible. Lepton number is broken on each of the solid lines
in this diagram, so the CP-violating Majorana phases will enter the ampli-
tude. But lepton number is violated by equal and opposite amounts on the
two solid lines, so the overall diagram conserves lepton number.

As for the case of quarks, CP violation in the leptonic sector can also
be described in terms of rephasing invariant parameters. If neutrinos are
Dirac particles, the number and structure of these rephasing invariants are
exactly the same as those in the quark sector, except that it is the lepton
mixing matrix which should be used to evaluate their magnitude. But if the
neutrinos are Majorana fermions, there will be more CP-violating phases, and
consequently more rephasing invariants.

This can be seen most easily by taking α = 0 in the definition of Majo-
rana fermions given in Eq. (22.49). In this case, the phase of the Majorana
field cannot be arbitrarily changed, and we cannot use the analogs of phase
redefinitions shown in Eq. (21.5, p 623) for the neutrinos. The charged lepton
fields can be changed by giving them phase transformations

ℓL → eiθℓℓL . (22.70)
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This inflicts the transformation

UℓA → e−iθℓUℓA , (22.71)

and we need to find which combinations of the mixing matrix elements are
invariant under these transformations. Clearly, the lowest order combinations
that satisfy this criterion are of the form

SABℓ ≡ UℓAU
∗
ℓB , (no sum) . (22.72)

For A = B, these are just the absolute squares of mixing matrix elements,
which do not contain information about CP violation, as argued in the context
of quarks in §21.3. The CP-violating independent parameters can be taken to
be

(
SABℓ

)
with A ≤ B . (22.73)

Clearly, the number of such parameters agrees with the number of CP-
violating phases determined in Eq. (22.69).

2 Exercise 22.11 One can also form the quartic invariants, of the type
shown in Eq. (21.8, p 623), for the leptonic sector. Show that they can
be expressed in terms of the quadratic invariants given in Eq. (22.72)
and hence can be disregarded in the list of independent CP-violating
parameters.

22.5 Lepton number violation

The processes mentioned in §22.4.1 are expected to take place at some level or
other, irrespective whether neutrinos are Dirac or Majorana particles. If neu-
trinos happen to be Majorana particles, the Lagrangian should contain lepton
number-violating terms, and therefore one should also expect processes which
violate lepton number. In this section, we discuss some such possibilities.

22.5.1 Neutrinoless double beta decay

It is known that there are some nuclei that cannot undergo beta decay because
it is energetically forbidden. For example, consider the selenium isotope 82

34Se.
Normal beta decay would have produced 82

35Br from it, but it cannot happen
because the ground state of the bromine isotope is higher than that of the
selenium isotope. However, the element with the next higher atomic number,
krypton, has a ground state that is much lower than the selenium ground
state, so the decay

82
34Se→ 82

36Kr + 2e− + 2ν̂e (22.74)

is possible. Such processes have been observed and are called double beta
decay.
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Figure 22.8: Quark-level diagram of ββ0ν process induced by Majorana neutrino
mass.

If lepton number is violated, there is also the possibility of observing decays
where there is no neutrino in the final state:

X(A,Z)→ Y (A,Z + 2) + 2e− (22.75)

where X and Y are two nuclei whose mass numbers and atomic numbers are
shown in parentheses. At the nucleon level, this will mean transitions of the
type

n+ n→ p+ p+ e+ e , (22.76)

and at the quark level,

d+ d→ u+ u+ e+ e . (22.77)

Fig. 22.8 shows how this process can occur at the tree level provided the neu-
trino is a Majorana particle. Such processes are given the name neutrinoless
double beta decay, and sometimes abbreviated to ββ0ν.

We now argue that the amplitude of the process must contain a factor of
the neutrino mass. For this, it is enough to consider just the vertices involving
the neutrino and the neutrino propagator, and neglect neutrino mixing for the
time being. This factor is then

Mλρ =
[
ue(p1)γλL

]
a

[
ue(p2)γρL

]
b

[
S(νν)(q)

]
ab
− (p1 ↔ p2) . (22.78)

Here, a, b are Dirac indices, and S(νν)(q) denotes the neutrino propagator with
momentum q. In a matrix notation, we can write this expression as

Mλρ =
[
ue(p1)γλL

][
S(νν)(q)

][
ue(p2)γρL

]⊤
− (p1 ↔ p2) . (22.79)

Note that, using Eq. (6.57, p 161), we can write
[
ue(p2)γρL

]⊤
= L⊤γ⊤ρ γ

⊤
0 u

∗
e(p2) = C−1Lγργ0Cu∗e(p2)

= C−1Lγρve(p2) = C−1γρRve(p2) , (22.80)
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using the relationship between the u-spinors and the v-spinors, Eq. (22.53),
in the last step.

Let us now look at the propagator. We have denoted it by S(νν), and
let us begin by explaining the parenthetical subscript. At the two vertices,
interaction terms of the type eγµ

νWµ produce the two electrons, and two
neutrino field operators are left over. None of them is ν. Rather, both are
just the field ν, which is why we have put the subscripts on the propagator. To
obtain the propagator, we should express the free Lagrangian of the Majorana
neutrino field in terms of the ν fields at both ends, i.e., should not use ν.
This can be easily done by using Eq. (22.48), and we can write the free Dirac
Lagrangian for a Majorana field as

L =
1

2
ν
⊤C−1

(
iγµ∂µ −m

)
ν , (22.81)

where the overall factor of 1
2 is used for self-conjugate fields so that one can

combine them to make complex fields, as has been shown for scalar fields
in Eq. (4.101, p 81). We can now follow the procedure of §4.10.2 to find the
propagator. Without the factor of C−1, we would have obtained SF (q), as in
Eq. (4.145, p 92). Because of the C−1, we get an extra factor of C after SF (q)
while taking the inverse. Thus, finally, we can write

Mλρ = ue(p1)γλL
q/ +mν

q2 −m2
ν

γρRve(p2)− (p1 ↔ p2) . (22.82)

It is now clear that the q/-term in the numerator of the propagator does not
contribute to the amplitude due to the chiral projection operators. Neglecting
the neutrino mass term in the denominator, we can write

Mλρ =
mν

q2
ue(p1)γλγρRve(p2)− (p1 ↔ p2) , (22.83)

which shows the proportionality with neutrino mass.
It is easy to include the effect of neutrino mixing. Let us consider that

the internal neutrino line is the eigenstate νA. There will be two factors of
mixing matrix elements. The factor of mν in Eq. (22.83) will thus be replaced
by

〈mν〉 ≡
∑

A

mνA

(
UeA

)2

. (22.84)

Thus, mν replaced by this combination, 〈mµ〉, will give the leptonic part of
the Feynman amplitude. The other part involves the matrix element involving
the initial and the final nuclei. There is a considerable amount of uncertainty
in estimating this part of the amplitude due to nuclear effects. However,
a non-zero measurement would definitely tell us that there is lepton number
violation, and will determine the combination of neutrino masses and mixings,
shown in Eq. (22.84), within some limits of error. A null experiment will put
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an upper bound on this combination. There has been one claim of a non-null
signal, but the consensus is that till now, there is only an upper bound,

∣∣∣ 〈mν〉
∣∣∣ . 0.5 eV . (22.85)

If we combine this result with the results of neutrino oscillation, we can
obtain much more information about neutrino masses. Because the differ-
ent mass-squared values are bounded by solar and atmospheric data, we can
correlate the smallest neutrino mass eigenvalue and the value of 〈mν〉. The
correlated values depend on the type of mass hierarchy that exists among the
neutrinos — normal or inverted — and might be useful in determining which
kind of hierarchy exists in nature.

22.5.2 Lepton to antilepton conversion

One can also think of the inverse process of the neutrinoless double beta decay,
viz.,

e+ +X(A,Z)→ e− + Y (A,Z + 2) (22.86)

or its reverse. Or one can also think of such processes involving charged
leptons of different generations, e.g.,

µ
+ + X(A,Z)→ e− + Y (A,Z + 2) . (22.87)

Such processes have not been observed, but surely, their observation would
indicate lepton number violation.

2 Exercise 22.12 Draw a Feynman diagram for the process

µ
+ +W− → e− +W+ (22.88)

in a model with neutrino mixing. Show that the matrix element
squared can be expressed in terms of the rephasing invariants SABℓ

introduced in Eq. (22.72).

22.6 Models of neutrino mass

In the standard electroweak model proposed by Weinberg and Salam, neu-
trinos were considered massless, consistent with the experimental knowledge
that was available at that time. Now we know that neutrinos have mass. So
we need to modify the standard model to accommodate this fact. In this sec-
tion, we discuss various ways of doing that, as well as some general strategies
for achieving the goal.

22.6.1 Adding singlet neutrinos

The most obvious way of obtaining massive neutrinos is to imitate the method
by which all other fermions get their masses. The idea has already been
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described in §22.1 in some detail. We introduce right-chiral chargeless fermion
fields, νℓR, one for each generation. There can be extra Yukawa interaction
terms of the form

LY = −
∑

ℓ,ℓ′

h̃ℓℓ′ψℓLφ̃νℓ′R + h.c. (22.89)

Once the scalar doublet obtains VEV, a mass matrix will be generated for the
neutrinos:

m
(D)
ℓℓ′ = h̃ℓℓ′v/

√
2 . (22.90)

Diagonalization of this matrix will give the mass eigenvalues of neutrinos
and mixing angles in the leptonic sector. The parenthetical superscript ‘D’
indicates that the neutrinos will be Dirac particles in this case, like all other
fermions.

This explanation of neutrino masses might be straightforward, but it is
unsatisfactory for many reasons. Firstly, it gives absolutely no hint to the
two puzzles of neutrino mass mentioned at the end of §22.2: why the masses
are so small and mixings (at least some of them) so large. Sure, the elements
of the the mass matrix might happen to be such that both these features are
achieved, but that’s hardly an explanation!

The second reason for the dissatisfaction is that the model is incomplete.
Since the right-chiral neutrinos are SU(2)L singlets, the electric charge formula
given in Eq. (16.18, p 465) implies that its weak hypercharge should be zero.
Thus the electroweak gauge representation of the right-chiral neutrinos is given
by:

νℓR : (1, 0) , (22.91)

in the notation that was used in Eqs. (16.19) and (16.40). In other words,
these fields are invariant under the entire gauge group of the standard model.
Therefore, any combination made from these fields alone would be gauge
invariant. In particular, we can put in the Lorentz invariant combinations

−1

2

∑

ℓ,ℓ′

Mℓℓ′ν
⊤
ℓRC−1

νℓ′R + h.c. (22.92)

If there were no other mass terms for the neutrinos, these would have given
Majorana masses to the singlet neutrinos.

This second problem mentioned above is very easy to rectify. We can just
decide to consider these extra mass terms to be added to the ones shown in
Eq. (22.89). Then all mass terms for neutral fermions can be summarized in
an expression of the form

Lmass = −1

2
( νL ν̂L )

(
0 m(D)

(m(D))⊤ M

)(
ν̂R

νR

)
+ h.c. (22.93)
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We need to explain the notation that has been used in writing this expression.
Objects like νL that appear in Eq. (22.93) are, for N generations of fermions,
collections of N fields of a certain chirality. M and m(D) are both N × N
matrices whose elements have been given in Eqs. (22.90) and (22.92). In order
to write the Dirac mass terms, we have used

νLνR + νRνL =
1

2

(
νLνR + νRνL

)
+ h.c. , (22.94)

and then used the identity

νℓRνℓ′L = ν̂ℓ′Lν̂ℓR (22.95)

to rewrite the hermitian conjugate parts.

2 Exercise 22.13 Prove Eq. (22.95).

2 Exercise 22.14 Use Eq. (22.95) and similar equations to show that
the mass matrix, written in the form of Eq. (22.93), must be a sym-
metric matrix.

In order to obtain the mass eigenvalues of neutral leptons, we need to
diagonalize the 2N × 2N mass matrix that appears in Eq. (22.93). To get
a feel for what kind of things may be expected, let us consider the case of
N = 1, for which the matrix is 2 × 2, and M as well as m(D) are numbers.
Let us also assume that M ≫ m(D). In this case, diagonalization of the mass
matrix will yield two eigenvalues,

m1 ≈
(m(D))2

M
, m2 ≈M . (22.96)

The eigenstate with the smaller eigenvalue will be chiefly the state which
is SU(2)L doublet, whereas the eigenstate with mass M will be chiefly the
singlet.

There is a tricky point here that is worth noting. For the single generation case, the eigenvalues
of the matrix that appears in Eq. (22.93) are

µ1 ≈ − (m(D))2

M
, µ2 ≈ M . (22.97)

Note the minus sign in the first eigenvalue. Both these eigenvalues cannot be positive for real
entries in the mass matrix, and therefore cannot be the physical masses of the two eigenstates.
In writing Eq. (22.96), we assumed that M is positive, so it qualifies as the mass of one
eigenstate. The other eigenvalue is then negative. However, for fermion fields, the sign of the
mass term is just a matter of convention. Suppose we have some fermion field ψ for which the
free Lagrangian is

L = ψiγµ∂µψ + µψψ , (22.98)

with µ > 0, i.e., same as the free Dirac Lagrangian except for the sign of the non-derivative
term. We can now define

eψ = γ5ψ , (22.99)
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then it is easily seen that, in terms of this new field, the Lagrangian reads

L = eψiγµ∂µ
eψ − µ eψ eψ , (22.100)

which has the right sign for the mass term. Since Eq. (22.99) implies eψL = −ψL and eψR = +ψR,
the multiplication by γ5 implies that, in the interpretation of the mass term, we need to put
in an extra minus sign in the left-chiral components of the fields compared to the right-chiral
ones. So, to summarize, the masses of the physical particles are the absolute values of the
eigenvalues, which is what we had written in Eq. (22.96).

2 Exercise 22.15 Verify Eq. (22.100).

In a sense, the eigenvalue structure shown in Eq. (22.96) solves the other
problem of neutrino mass for us. After all, the neutrinos whose masses we
measure are those which take part in gauge interactions, i.e., are non-singlets.
Eq. (22.96) shows that the masses of these neutrinos are much smaller than
m(D), the mass that is obtained from Yukawa couplings with doublet Higgs.
Since all charged fermions get their masses from their couplings with doublet
Higgs bosons, this provides a rationale of the unusual lightness of neutrinos.
The generic idea that the active neutrinos are light because some other neutral
fermions are heavy goes by the name of seesaw mechanism.

It should be noted that we have obtained two neutrino eigenstates per
generation, as is indicated by Eq. (22.96). With the same number of degrees
of freedom, we got one charged lepton in a generation. This means that
each of the neutrino eigenstates has half the number of degrees of freedom
that a Dirac fermion possesses. This can happen if the neutrino eigenstates
are Majorana particles. The seesaw mechanism of explaining the lightness of
neutrino masses is therefore intimately connected to the Majorana nature of
the neutrinos.

Nevertheless, the model is still not satisfactory. The whole point of gauge
symmetries is to restrict and relate interactions between different particles.
If we introduce gauge singlets, they do not have any gauge interaction and
seem like outsiders in the gauge theory. A gauge singlet is acceptable only if
it belongs to a non-trivial representation of a bigger gauge group that is valid
at some higher energy. We will say more about it in Ch. 23.

22.6.2 Effective Lagrangian for neutrino mass

If introducing singlet neutrinos is not a good way of explaining neutrino
masses, we will have to make do with the doublet neutrinos only. In this case,
the neutrinos will have to be Majorana particles. Since Majorana masses vio-
late lepton number, we can ask how one can violate lepton number with just
the standard model multiplets.

Of course, no renormalizable operator will violate lepton number, some-
thing we have discussed in §18.1. If we look for dimension-5 operators, we
find one combination that violates lepton number:

L5 =
f

M
ΨLΨLφφ , (22.101)
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Figure 22.9: Different versions of the seesaw mechanisms for generation of neutrino
mass. The labels S and T are indicative of whether the relevant particle transforms like
a singlet or a triplet of the SU(2)L part of the standard electroweak gauge group.

where f is dimensionless and M has dimensions of mass. We have merely
written the multiplets and not indicated how they combine to make the gauge
invariant operator. But this is enough to ensure that the combination is
invariant under the U(1)Y part of the gauge group. It is also trivially invariant
under the color group SU(3)c, since each multiplet involved in the combination
is a color singlet. SU(2)L invariance can also be achieved, in fact in a number
of ways, which we will discuss presently.

Clearly, from considerations of the U(1)Y part of the gauge group alone,
we see that one component of the interaction of Eq. (22.101) is of the form
fνLνLφ0φ0/M . When the doublet Higgs multiplet obtains a VEV v/

√
2 and

we rewrite this term in terms of the quantum fields, one of the terms will be
(fv2/2M)νLνL. This is a Majorana mass term for the field νL, with mass
eigenvalue fv2/M .

We have been discussing the matter as if there is just one lepton doublet
ΨL. In reality, there are more, one for each generation. The lepton doublets
therefore carry a generation index. Accordingly, there are generation indices
on f . This means that, after the Higgs doublet φ obtains a VEV, the mass
matrix generated for the neutrinos would have the elements

fℓℓ′ v
2/M . (22.102)

If M ≫ v, this gives small masses for neutrinos. This is also the seesaw
mechanism in action, because smallness of neutrino mass owes its origin to
the largeness of M .

We are of course not pleading for introducing non-renormalizable terms
like the one in Eq. (22.101). What we are hinting at is that there may be
heavy particles in the theory which take part in the mass-generating process
as internal lines, and their propagators supply the power of inverse mass that
occurs in the expression. This is exactly the way that the non-renormalizable
Fermi coupling arises in the low-energy limit of the standard model, as shown
in Eq. (16.49, p 474).
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Let us now enumerate different ways of generating the dimension-5 opera-
tor at the tree level from renormalizable interactions. Note that ΨL and φ are
both doublets of SU(2)L. Thus, if we take the combination ΨLφ, it can trans-
form either as a singlet or as a triplet of SU(2)L, with weak hypercharge equal
to zero. As far as Lorentz transformations are concerned, the combination
transforms like a fermion. Thus, we can make a renormalizable interaction
involving ΨLφ and another fermion field. This extra field will have Y = 0, and
will transform like a singlet of SU(2)L if ΨLφ is a singlet, and triplet if ΨLφ
is triplet, so that the overall combination is a gauge singlet. This extra field
can act as an intermediate line and produce the dimension-5 operator at low
energies, where M will be the mass of this extra field. The two possibilities
have been shown in Fig. 22.9 as type-1 and type-2 seesaw mechanisms.

There is a third way that seesaw mechanism might work at the tree level,
that is also shown in Fig. 22.9. In this case, we take two ΨL operators and
combine them into a triplet. The two φ operators can also be combined into
a triplet. The message between these two pairs can be mediated by a scalar
boson triplet. There is no fourth alternative in which both ΨLΨL and φφ
combine into SU(2)L singlet combinations and the scalar triplet T is replaced
by a scalar singlet. Such effective operators might be generated, but they will
not contribute to any neutrino mass term.

2 Exercise 22.16 What is the weak hypercharge of the scalar triplet T
that appears in Fig. 22.9?

2 Exercise 22.17 Why can’t neutrino mass be generated from operators
in which the combination ΨLΨL appears in an SU(2)L singlet?

A realization of the type-1 seesaw mechanism is the model described in
§22.6.1. The fermion field S that appears in Fig. 22.9 represents the singlet
neutrinos introduced in that model. The two couplings are precisely of the
type shown in Eq. (22.89). For other two types of seesaw mechanism, one
can also construct similar renormalizable models. And of course, there can be
many more realizations of the dimension-5 effective operator if one considers
loop diagrams for generating neutrino masses. We do not discuss any of these
models here.
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Beyond the standard model

No matter how successful the standard model may be in describing properties
of elementary particles, it is quite obvious that it cannot be the final theory
of everything. For one thing, the standard model does not explain or describe
gravitation: it ignores gravity for reasons explained in Ch. 1. Moreover, we
know that the neutrinos have mass, a feature that was absent in the standard
model. So, there is more than one reason to look beyond the standard model.
There are various theoretical ideas on this general theme. In this chapter, we
will try to give an outline to some such ideas. But first, we will discuss some
other shortcomings of the standard model.

23.1 Shortcomings of standard model

Even if we set aside the question of neutrino mass or gravitational interactions,
there are theoretical problems within the standard model. For example, let
us count the number of parameters that are present in the standard model
whose values are not predicted by the model: they have to be determined
by experiments. We have enumerated them in Table 23.1, and see that the
answer is 19. That is a huge number for anything that wants to be the final

Description Comment Number
Gauge coupling constants 3
Parameters in scalar potential [See Eq. (16.5, p 463)] 2
Charged lepton masses 3
Quark masses 6
CKM matrix angles 3
CP-violating phase 1
Strong CP parameter [See §21.8] 1
Total 19

Table 23.1: Counting parameters of the standard model.

700
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or ultimate theory of interactions. If neutrino masses have to be incorporated
in the model, the number increases further.

It should be noticed that we have counted physical parameters only. The
CKM matrix, e.g., can have more phases in it, but we have shown in §21.2 that
they will be unphysical. Only one phase of the CKM matrix is physical and
is responsible for CP violation, which is what we have counted in Table 23.1.

Electric charges of all elementary particles are in simple integral ratios. In
fact, if we take the charge of the down quark as the unit, all charges can be
written as integral multiples of it. This is a remarkable and surprising fact.
When we write the gauge transformation of a bigger group like SU(2), it comes
with the generators of the group, and the eigenvalues of these generators are
indeed quantized because of the non-trivial algebra of the group. But for U(1),
when we specify the gauge transformation as in Eq. (5.2, p 112), the value of
Q can be anything; there is no restriction at all. And yet, we find that in the
real world, the charges are quantized. The standard model does not provide
any explanation of this phenomenon of charge quantization.

CP violation is observed in weak interactions but not in strong interac-
tions. And yet, if we write the most general renormalizable gauge invariant
Lagrangian of the QCD part of the standard model, we find that there is one
term that violates CP. This was discussed in §21.8. Of course, the coupling
constant multiplying this CP-violating operator is a free parameter, as indi-
cated in Table 23.1, and its value can be tiny. The standard model does not
provide any rationale for the tiny value of this parameter.

There is also the question of the Higgs boson mass. Self-energy diagrams
for scalar fields are quadratically divergent. Therefore, loop corrections to
the Higgs boson mass are of order Λ2 if we use a cut-off Λ while performing
integrations over loop momenta. There does not seem to be any reason why
this correction should not be very large. Since we have neglected gravitational
interactions all throughout, we can say that the theory is not expected to be
valid near or above the Planck mass, beyond which gravitational interactions
cannot be neglected. So, if we use the Planck mass as a benchmark cut-off
Λ, loop corrections to the Higgs mass squared comes out to be more than 30
orders of magnitude larger than the physical mass of the boson. We can of
course say that the bare mass is also of the same order, and the two cancel to
give a physical mass of the order of the weak scale. But that would require a
huge cancellation. Such cancellations seem unnatural, and are referred to as
fine tuning. This is certainly not a desirable feature of any model.

To understand why we pick only the Higgs boson mass to make the point,
let us contrast it with the question of, say, the electron mass. The electron
mass also obtains loop corrections, but these corrections are all proportional
to the electron mass itself. In other words, if the electron mass were zero to
begin with, it would have remained zero after all loop corrections. There would
be a chiral symmetry, much like those described for quarks in Ch. 18, which
would ensure that the mass remains zero. Moreover, the electron self-energy
diagrams are only logarithmically divergent, meaning that the Λ dependence
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in the loop corrections would depend only on log Λ. Even if Λ is large by many
orders of magnitude compared to the electron mass, the correction term, going
like αme log(Λ/me) cannot be very large. For the Higgs boson, there is no
symmetry to protect the mass, and this is what causes the fine tuning problem.

These and other problems will be on focus when we discuss ideas beyond
the standard model in the rest of this chapter.

23.2 Left–right symmetric model

In the standard model, left-chiral and right-chiral fermion fields are treated
very differently, which is why parity violation is inherent in the structure of the
model itself. It would be more satisfying if the two kinds of chiral projections
can be treated on a more similar footing, breaking parity from the dynamics
of the model rather than by the assignments. In order to achieve this goal,
we can consider the gauge group to include a factor SU(2)R in addition to the
usual SU(2)L. Just as the left-chiral fermions are doublets under the SU(2)L

that is a part of the standard model gauge group, we will take the right-chiral
fermions to be doublets under the SU(2)R part of an extended gauge group.
Thus, instead of the transformation properties listed in Eq. (17.1, p 482), we
now consider that the quark fields transform as follows:

(
uL

d′
L

)
,

(
cL

s′
L

)
,

(
tL
b′

L

)
: (2, 1, Xq) ,

(
uR

d′
R

)
,

(
cR

s′
R

)
,

(
tR
b′

R

)
: (1, 2, Xq) .

(23.1)

In the notation for transformation properties, the first number denotes dimen-
sionality of the representation under the SU(2)L factor of the gauge group.
The second number is the dimensionality under the SU(2)R factor. Finally,
the number Xq is the quantum number under a U(1) factor of the gauge
group. We will soon see that this number is something quite familiar to us.

If we try to make similar assignment for leptons, the first thing that strikes
us is the fact that we cannot do it with only the fields present in the standard
model. We must add right-chiral neutrinos to go with the right-chiral com-
ponents of the charged leptons so that they can form doublets of SU(2)R. In
other words, we should take

(
νeL

eL

)
,

(
νµL

µL

)
,

(
ντL

τL

)
: (2, 1, Xℓ) ,

(
νeR

eR

)
,

(
νµR

µR

)
,

(
ντR

τR

)
: (1, 2, Xℓ) .

(23.2)

Electric charge of a particle should have a formula similar to Eq. (16.18,
p 465). Note that the expression for Q must now contain T3L +T3R so that the
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left and right-chiral components of a fermion acquire the same electric charge.
Also, the U(1) quantum numbers should be equal for the left and right-chiral
components of the same fermion, as we have already imposed in Eqs. (23.1)
and (23.2). We have earlier said many times that any U(1) quantum number
has a multiplicative arbitrariness. We can fix the normalization of X in such
a way that it appears without any extra numerical factor in the expression
for the electric charge Q, i.e., we obtain a formula Q = T3L + T3R +X . This
then immediately shows that Xq = 1

6 , Xℓ = − 1
2 , implying that for all known

fermions, we can express the quantum number X as a simple combination of
the baryon number B and lepton number L:

X =
B − L

2
(23.3)

and the electric charge formula as

Q = T3L + T3R +
B − L

2
. (23.4)

The extended electroweak symmetry can therefore be called SU(2)L ×
SU(2)R × U(1)B−L. Interestingly, B − L, which was a non-anomalous global
symmetry of the standard model, has been taken as part of the gauge sym-
metry of this model. In addition, there is an SU(2)R symmetry which means
that even right-chiral fermions have charged current gauge interactions medi-
ated by the charged gauge bosons of SU(2)R, which we can call W±

R . We will
presently see why this does not disturb any of the successes of the standard
model.

If there is a discrete Z2 symmetry that interchanges the two SU(2) parts
of the interactions, it immediately follows that the interactions of left-chiral
and right-chiral fermions are identical and therefore parity is conserved. For
this reason, this model is called the left–right symmetric model.

Of course the gauge symmetry has to be broken spontaneously. The chain
of symmetry breaking should be as follows:

SU(2)L × SU(2)R ×U(1)B−L −→ SU(2)L ×U(1)Y −→ U(1)em . (23.5)

If the first stage of this symmetry breaking occurs at a scale much higher
than the electroweak scale, three gauge bosons would obtain masses at the
scale. These will include the charged gauge bosons of the SU(2)R and a
combination of the neutral gauge bosons of SU(2)R and U(1)B−L. Charged
current gauge interactions involving right-chiral fermions will have an effective
Fermi constant that will be given by a formula like that in Eq. (16.49, p 474),
except that the heavy masses would come in the place of the usual W boson
mass. Such interactions will therefore be suppressed, and the non-observation
of right-chiral currents can be translated to a lower limit on the WR masses.

2 Exercise 23.1 Which representation of scalar fields is necessary to
give masses to quarks?
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Taking strong interactions into account as well, the gauge group of this
model can be written as SU(3)c × SU(2)L × SU(2)R × U(1)B−L. Under the
SU(2) factors of this group, we know that the transformation of fermion fields
depends on chirality. Let us now summarize the transformation properties
under the remaining part, i.e., SU(3)c × U(1)B−L. Quarks of either chirality
transform like (3, 1

3 ). Leptons transform like (1,−1). In Eq. (10.47, p 269),
we showed how the fundamental representation of SU(3) decomposes under
SU(2) × U(1). Comparing with that formula, it is easy to convince oneself
that the quark and lepton representations are SU(3)×U(1) decompositions of
a fundamental representation of SU(4). It is therefore tempting to conjecture
that the gauge group of particle interactions is SU(4)×SU(2)L×SU(2)R, and
we see only standard model gauge interactions because symmetry is broken at
some high scale whose virtual effects are beyond our experimental accuracies.

This SU(4) part of the gauge group, proposed by Pati and Salam, has the
interesting property that fermions belonging to a fundamental representation
of this group contain three quarks of three different colors, plus a lepton field.
Thus this model has the distinguishing feature that there are gauge interac-
tions involving a quark and a lepton field. Such interactions were absent in
the standard model, and also in its left–right symmetric electroweak extension
discussed above.

23.3 Grand unified theories

Georgi and Glashow, in 1974, suggested something that goes even further.
They tried to unify all three fundamental interactions except gravitation into
one simple gauge group.

Before we proceed, we should explain what a simple group is. For this, we first need to discuss
the notion of an invariant subgroup. For any group G , a subset of elements H form an
invariant subgroup if for any H ∈ H and any G ∈ G , the element GHG−1 is an element of
H . Obviously, for any group G , the trivial group consisting of only the identity element is an
invariant subgroup, and the entire group G itself is also an invariant subgroup. A simple group
is a group that has no other invariant subgroup.

Thus, a group of the form G1×G2, i.e., where all elements of G1 commute with all elements of

G2, can never be a simple group since both G1 and G2 are invariant subgroups. For continuous

groups which are of interest to us in the context of gauge theories, a simple group can be

identified as one which cannot be factorized into mutually commuting subgroups, and any of

whose generators can be written as the commutator of two generators. A U(1) group therefore

is not simple, because it has only one generator that commutes with itself, and consequently

the generator itself cannot be written as a commutator. SU(n) groups for n > 1 are simple

groups. So are SO(n) groups for n > 1 with the exception of SO(4), and some others which

need not be discussed for our purpose.

2 Exercise 23.2 Show that the SO(4) algebra is equivalent to SU(2) ×
SU(2) algebra. [Hint : See the algebra of the Lorentz group discussed in Ch. 3.]

If a gauge group has two or more commuting factors, there can be one
gauge coupling constant for each of these factors. The standard model gauge



§23.3. Grand unified theories 705

group has three gauge coupling constants corresponding to the SU(3)c, SU(2)L

and U(1)Y factors. If one chooses a simple group as the gauge group, there
can be only one gauge coupling constant. In this sense, all gauge interactions
can be unified in this one constant.

Of course, the gauge group must have SU(3)c × SU(2)L × U(1)Y as a
subgroup, so that in the process of symmetry breaking we can obtain the
standard model gauge group to be valid at some energy scale. This means
that the group must have at least a rank of 4, since, as mentioned in §10.3,
the ranks of SU(3) and SU(2) are 2 and 1 respectively, and the rank of U(1)
is obviously 1. Georgi and Glashow analyzed all rank-4 simple Lie groups
and found that only SU(5) fits the bill. To explain what we mean by ‘fitting
the bill’, let us consider the decompositions of some of the lowest dimensional
representations of SU(5) under the standard model gauge group. The funda-
mental representation decomposes as5 à (3, 1)−1/3 + (1, 2)1/2 . (23.6)

We have written the SU(3) × SU(2) representations in parentheses and U(1)
quantum number as a subscript. The normalization of the U(1) quantum
number is of course arbitrary. The rank-2 antisymmetric tensor representation
of SU(5) is 10-dimensional, and it decomposes as10 à (3, 2)1/6 + (3∗, 1)−2/3 + (1, 1)1 . (23.7)

Comparing with Eq. (17.1, p 482), it is seen that the color-triplet weak-doublet
component has exactly the quantum numbers for the quark doublet. The
color antitriplet appearing in this decomposition is the complex conjugate
of uR, which can be called ûL. The color singlet transforms like êL, whose
representation should be complex conjugate to that of eR. Remember that
for SU(2), the complex conjugate of any representation is equivalent to the
original representation, and any U(1) quantum number reverses sign under
complex conjugation.

Now look at the decomposition of 5 again. It has a weak doublet which
is color singlet, but the U(1) quantum number is the opposite of that of the
lepton doublet given in Eq. (16.33, p 468). But then, if we consider 5∗, that
will contain a weak doublet with the correct weak hypercharge. The 5∗ will
also contain a color antitriplet, whose representation would match exactly
with that of d̂L.

So let us summarize what we have obtained. We can assign the following
fields to the 5∗ representation of SU(5):




d̂1

d̂2

d̂3

νe

e




L

: 5∗ , (23.8)
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where the subscripts 1,2,3 indicate the three colors. The overall subscript L

indicates that each element of the column is a left-chiral field. The 10 will
be an antisymmetric rank-2 tensor representation, and can be written in the
form of a matrix:




0 û3 −û2 u1 d1

0 û1 u2 d2

0 u3 d3

0 ê
0




L

: 10 . (23.9)

We have not written the fields below the diagonal, which are obtainable by
antisymmetry of this matrix. This pattern can be repeated for all fermion
generations, thus obtaining the transformation property of all fermions under
the gauge group.

While writing the behaviors of different fields under the standard model gauge group, we used
the left-chiral and right-chiral projections of the so-called “particles”. The representations of the
“antiparticles” were the complex conjugates which were implied, and not written down explicitly.
We can take an alternative strategy and assign only left-chiral particles and antiparticles to
the representations of the gauge group. The right-chiral ones will be implied to be included
in the complex conjugate representations. More explicitly, we had, for example, given the
representation of uR under the electroweak gauge group in Eq. (17.1, p 482). Now we will have
buL, and the representation of uR will be the complex conjugate one.

2 Exercise 23.3 Use Young tableaux to show that, in SU(5),5× 5 = 10+ 15 . (23.10)

Take the decomposition of 5 under the standard model gauge group
from Eq. (23.6), perform Kronecker product on it by itself, extract
the antisymmetric part and show that Eq. (23.7) is obtained.

Let us now look at the gauge bosons of SU(5). They constitute the adjoint
representation of the group, which is 24-dimensional. Since5× 5∗ = 24 + 1 (23.11)

in SU(5), the decomposition of 24 under the standard model gauge group can
be easily determined by using Eq. (23.6):24 à (8, 1)0 + (1, 3)0 + (1, 1)0 + (3, 2)5/6 + (3, 2)−5/6 . (23.12)

The color octet represents the gluons, the gauge bosons of the SU(3)c subgroup
of SU(5). The (1, 3)0 and the (1, 1)0 are the representations of the gauge
bosons of the SU(2) and U(1) parts of the gauge group. And then there are
12 more gauge bosons in SU(5) which are not part of the standard model.
These are extra gauge bosons, and we should check what kinds of interactions
can they induce.

It is enough to consider only the (3, 2)5/6 part. The other part is its complex
conjugate, and will do the same things in reverse order. Using the formula
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e−

d̂
X

u

û

Figure 23.1: Diagram for baryon number violation induced by the exchange of virtual
X bosons. Each arrow has the name of some particle written next to it, and represents
either that particle going along the arrow or its antiparticle going the opposite way.

for electric charge in Eq. (16.18, p 465), we find that this part contains three
gauge bosons with Q = 4

3 , and three more with Q = 1
3 . We will refer to

the first kind as X bosons and the second kind as Y bosons. In any gauge
theory, there are gauge boson vertices with two members of a fermion multi-
plet, as shown in Fig. 11.4 (p 316). Thus, for example, an X boson will have

vertices like d̂γµeXµ (omitting the color indices) with the members of the5∗-representation. Similarly, with the members of the 10-representation, it
can have interaction terms like uγµûXµ. The interaction terms involving the
Y boson can be similarly written.

Looking at the two sets of interactions of the X boson, we see that the
two, taken together, must violate both baryon number and lepton number,
because no consistent definition of these numbers can be given for the X
bosons. Violation of baryon number and lepton number will then also be seen
in processes involving ordinary fermions. For example, Fig. 23.1 shows how
an effective quark-level interaction of the form

ud→ ûe+ (23.13)

can be generated through the exchange of virtual X bosons. This can provide
a decay channel for the proton:

p→ π
0e+ . (23.14)

The decay has not been observed yet: there is no experimental result to justify
grand unified theories.

2 Exercise 23.4 Write the interaction terms involving the Y bosons and
show that the exchange of virtual Y bosons can also give rise to proton
decay channels.

Even though there is no new phenomenon to support grand unified the-
ories, some known properties of particles, taken for granted in the standard
model, find explanations in these theories. We outlined the phenomenon of
charge quantization in §23.1. For a U(1) gauge group like that of QED, there
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is no reason why the charges would be quantized. However, now the QED
gauge group is part of the grand unified gauge group, which is non-abelian.
The eigenvalues of the generators of a non-abelian gauge group are quantized,
the most famous example being the quantization of angular momentum com-
ponents which satisfy the algebra of the rotation group. To be specific, the
trace of any generator vanishes for an SU(N) group. Thus, the sum of charges
of the particles present in the 5∗ representation shown in Eq. (23.8) should be
zero. Since the color group is unbroken, the electric charges of the different
colored d-quarks must be the same. If we assume that the neutrino charge is
zero, it then follows that

Qe − 3Qd = 0 , (23.15)

which shows why the charge of the electron has to be an exact multiple of the
charge of the d quark.

How do we break the grand unified symmetry SU(5) down to the manifest
symmetry of particle interactions, the SU(3) of color and the U(1) of electro-
magnetism? It has to be done in two steps. In the first stage, at a high energy
scale, SU(5) breaks and the standard model gauge group appears:

SU(5)→ SU(3)c × SU(2)L ×U(1)Y . (23.16)

For this to happen, there must be a non-zero VEV of a non-trivial multiplet
of SU(5) along a direction that is a singlet under the standard model gauge
group. Looking at Eq. (23.12), we see that the adjoint representation of SU(5)
has such a singlet. So, if there is a Higgs multiplet that transforms like the
adjoint, it is possible that under some conditions regarding the parameters
in the scalar potential, it will develop a VEV and reduce the gauge group
to SU(3)c × SU(2)L × U(1)Y. In the next step, the electroweak gauge group
SU(2)L × U(1)Y has to be broken, and this can be done by the VEV of a5-dimensional multiplet of Higgs bosons. As seen from Eq. (23.6), the de-
composition of the 5-dimensional multiplet contains one part that transforms
exactly like the Higgs doublet of the standard model gauge group.

The central attractive idea is that of only one gauge coupling constant.
But what does that mean physically, given that the coupling constants of the
SU(3), the SU(2) and the U(1) parts of the standard model appear to be
very different in measurements? The answer lies in the fact that the coupling
constants depend on the energy scale, as was discussed in §12.2. From Eq.
(12.46, p 334), we found that the QCD coupling constant decreases with energy.
From Eq. (12.39, p 332), we see that the coupling constant of any U(1) group
should increase with energy. Since the QCD coupling constant is larger at the
weak scale compared to the other ones, it is clear that at some energy, the
SU(3)c and the U(1)Y coupling constant will be equal. If the SU(2)L coupling
constant also meets at the same point, it would mean that all couplings will
be equal at that scale, and that can be taken as the scale above which the
SU(5) theory would be valid with one single coupling constant.
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At the time that this idea was proposed by Georgi, Quinn and Weinberg,
the three gauge coupling constants of the standard model gauge group were
not known to a very good accuracy. With the accuracy that was available at
that time, the extrapolation of the coupling constants to high energies seemed
to indicate that they would meet at around 1014 to 1015 GeV. But now, the
accuracy of the data has improved a lot, and it seems that the three do not
meet at the same point.

This does not necessarily mean that the idea of grand unification is wrong.
It just says that if the idea has to work, the standard model gauge group
cannot emerge from the grand unified group in one step, i.e., the chain of
symmetry breaking indicated in Eq. (23.16) does not work in the real world.
One can contemplate a bigger gauge group like SO(10). Orthogonal groups
have spinor representations, the most well-known example being the spinors
of the rotation group. The smallest spinor representation of SO(10) is 16-
dimensional. If we consider the SU(5) subgroup of SO(10), this representation
decomposes as follows: 16→ 10 + 5∗ + 1 . (23.17)

We have already seen the decomposition of the 10 and 5∗ representations of
SU(5) under the standard model gauge group and argued that they contain all
left-chiral fields within one generation of fermions of the standard model. The
extra singlet present in the 16 of SO(10) has to be a singlet of the standard
model, and therefore a neutrino field. We mentioned in Ch. 22 that such
singlet neutrinos are necessary in many models of neutrino mass.

2 Exercise 23.5 We said that SU(5) is a subgroup of SO(10). Show
that any SU(N) group is a subgroup of SO(2N).

We are considering the subgroup SU(5) only for the sake of convenience.
We do not want to imply that the SO(10) breaks to SU(5) before further
symmetry breaking takes place. In fact, that scheme would imply that the
standard model interaction would first have to unify into SU(5), and then at
some higher scale the SO(10) symmetry takes over — and would not work for
the same reason that SU(5) does not work as a grand unified gauge group.
However, SO(10) can break through many other channels to the standard
model gauge group. Most interestingly, the left–right symmetric SU(4) ×
SU(2)L × SU(2)R containing the Pati-Salam SU(4) is a subgroup of SO(10).
So, symmetry breaking can proceed through this group as an intermediate
symmetry group. There are many other possible symmetry breaking chains,
and other possibilities for the grand unified gauge group as well, all of which
need not be discussed in the brief outline of the basic idea.

23.4 Horizontal symmetry

Grand unified models like SU(5) or SO(10) do not explain or even address the
question of why fermions come in three generations. In SO(10), for example,
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one irreducible representation of left-chiral fields contains all fields of a single
generation. The number of such multiplets, i.e., the number of generations, is
taken as an empirical input. It is natural to wonder why the number of fermion
generations is indeed three as we have seen. There are related questions, of
course. Is it really true that there are no extra fermion generations beyond
the three that we have already seen? Are there any relations between the
masses of different generations of fermions, including possibly some relation
with the mixing angles that appear in the CKM matrix for quarks and also
the PMNS matrix for leptons? Such questions can be addressed only if we
have a theory for explaining different generations of fermions.

One obvious idea to try is that of some kind of symmetry that connects
different generations. For example, consider the idea that there is a SU(3)
family symmetry, under which, e.g., the u quark, the c quark and the t quark
form a triplet. The down-type quarks also form a triplet, and so do the
leptons of the three generations. Such symmetries are often called horizontal
symmetries. The name is a pictorial reminder to the list of quark fields given
in Eq. (17.1, p 482): transformations of this group act horizontally in this
arrangement. The symmetry being SU(3), immediately we understand why
the number of fermion generations is not 2 or 4: because SU(3) does not have
any 2- or 4-dimensional irreducible representations. Although this argument
does not explain why the number of fermion generations is not 8, at least the
number of possible answers can be narrowed down considerably.

The horizontal symmetry does not have to be a continuous group. One
can also contemplate discrete non-abelian groups which have 3-dimensional
irreducible representations to explain the existence of three fermion genera-
tions.

The problem is that, whether continuous or discrete, an unbroken horizon-
tal symmetry would imply that the different generations of fermions should
be degenerate. This is far from what we observe in the real world. Horizontal
symmetries must therefore be broken. The pattern of breaking would dictate
mass relations. It is fair to say that so far it has not been possible to find any
horizontal symmetry whose breaking pattern has provided any useful relation
between quark masses and mixing.

There are related problems. If a horizontal symmetry is not accidental, it
cannot be approximate. Then it will have to be broken spontaneously. If the
symmetry happens to be global and continuous, spontaneous breaking of the
symmetry would produce Goldstone bosons. The theory will therefore have an
obligation to explain why these Goldstone bosons have not been observed yet
despite the fact that they are massless. On the other hand, if the horizontal
symmetry is a gauge symmetry, it will have to be broken at sufficiently high
energy in order to explain why we have not seen the associated gauge bosons,
and also flavor-changing neutral currents that such gauge bosons would me-
diate. In that case, it is not clear why the mass difference between, say the
electron and the muon, is so much smaller than the scale of the horizontal
symmetry breaking.
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If there is a gauged horizontal symmetry, then we can also think of whether
this symmetry is unified with the gauge symmetries of the standard model.
Obviously this requires symmetries much larger than SO(10), which can ac-
commodate fermions of a single family into its spinor representation. There
are higher orthogonal groups that can be suitable for the job. For example,
consider the group SO(18). Obviously it has a subgroup SO(10)×SO(8). We
can take the SO(10) part as the group for single family unification, and the
SO(8) part as the horizontal symmetry group. The spinor representation of
the SO(18) group is 256-dimensional. Under the subgroup SO(10) × SO(8),
it decomposes as follows:256 à (16,8s) + (16∗,8c) , (23.18)

where the 8s indicates the 8-dimensional spinor representation of SO(8), and8c is its complex conjugate representation. Thus, a single spinor representa-
tion of SO(18) contains all three generations of known fermions, and in fact
many more. There are discussions in the literature how only three gener-
ations can have masses below the weak scale while the others will become
superheavy, i.e., acquire masses at the grand unification scale. In this sense,
this model explains why there are only three fermion generations. Detailed
understanding of the masses of the fermions in the light generations and their
mixing patterns is lacking, from SO(18) models or otherwise.

23.5 Supersymmetry

In §23.3, we talked about grand unification, which unifies the properties of
particles under internal symmetries like the gauge symmetries associated with
strong, weak and electromagnetic interactions. There is another kind of uni-
fication that one can contemplate. There are fermions, and there are bosons.
They are distinguished by their spin angular momentum: half-integral for
the former class and integral for the latter ones. If we have some kind of a
symmetry operation that changes the angular momentum by a half unit, a
boson would change to a fermion, and vice versa, by the action of such an
operation. In that case, we could consider a fermion and a boson as different
manifestations of a single kind of some superparticle. This is the basic idea
of supersymmetry.

To implement this idea, one has to extend the Poincaré invariance by
the addition of extra generators which behave fermionically, i.e., they have
anticommutation relations among themselves. Application of such operators
on a bosonic state would produce a fermionic state and vice versa. Each known
particle, boson and fermion, must have a superpartner of the opposite kind
in such theories. Observation of any of these superpartners would constitute
a direct proof of supersymmetry.

The behavior of a particle and its superpartner must be the same under
strong as well as electroweak gauge symmetry. In addition, supersymmetry
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also implies that the masses of any particle and its superpartner should be
the same. Immediately, this means that supersymmetry cannot be an exact
symmetry of nature, because if it were, then we would have known a boson
with the mass and the charge of the electron, and a massless fermion as the
partner of the photon, and so on. If such particles existed with such low mass,
we would have discovered them long ago.

So the reason for the non-observation of the superpartners has to be the
fact that they are heavy. This means that supersymmetry has to be broken.
There is no consensus on how this might happen.

However, there seems to be some agreement on the amount of supersym-
metry breaking. This comes from the fact that supersymmetry can explain
one of the shortcomings of the standard model mentioned in §23.1, viz., the
one about the Higgs boson mass. We said that the loop corrections to the
Higgs boson mass are of order Λ2 if a momentum cut-off Λ is used to evaluate
the integrals. In a supersymmetric theory, however, if there is a loop with a
boson circulating in it, there must also be a loop with the superpartner of the
boson circulating in it. If supersymmetry is exact, the O

(
Λ2
)

contributions
from two such diagrams cancel each other exactly. In a realistic theory where
supersymmetry is broken at a scale MS, the cancellation of the two diagrams
leaves a remainder of order M2

S. Thus, as long as MS is not very much larger
than the weak scale, one does not need any fine tuning for the Higgs boson
mass.

In the simplest form, supersymmetry transformation parameters are taken
to be independent of the spacetime point, i.e., the transformations are consid-
ered to be global. The corresponding transformations on the ordinary space-
time are also taken to be global, and we obtain theories in the Minkowskian
spacetime augmented by supersymmetric extensions of it. If instead we con-
sider local transformations, one obtains supersymmetric extensions of theories
on more general spacetime. Since Einstein’s general theory of relativity is a
field theory of gravity based on generalized geometry of spacetime, the super-
symmetric extensions give a supersymmetric version of the theory of gravity,
called supergravity.

23.6 Higher dimensional theories

There was a time when people believed that there were only two kinds of
fundamental interactions, the gravitational and the electromagnetic. In the
nineteenth century, Maxwell formulated a classical field theory for electro-
magnetic interactions. In the beginning of the twentieth century, Einstein did
the same for gravitational interactions through his general theory of relativity.
This latter theory was based on the independence of physical phenomena on
the co-ordinate transformations in a 4-dimensional spacetime. In the 1920s,
Ka luza and Klein pointed out an interesting variant of the idea of co-ordinate
transformations. Suppose the spacetime were 5-dimensional. Four of these
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five dimensions are the usual extended ones, but the fifth one is like a cir-
cle, i.e., the range of values that the fifth co-ordinate can take is finite, and
the same value repeats periodically if one ‘travels’ along the fifth dimension.
Such a dimension would then be called a compactified dimension, as opposed
to the other four extended dimensions. Since the compactified dimension is
like a circle, transformations of the fifth co-ordinate would be like U(1) electro-
magnetic gauge transformations. Thus, inclusion of such an extra dimension
would include the electromagnetic field equations, in addition to the gravi-
tational field equations coming from the four extended dimensions. In this
sense, one can unify gravitational and electromagnetic interactions within a
5-dimensional geometry. This idea is called the Ka luza–Klein theory after the
name of the people who proposed it.

The obvious question that comes is this: why can’t we see the circular
nature of the fifth dimension? The only reasonable answer is that the radius
of the circle is very small, i.e., one needs very high energies to probe this
dimension. If the radius of the circle is so small that the energies needed to
probe it would be larger than any energy obtained in any experiment, that
would explain why the fifth dimension has gone unnoticed in all experiments
so far.

Will there be low-energy signatures of this idea? In principle, yes. The
Klein–Gordon equation for a 5-dimensional theory would read

2Φ− ∂2
yΦ +m2Φ = 0 , (23.19)

where the box stands for the 4-dimensional Klein–Gordon operator and ∂y

denotes derivative with respect to the fifth co-ordinate, y. The field Φ should
be a function of the four usual co-ordinates, which will be denoted by x, and
of y. If the radius of the circle along the fifth dimension is R, the solutions
should have the form

Φ(x, y) =
∑

n

ϕn(x) exp(iny/R) (23.20)

where n is an integer, so that y and y + 2πR can denote the same physical
point. Putting this back into Eq. (23.19), we find that ϕn(x) satisfies the
equation

2ϕn +

(
m2 +

4π2n2

R2

)
ϕn = 0 . (23.21)

Thus, in four dimensions, we should see not only just one particle with massm,
but an infinite tower of particles corresponding to all positive integer values of
n. Of course if R is small, these particles will be very heavy and therefore not
detectable directly, but effects of these particles appearing as virtual particles
in a Feynman diagram might be detectable. So far, there have been lower
bounds on the masses of these particles based on such analysis.

The 5-dimensional spacetime is good for a marriage between gravitation
and electromagnetism only. We now know that there are other interactions.
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One can take the cue from the 5-dimensional example and construct theories
in higher dimensions, where all but the usual four dimensions are compacti-
fied, and the symmetry groups involving co-ordinate transformations of those
compact dimensions give further gauge interactions.

23.7 String theory

String theory provides a more radical approach to unification. Unlike all
the previous ideas described in this chapter, this theory is not fundamentally
a quantum field theory of particles. The fundamental objects considered in
string theory are 1-dimensional objects or strings. Just as the Lagrangian for a
point particle is the length of the worldline, and contains only one parameter,
viz., the mass of the particle, the Lagrangian of a string is the area of the
worldsheet swept by the string, and it also contains just one parameter, the
mass per unit length of the string, also called the string tension.

Particles are the different modes of vibrations of a fundamental string. A
fundamental note on a string instrument is some wave with a specific frequency
and specific wavelength. In quantum theory, frequency is equivalent to energy,
and wavelength (or, to be more precise, the wave vector) to 3-momentum.
Thus, a normal mode corresponds to a particle with specific values of energy
and momentum.

Early enthusiasm with string theory stemmed from the fact that the nor-
mal modes of a closed string theory contains a massless particle with spin 2.
This can be easily identified with a graviton, the supposed mediator of gravi-
tational interactions. There was a hope that string theory would therefore be
able to describe all fundamental interactions including gravitation.

It was soon realized that the goal of including the other three kinds of
interactions would not be straightforward or easy. The string theories have
certain anomalies which depend on the number of spacetime dimensions. For
ordinary strings, the spacetime dimension has to be equal to 26 in order that
the theory is free from such anomalies. However, this theory is useless anyway
because its vibrational modes can never contain any fermion. It also has other
problems, like the presence of a tachyonic mode. Thus we need to go to what
are called superstrings. The transition from ordinary or bosonic strings to
superstrings is somewhat similar to the transition from Poincaré invariance to
supersymmetry. Once this is made, one finds that a 10-dimensional spacetime
is needed to lay down a consistent quantum theory of superstrings.

String theory is attractive for several reasons. First, it includes gravity,
and therefore holds the promise of unifying all interactions. Second, string
interactions do not give infinite results like point-particle theories: they are
automatically finite at every order in perturbation theory.

There are in fact five different kinds of string theories in 10 dimensions.
They differ in the possible modes of vibration of the strings. These theo-
ries have to be compactified so that finally there exist only four extended
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dimensions. There are many ways of compactifying any given theory, and
therefore many different possibilities for the 4-dimensional theory. It is not
clear whether any of them describes the real world.
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Appendix A

Units and constants

Table A.1: Conversion factors in natural units (~ = c = 1). MP is the Planck mass,
defined in Eq. (1.11, p 14).

[Row heading] = [Table entry]× [Column heading]
[Column heading]−1 = [Table entry]× [Row heading]−1

GeV gm cm−1 s−1 MP erg

GeV
1.78
× 10−24

5.06
× 1013

1.52
× 1024

8.18
× 10−20

1.60
× 10−3

gm
5.62
× 1023

2.84
× 1037

8.53
× 1047

4.60
× 104

9.00
× 1020

cm−1
1.98
× 10−14

3.51
× 10−38

3.00
× 1010

1.62
× 10−33

3.17
× 10−17

s−1
6.58
× 10−25

1.17
× 10−48

3.33
× 10−11

5.38
× 10−44

1.05
× 10−27

MP

1.22
× 1019

2.17
× 10−5

6.17
× 1032

1.85
× 1043

1.95
× 1016

erg
6.24
× 102

1.11
× 10−21

3.16
× 1016

9.49
× 1026

5.11
× 10−17

Other units which do not have natural
dimensions of energy or inverse energy

1 coulomb = 1.89× 1018

1 gauss = 1.96× 10−20 GeV2
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Table A.2: Physical constants.

Constant Symbol Value

Speed of light in vacuum c 3.00× 1010 cm s−1

Planck constant ~ 1.05× 10−27 erg s
Fine structure constant α 1/137
Fine structure constant (at scale MZ) α(MZ) 1/128

Fermi constant GF 1.16× 10−5 GeV−2

Strong coupling constant (at scale MZ) α3(MZ) 0.118
Measure of weak mixing angle sin2 θW 0.2316



Appendix B

Short summary of particle properties

In this appendix, we give a short summary of properties of various particles.
The lists include all elementary particles of the standard model and in addition
many hadrons. The following disclaimers should be kept in mind while using
these tables.

• Only a few significant digits in the values of the masses, widths (or
lifetimes) and branching ratios have been given.

• Errors on the values have not been shown.

• Not all decay modes have been given.

• Not all known baryons and mesons have been listed.

Table B.1: Properties of fundamental bosons.

Particle Spin
Mass Width Decay

in GeV in GeV mode product B (%)

γ 1 0 0
gluons 1 0 0
W+ 1 80.39 2.09 weak e+ν 10.75

µ
+

ν 10.57
τ

+
ν 11.25

hadrons 67.60
Z 1 91.19 2.50 weak e+e− 3.363

µ
+

µ
− 3.366

τ
+

τ
− 3.370

hadrons 69.91
invisible 20.00

H 0 126

719
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Table B.2: Properties of leptons.

Particle
Mass Lifetime Decay

(in MeV) (second) mode product B (%)

e 0.511 ∞
µ 106 2.2× 10−6 weak eνµν̂e 100
τ 1777 2.9× 10−13 weak eντν̂e 17.83

µντν̂µ 17.41
π

−
ντ 10.83

K−
ντ 7.00

For neutrinos, the differences of mass-squared values are known:

∆m2
21 = 7.50× 10−5 eV2

∣∣∆m2
23

∣∣ = 2.32× 10−3 eV2 .

Values for the mixing angles have been given in Eq. (22.42, p 677).

Table B.3: Properties of various baryons.

[Note : In the column with the heading ‘Lifetime (or Width)’, ordinary entries

are for lifetimes, and entries given in parentheses are for widths.]

Particle JP Mass Lifetime Decay
(MeV) (or Width) mode product B (%)

p 1
2

+
938 ∞

n 1
2

+
939 880.1 s weak peν̂e 100

Λ 1
2

+
1115 2.6× 10−10 s weak pπ− 63.9

nπ
0 35.8

nγ 0.17

Σ+ 1
2

+
1189.3 0.8× 10−10 s weak pπ0 51.57

nπ
+ 48.31

pγ 0.12

Σ0 1
2

+
1192.6 7.4× 10−20 s em Λγ 100

Σ− 1
2

+
1197.4 1.48× 10−10 s weak nπ

− 99.848
ne−ν̂e 0.102

Ξ0 1
2

+
1314.8 2.9× 10−10 s weak Λπ

0 99.522
Λγ 0.118
Σ0γ 0.333

Ξ− 1
2

+
1321.3 1.6× 10−10 s weak Λπ

− 99.887

∆ 3
2

+
1232 (117 MeV) strong Nπ 100

(Continued on next page)
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Table B.3 (Continued from previous page)

Particle JP Mass Lifetime Decay
(MeV) (or Width) mode product B (%)

Σ∗+ 3
2

+
1382.8 (36.0 MeV) strong

Λπ

Σπ

87
11

.0

.7Σ∗0 3
2

+
1383.7 (36 MeV)

Σ∗− 3
2

+
1387.2 (39.4 MeV)

Ξ∗0 3
2

+
1531.8 (9.1 MeV) strong Ξπ 100

Ξ∗− 3
2

+
1535.0 (9.9 MeV) strong Ξπ 100

Ω− 3
2

+
1672.5 0.82× 10−10 s weak ΛK− 67.8

Ξ0
π

− 23.6
Ξ−

π
0 8.6

Λ+
c

1
2

+
2286 2.0× 10−13 s weak pK̂0 2.3

pK−
π

+ 5.0

Σ++
c

1
2

+
2454 (2.26 MeV) strong Λ+

c π
+ ≈100

Σ+
c

1
2

+
2452.9 (< 4.6 MeV) strong Λ+

c π
0 ≈100

Σ0
c

1
2

+
2453.7 (2.16 MeV) strong Λ+

c π
− ≈100

Table B.4: Properties of various mesons.

[Note : In the column with the heading ‘Lifetime (or Width)’, ordinary entries

are for lifetimes, and entries given in parentheses are for widths. For some heavy

mesons, we do not list any decay mode because there are many of them, and none

stands out.]

Particle JP Mass Lifetime Decay
(MeV) (or Width) mode product B (%)

π
+ 0− 139.6 2.6× 10−8 s weak µ

+
νµ 99.988

e+νe 0.012
π

0 0− 135.0 8.5× 10−17 s em γγ 98.823
e+e−γ 1.174

K+ 0− 493.7 1.2× 10−8 s weak µ
+

νµ 63.54
π

0
µ

+
νµ 3.35

π
0e+νe 5.08

π
+

π
0 20.68

π
+

π
0
π

0 1.76
π

+
π

+
π

− 5.59
KL 0− 497.6 5.2× 10−8 s weak π

0
π

0
π

0 19.52
π

+
π

−
π

0 12.54
π

±
µ
∓

ν 27
π

±e∓ν 38.8
(Continued on next page)
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Table B.4 (Continued from previous page)

Particle JP Mass Lifetime Decay
(MeV) (or Width) mode product B (%)

KS 0− 497.6 8.9× 10−11 s weak π
+

π
− 68.6

π
0
π

0 31.4
η 0− 547.5 (1.30 keV) em γγ 39.31

e+e−γ 0.69
π

0
π

0
π

0 32.57
π

+
π

−
π

0 22.74
π

+
π

−γ 4.60
η′ 0− 957.8 (0.199 MeV) em π

+
π

−η 43.4
π

0
π

0η 21.6
ρ0γ 29.3
ωγ 2.75
γγ 2.18

ρ±, ρ0 1− 775.8 (149.1 MeV) strong ππ ≈100
K∗+ 1− 891.6 (50.8 MeV) strong Kπ ≈100
K∗0 1− 896.0 (50.3 MeV) strong Kπ ≈100

K0γ 0.23
ω 1− 782.7 (8.49 MeV) strong π

+
π

−
π

0 89.2
π

0γ 8.28
π

+
π

− 1.53
φ 1− 1019.5 (4.26 MeV) strong K+K− 48.9

K0
LK

0
S 34.2

ρπ,πππ 15.32
ηγ 1.31

D0 0− 1864.9 4.1× 10−13 s weak K−e+νe 3.55
K−

µ
+

νµ 3.30
K−

π
+ 3.88

D+ 0− 1869.6 1.04× 10−12 s weak
D+

s 0− 1968.5 5.00× 10−13 s weak
B+ 0− 5279.2 1.64× 10−12 s weak
B0 0− 5279.6 1.52× 10−12 s weak
B0

s 0− 5366.8 1.50× 10−12 s weak
B+

c 0− 6277 4.53× 10−13 s weak

ηc(1S) 0− 2981.0 (29.7 MeV) KK̂π 7.2
ηπ+

π
− 4.9

JΨ 1− 3097.0 (92.9 keV) em hadrons 87.7
e+e− 5.94
µ

+
µ
− 5.93

Υ(1S) 1− 9460.3 (54.0 keV)
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Table B.5: Properties of quarks. Note that quarks have not been directly observed.
Their masses have been estimated from various theoretical considerations explained in
different chapters.

P
a
rt

ic
le

Mass I3 S
tr

a
n

g
en

es
s

C
h

a
rm

q
u

a
n
tu

m
n

o
.

B
o
tt

o
m

q
u

a
n
tu

m
n

o
.

T
o
p

q
u

a
n
tu

m
n

o
.

(in MeV) (S) (C) (B) (T )

d 4.8 − 1
2 0 0 0 0

u 2.3 + 1
2 0 0 0 0

s 95 0 −1 0 0 0
c 1.275× 103 0 0 +1 0 0
b 4.18× 103 0 0 0 −1 0
t 173.5× 103 0 0 0 0 +1

Values for the elements of the CKM matrix have been shown in Eq. (17.23,
p 487).



Appendix C

Timeline of major advances in particle

physics

1896 • Thomson discovered the electron.

1900 • Planck introduced the idea of quanta of radiation in order to explain
the spectrum of blackbody radiation.

1905 • Einstein explained photoelectricity by using the idea of the photon.

1909 • Geiger and Marsden performed the alpha particle scattering exper-
iment.

1911 • Rutherford explained the results of Geiger and Marsden by intro-
ducing the idea of the nucleus.

1912 • Hess discovered the existence of cosmic rays.

• Wilson constructed the first cloud chamber.

1928 • Dirac proposed the relativistic theory of electrons.

1930 • Pauli conjectured the existence of neutrinos.

1931 • Lawrence built the first cyclotron.

1932 • Chadwick discovered the neutron.

• Anderson discovered the positron in cosmic rays.

1933 • Fermi proposed a theory of weak interactions.

1935 • Yukawa proposed the pion.

1936 • Anderson discovered the muon while searching for the pions.

• Following an earlier cue from Heisenberg, the idea of SU(2) isospin
symmetry of strong interactions was suggested by various authors
including Breit, Condon, Present, Cassen, Feenberg.

1947 • The charged pions were discovered by a group involving Lattes,
Occhialini, Powell.

1949 • The neutral pion was discovered.

724
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1953 • Glaser invented the bubble chamber.

1954 • Yang and Mills proposed non-abelian gauge theories.

1955 • Segrè and Chamberlain discovered the antiproton.

1956 • Neutrinos were detected by Reines and Cowan.

• Lee and Yang suggested the possibility that weak interactions vio-
late parity.

1957 • Parity violation in weak interactions was observed by Wu and col-
laborators, and also by Lederman and collaborators in two different
experiments.

1961 • Gell-Mann and Ne’eman independently realized that various
hadrons constitute representations of the group SU(3).

• Glashow proposed that a non-abelian gauge theory based on the
group SU(2)L ×U(1)Y might be responsible for weak interactions.

1962 • Lederman, Schwarz and Steinberger showed that the muon-neutrino
is different from the electron-neutrino.

1964 • Gell-Mann and Zweig independently proposed the idea of quarks in
order to explain the multitude of hadrons.

• Cabibbo introduced what is known as “Cabibbo angle” today: the
fact that strangeness-changing charge weak currents are more sup-
pressed than strangeness-conserving ones.

• CP violation was discovered by Fitch, Cronin and collaborators.

• In three different papers, Englert, Brout, Higgs, Hagen, Kibble and
Guralnik proposed a mechanism whereby gauge bosons can acquire
masses through spontaneous symmetry breaking.

1967 • Weinberg proposed “A model of leptons”, the electroweak theory
for the leptonic sector.

1968 • Salam proposed independently the model that Weinberg proposed
earlier for weak interactions.

• A team led by Friedman, Kendall and Taylor performed deep in-
elastic scattering of electrons off protons.

1969 • Feynman, and independently Bjorken and Paschos argued that the
results of deep inelastic scattering experiments imply substructure
of the proton.

1970 • Glashow, Iliopoulos and Maiani showed how to extend the
Weinberg–Salam model to quarks.

1971 • ’t Hooft showed that spontaneously broken gauge theories are renor-
malizable.

1973 • Existence of weak neutral currents was discovered at CERN.
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• Kobayashi and Maskawa showed that CP violation can be explained
if the number of fermion generations is more than two.

1974 • The charm quark was discovered.

• A paper by Gross and Wilzcek and another one by Politzer showed
that non-abelian gauge theories show the property of asymptotic
freedom. QCD, a gauge theory based on SU(3), became gradually
the accepted theory of strong interaction.

1975 • The tau lepton was discovered by Perl and collaborators.

1977 • The bottom quark was discovered by a group led by Lederman.

1983 • Evidence of W and Z bosons was found at the SpS collider by a
team led by Rubbia.

1994 • The top quark was discovered at the Tevatron.

1999 • Direct CP violation was definitively established in the neutral kaon
system.

2001 • The ντ was found.

2012 • The existence of a boson was announced. It seemed like the Higgs
boson of the standard model.



Appendix D

Properties of spacetime

In this appendix, we summarize the basic ingredients of spacetime according
to the special theory of relativity. Most (if not all) of the material presented
here has already been introduced in the text. The material is summarized
here for ready reference.

D.1 Metric tensor

In accordance with the special theory of relativity, we assume everywhere
in this book that spacetime is Minkowskian. This means, first of all, that
space and time together constitute the geometry. Points in this geometry are
denoted by the co-ordinates xµ, where µ = 0 gives the time and µ = 1, 2, 3
give the three directions of space. Secondly, the geometry is endowed with a
metric

gµν = diag(1,−1,−1,−1) , (D.1)

i.e., the invariant distance between two neighboring points with co-ordinates
xµ and xµ + dxµ is given by

ds2 = gµνdx
µdxν . (D.2)

Since ds2 is invariant or a scalar, and the co-ordinate differential dxµ repre-
sents a vector, it follows that gµν must be a rank-2 covariant tensor. This is
called the metric tensor .

For a co-ordinate transformation given by

x′µ = Λµ
ν x

ν , (D.3)

the invariance of ds2 implies the relation

gµνΛµ
αΛν

β = gαβ , (D.4)

as was shown in Eq. (2.25, p 21). The left hand side of this equation gives
the expression for the components of the tensor gµν in the new co-ordinate
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system. The equation then shows that these components are the same in
the old and the new co-ordinate systems, which is why the metric tensor is
sometimes called an invariant tensor .

The inverse of the metric tensor can be defined through the relation

gµαgαν = δµ
ν , (D.5)

where the right hand side represents the Kronecker delta, whose value is 1 if
the two indices are the same, and zero otherwise. Note that by contracting
the remaining free indices, we obtain

gµαgαµ = 4 . (D.6)

The Kronecker delta, as well as the metric tensor and the inverse metric,
are symmetric in their indices by definition, and we do not pay any attention
to which index comes earlier and which later. In contrast, the order of the
indices in, say, Λµ

ν is important, since the Lorentz transformation matrices
are not necessarily symmetric.

The Kronecker delta, and the inverse metric (which is also sometimes
loosely called the metric) are also examples of invariant tensors. Because of
their inter-relation, some people denote the Kronecker delta by gµ

ν .

2 Exercise D.1 Show that the inverse metric and the Kronecker delta
follow tensor transformation laws, and that their components are the
same under co-ordinate transformations that keep ds2 invariant.

2 Exercise D.2 Show that, if in one co-ordinate system we define a ten-
sor δµν whose components are 1 if µ = ν and zero otherwise, the
components do not remain the same in another co-ordinate system.
[Note : This is why δµν , or similarly δµν , cannot be defined.]

D.2 Levi-Civita symbol

It is possible to define another object whose components remain unaltered
under any proper Lorentz transformation. This is called the Levi-Civita sym-
bol , which has as many indices as the space on which it is defined, and is
antisymmetric with respect to the interchange of any two indices. For the
4-dimensional spacetime, we can denote it by εµνλρ. Obviously, a component
of this tensor can be non-zero only if all indices are different. We have chosen

ε0123 = +1 , (D.7)

and all other non-zero components follow from it. It also follows, from the
usual rules of raising and lowering indices, that

ε0123 = −1 . (D.8)

We discuss various properties of this object here.
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D.2.1 Contraction properties

Consider the product of two Levi-Civita symbols, i.e., an expression of the
form εµνλρ εµ′ν′λ′ρ′ . The product must be antisymmetric in the exchange of
any two of the indices µ, ν, λ, ρ, and similarly for the primed indices. We know
that the determinant of a matrix changes sign if any two of its rows, or any
two of its columns, are interchanged. This suggests that we can put the result
in the form of a matrix, each of whose rows is marked by one of the unprimed
indices, and each column by a primed index. A little bit of inspection then
shows that the result is necessarily of the following form:

εµνλρ εµ′ν′λ′ρ′ = −

∥∥∥∥∥∥∥∥

δµ
µ′ δµ

ν′ δµ
λ′ δµ

ρ′

δν
µ′ δν

ν′ δν
λ′ δν

ρ′

δλ
µ′ δλ

ν′ δλ
λ′ δλ

ρ′

δρ
µ′ δρ

ν′ δρ
λ′ δρ

ρ′

∥∥∥∥∥∥∥∥
, (D.9)

where the pair of two vertical lines on two sides of the matrix indicates the
determinant of the matrix.

Contracting both sides by δµ′

µ , we obtain the formula

εµνλρ εµν′λ′ρ′ = −

∥∥∥∥∥∥

δν
ν′ δν

λ′ δν
ρ′

δλ
ν′ δλ

λ′ δλ
ρ′

δρ
ν′ δρ

λ′ δρ
ρ′

∥∥∥∥∥∥
. (D.10)

Another contraction yields the result

εµνλρ εµνλ′ρ′ = −2!

∥∥∥∥
δλ
λ′ δλ

ρ′

δρ
λ′ δρ

ρ′

∥∥∥∥ , (D.11)

and yet another gives

εµνλρ εµνλρ′ = −3! δρ
ρ′ . (D.12)

Finally, if all indices are contracted, we obtain

εµνλρ εµνλρ = −4! . (D.13)

2 Exercise D.3 Verify Eqs. (D.10), (D.11), (D.12) and (D.13), starting
from Eq. (D.9).

D.2.2 Transformation properties

The reader has probably noticed that despite the fact that the Levi-Civita
symbol has four indices, we have never referred to it as a rank-4 tensor in
this appendix. The reason should now be explained, by determining the
transformation property of the Levi-Civita symbol under a transformation
of co-ordinates.

Let us denote the transformation matrix by Λ, as usual, with the rows and
columns marked by the indices 0, 1, 2, 3 rather than the usual 1, 2, 3, 4. The
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standard rule for obtaining determinant of a matrix can be summarized by
writing

det Λ = −εστωζΛ0
σΛ1

τΛ2
ωΛ3

ζ , (D.14)

where the minus sign on the right side appears because of the sign convention
we adopted in Eq. (D.8). Here, we take the row indices (the upper indices)
in order, and the column indices in all possible orders, ensuring that the
four column indices are different for each term in the determinant. We could
also take the row indices in all possible orders, ensuring that each of them is
different, by writing

det Λ = − 1

4!
εµνλρε

στωζΛµ
σΛν

τ Λλ
ωΛρ

ζ . (D.15)

The factor of 1/4! appears in this expression to eliminate multiple occurrences
of the same term. Now, multiplying both sides by εαβγδ and using Eq. (D.9),
we obtain

εαβγδ det Λ = − 1

4!
εµνλρδ

σ,τ,ω,ζ
α,β,γ,δΛµ

σΛν
τ Λλ

ωΛρ
ζ , (D.16)

where δµ′,ν′,λ′,ρ′

α,β,γ,δ is the type of determinant that appears on the right hand
side of Eq. (D.9). This determinant will have 24 terms when expanded, and
a little inspection shows that each of them will give the same result after
contraction with the other indices present here. Thus we obtain

εαβγδ det Λ = εµνλρΛµ
αΛν

βΛλ
γΛρ

δ . (D.17)

Let us see what message is conveyed by this equation. If the Levi-Civita
symbol were a tensor, the right hand side of this equation would have given
its components in a different system of co-ordinates. The equation then shows
that the components in the changed system are not necessarily equal to those
in the original system, so εµνλρ is not really an invariant tensor because of the
presence of the determinant on the left hand side. Objects which have extra
powers of the determinant of the transformation are called tensor densities .

If we consider proper Lorentz transformations only, then of course det Λ =
1, and the Levi-Civita symbol is indeed a tensor. Because of this, we have
sometimes loosely referred to εµνλρ as a tensor in the chapters. However, it
is important to remember that its transformation property is not like that of
a tensor when transformations like space inversion are involved.

In fact, it holds the key to parity-violating interactions. The reader might
cross-check all instances of parity violation that we have discussed in various
chapters and discover that all of them involved the presence of the Levi-Civita
symbol in the Lagrangian. Sometimes this presence was explicit, as in Eq.
(6.148, p 182). More often, it came through γ5, since this matrix is defined by
using the Levi-Civita symbol, as mentioned in Eq. (F.12, p 737).
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D.2.3 Spatial antisymmetric tensor

In many places, we need to use the spatial components of 4-vectors, and there
it is useful to make a spatial reduction of the Levi-Civita symbol. This symbol
should have three indices, all spatial, and we choose

ε123 = +1 , (D.18)

and all other components determined by the completely antisymmetric prop-
erty. The corresponding object with upper indices is also defined the same
way:

ε123 = +1 . (D.19)

Thus, the value of εijk is equal to that of ε0ijk, but the same thing cannot be
said for the Levi-Civita symbols with superscripts. It should also be noticed
that, because of the convention chosen, we won’t be able to raise the indices
of εijk (or lower those of εijk) by the Minkowski metric. But that would
not be the end of the world since we always have to make some adjustments
while dealing with vectors and tensors of the rotation group. For example,
the dot product of two 4-vectors A and B is defined to be AµBµ, but the dot
product of two 3-vectors is not AiBi, but rather AiBi, or equivalently AiBi.
The convention chosen in Eq. (D.19) allows us to write the components of the
cross product of two 3-vectors in the form

(A×B)i = εijkAjBk . (D.20)

Products of two such Levi-Civita symbols can be given in expressions
similar to those given in §D.2.1. For example, we have

εijkεi′j′k′ =

∥∥∥∥∥∥

δii′ δij′ δik′

δji′ δjj′ δjk′

δki′ δkj′ δkk′

∥∥∥∥∥∥
. (D.21)

Contraction of one or more indices yields the formulas

εijkεij′k′ = δjj′δkk′ − δjk′δkj′ , (D.22a)

εijkεijk′ = 2δkk′ , (D.22b)

εijkεijk = 6 . (D.22c)



Appendix E

Clebsch–Gordan co-efficients

In §3.5.3, we mentioned that the product of the states in two irreducible repre-
sentations does not constitute an irreducible representation in general. This is
true for any group. Here we present the recipe for writing the irreducible rep-
resentations in the product of two irreducible representations of the rotation
group.

Any irreducible representation of the rotation group is characterized by a
number j which is integer or half-integer. There are 2j+1 states in the repre-
sentation characterized by the number j. Each of these states is characterized
by a number m whose set of admissible values starts from −j, increases by
one unit until it reaches +j.

The tables given in this appendix show how to write the Kronecker prod-
ucts of two representations. The Kronecker product of the representations j1
and j2 contains all representations from |j1 − j2| up to j1 + j2. For any j
within this range, the state

∣∣j,m
〉

can be written as

|j,m〉 =

+j1∑

m1=−j1

C(j,m|j1,m1; j2,m−m1) |j1,m1〉 |j2,m−m1〉 . (E.1)

The co-efficients denoted by C(j,m|j1,m1; j2,m−m1) are called the Clebsch–
Gordan co-efficients. For different combinations of j1 and j2, we tabulate the
co-efficients.

A few things need to be realized by anyone interested in using these tables.
First, each co-efficient appearing in the definition of a

∣∣j,m
〉

state can be
multiplied by an overall phase factor. In other words, only the relative phase
between two terms is physically important. The overall phase has been fixed
by some arbitrary convention.

Second, the tables express properties of the algebra of SU(2). So the tables
can be used in any situation where the SU(2) algebra is important, irrespective
of what the SU(2) means physically. The tables apply for the rotational group
for sure. They are also applicable for internal SU(2) symmetries like isospin
or weak isospin. In fact, we have made use of these tables in many places in
the text while talking about symmetries other than the rotation symmetry.
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j1 = 1
2

j2 = 1
2 Possible

∣∣j,m
〉

states

m1 m2

∣∣1, 1
〉 ∣∣1, 0

〉 ∣∣0, 0
〉 ∣∣1,−1

〉

1
2

1
2 1

1
2

1
2

1/2 1/2
1
2 − 1

2
1/2 −1/2

− 1
2 − 1

2 1

Table E.1: Clebsch–Gordan co-efficients for 1
2
× 1

2
. The tabulated values are the

squares of the co-efficients multiplied by the sign of the co-efficient. In other words, for
a co-efficient a > 0, we tabulate a2. For a co-efficient a < 0, we tabulate −a2.

j1 = 1

j2 = 1
2 Possible

∣∣j,m
〉

states

m1 m2

∣∣ 3
2 ,

3
2

〉 ∣∣ 3
2 ,

1
2

〉 ∣∣ 1
2 ,

1
2

〉 ∣∣ 3
2 ,− 1

2

〉 ∣∣1
2 ,− 1

2

〉 ∣∣ 3
2 ,− 3

2

〉

1 1
2 1

1 − 1
2

1/3 2/3

0 1
2

2/3 −1/3

0 − 1
2

2/3 1/3

−1 1
2

1/3 −2/3

−1 − 1
2 1

Table E.2: Clebsch–Gordan co-efficients for 1 × 1
2
. See caption of Table E.1 for

conventions in tabulation.
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j1 = 1
j2 = 1

Possible
∣∣j,m

〉
states

m1 m2

∣∣2, 2
〉 ∣∣2, 1

〉 ∣∣1, 1
〉 ∣∣2, 0

〉 ∣∣1, 0
〉 ∣∣0, 0

〉 ∣∣2,−1
〉 ∣∣1,−1

〉 ∣∣2,−2
〉

1 1 1

1 0 1/2 1/2

0 1 1/2 −1/2

1 −1 1/6 1/2 1/3

0 0 2/3 0 −1/3

−1 1 1/6 −1/2 1/3

−1 0 1/2 1/2

0 −1 1/2 −1/2

−1 −1 1

Table E.3: Clebsch–Gordan co-efficients for 1 × 1. See caption of Table E.1 for
conventions in tabulation.



Appendix F

Dirac matrices and spinors

Throughout the text, we have talked about Dirac matrices and spinors in bits
and pieces, as and when the need arose. For someone who is not familiar with
these objects, this might pose some problems. So, in this appendix, we give
a self-contained summary of the properties of Dirac matrices and spinors.

F.1 Dirac matrices

F.1.1 Basic properties

Dirac suggested that, for spin- 1
2 fermions, one should not use the Klein–

Gordon equation. Instead, he introduced the Hamiltonian

H = α · p + βm (F.1)

in order to obtain a Schrödinger equation that is first order in both space
and time derivatives. He observed that in order to reproduce the relativistic
relation between energy and momentum, Eq. (4.1, p 62), the objects α and β
should satisfy the relations

[
αi, αj

]
+

= 2δij ,
[
αi, β

]
+

= 0 ,

β2 = 1 , (F.2)

where the notation [A,B]+ stands for the anticommutator of A and B, i.e.,
AB + BA. The anticommutation property cannot be satisfied if the objects
α and β are numbers. The relations show that we need four mutually anti-
commuting matrices. We will show that these matrices must be traceless, and
then they must be at least 4× 4 matrices. They must be hermitian since the
Hamiltonian of Eq. (F.1) has to be hermitian.

2 Exercise F.1 Take the square of the Hamiltonian given in Eq. (F.1),
assuming that the objects α and β commute with all components
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of momentum, but not assuming any commutation relation between
themselves. Compare the resulting equation with Eq. (4.1, p 62) and
show that the relations given in Eq. (F.2) result.

For field-theoretic purposes, it is more convenient to use the matrices

γi = βαi (F.3)

instead of the matrices αi, and rename β,

β = γ0 , (F.4)

so that we can denote the set of these four matrices by a compact notation,

γµ = {γ0, γi} . (F.5)

We will also use the notation

γµ = gµνγ
ν (F.6)

just as we do for Lorentz vectors. However, despite the notation, one should
not think that the four matrices transform like vectors. They are fixed ma-
trices. The vector index is only a reminder that bilinears of the form ψγµψ
transform like vectors, as shown in §4.4.2.

It is straightforward to see that the set of relations in Eq. (F.2) can be
summarized as

[
γµ, γν

]
+

= 2gµν1 . (F.7)

The relation is called the Clifford algebra of the matrices. In future, we will
often omit the unit matrix that is present on the right hand side.

Obviously γ0 is a hermitian matrix because it is equal to β. But the
matrices γi are not hermitian. Using the hermiticity properties of α and β
in conjunction with the anticommutation properties of Eq. (F.2), it is easy to
see that

γ†i = − γi . (F.8)

So the γi’s are anti-hermitian whereas γ0 is hermitian, a fact which can be
written in a compact form as

γ†µ = γ0γµγ0 . (F.9)

Eqs. (F.7) and (F.9) are the relations which define the Dirac matrices,
alternatively called the gamma matrices. The explicit form for the matrices
is not unique. In fact, it is easy to see that if one defines an alternative set of
matrices by the relation

γ̃µ = UγµU
† (F.10)
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where U is a unitary matrix, the matrices γ̃µ also satisfy the relations in Eqs.
(F.7) and (F.9) and can therefore serve as the Dirac matrices. Conversely, it
is also true that if two sets of matrices satisfy both Eqs. (F.7) and (F.9), they
are related unitarily, i.e., through a relation like that in Eq. (F.10). Because
of the arbitrariness in the explicit form of the matrices, we will not introduce
any explicit form of these matrices. We will just use the defining relations of
Eqs. (F.7) and (F.9) to derive other properties of these matrices.

F.1.2 Associated matrices

The anticommutators of Dirac matrices are proportional to the unit matrix,
as expressed in Eq. (F.7). The commutators are given the names

σµν =
i

2

[
γµ, γν

]
. (F.11)

The importance of this definition lies in the fact that the matrices 1
2σµν are

representations of the generators of the Lorentz group.

2 Exercise F.2 Verify the statement, i.e., show that if in Eq. (3.56,
p 54) we replace all occurrences of the Lorentz group generators J by
the matrices 1

2
σ, it produces a valid equation.

The matrix γ5 has been defined in Eq. (4.88, p 78). Notice that, using the
anticommutation property of the Dirac matrices, this definition can be cast
in the form

γ5 =
i

4!
εµνλργ

µγνγλγρ . (F.12)

This matrix anticommutes with all Dirac matrices:
[
γµ, γ5

]
+

= 0 , (F.13)

and therefore commutes with all sigma matrices, as expressed in Eq. (4.89,
p 78). The factor i appearing in the definition ensures that

(
γ5

)2

= 1 , (F.14)

and also that

γ†5 = γ5 . (F.15)

Another useful matrix is defined through Eq. (F.10). The point is that,
given the anticommutation relation of Eq. (F.7), it is easy to see that the
anticommutator of the matrices −γ⊤µ should be the same. Thus, there must
exist a unitary matrix C,

C† = C−1 , (F.16)
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such that

C−1γµC = −γ⊤µ . (F.17)

Note that Eqs. (F.9) and (F.17) imply that

γ∗µ = −C−1γ0γµγ0C . = −
(
γ0C

)−1

γµ

(
γ0C

)
. (F.18)

2 Exercise F.3 Show that

C
−1γ5C = γ⊤

5 . (F.19)

F.1.3 Contraction formulas

Here we derive simplified forms for strings of Dirac matrices containing some
contracted indices. Clearly,

γµγµ = 4 , (F.20)

a result that follows by contracting both sides of Eq. (F.7) with gµν . If we
have another Dirac matrix between the pair that have contracted indices, we
can use Eq. (F.7) to write

γµγνγµ = γµ
(

2gµν − γµγν

)
= 2γν − γµγµγν . (F.21)

Using Eq. (F.20) now, we finally obtain

γµγνγµ = −2γν . (F.22)

The procedure can be continued for longer strings. The results are:

γαγµγνγα = 4gµν , (F.23)

γαγµγνγλγα = −2γλγνγµ , (F.24)

γαγµγνγλγργα = 2(γργµγνγλ + γλγνγµγρ) . (F.25)

The last one can be expressed in a simpler way, mentioned in Eq. (F.51).

2 Exercise F.4 Derive the following contraction formulas involving the
sigma matrices:

σµνσµν = 12 , (F.26)

σµνγλσµν = 0 , (F.27)

σµνσλρσµν = −4σλρ . (F.28)

F.1.4 Trace formulas

It is easily seen that each of the γµ’s is traceless. For this, use Eq. (F.14) to
write

Tr(γµ) = Tr(γµγ5γ5) . (F.29)
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This final expression can be manipulated further. First, we can use the cyclic
property of traces to write it as Tr(γ5γµγ5). Then we can use the anticommu-
tation of γ5 and γµ to write it as −Tr(γµγ5γ5), which is nothing but −Tr(γµ)
because of Eq. (F.14). The equality of this expression with the original one
tells us that

Tr(γµ) = 0 . (F.30)

In a similar way, it can be proved that any string containing an odd number
of Dirac matrices is also traceless, i.e.:

Tr(γµ1γµ2 · · ·γµ2n+1) = 0 . (F.31)

For strings with 2n Dirac matrices, trace is not necessarily zero. First,
consider a string with n = 0:

Tr(1) = 4 , (F.32)

since we are dealing with 4× 4 matrices. When n = 2, we can write

Tr(γµγν) = Tr(2gµν1− γνγµ) (F.33)

by using the basic anticommutation relation. Since Tr(A+B) = TrA+ TrB,
we can write it as

Tr(γµγν) = 2gµν Tr(1)− Tr(γνγµ) . (F.34)

But the last trace appearing in this equation is equal to the expression on
the left hand side because of the cyclic property of traces. Using this and Eq.
(F.32), we obtain

Tr(γµγν) = 4gµν . (F.35)

To obtain the trace of a string of four Dirac matrices, we first use the
anticommutation relation to write

Tr
(
γµγνγλγρ

)
= 2gµν Tr

(
γλγρ

)
− Tr

(
γνγµγλγρ

)

= 8gµνgλρ − Tr
(
γµγλγργν

)
, (F.36)

using the cyclicity of traces to put the γν at the end in the last term. We now
use the anticommutation relation repeatedly to make the factor of γν hop its
way back to the position where it started from, viz., just after γµ. This would
give

Tr
(
γµγνγλγρ

)
= 8(gµνgλρ − gνρgµλ + gνλgµρ)− Tr

(
γµγνγλγρ

)
.

(F.37)

Finally, transposing the remaining trace to the left hand side, we obtain the
result

Tr
(
γµγνγλγρ

)
= 4(gµνgλρ − gµλgνρ + gµρgνλ) . (F.38)
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2 Exercise F.5 Follow this inductive procedure to show that

Tr

„

γαγβγµ1γµ2 · · · γµ2n

«

= gαβ Tr

„

γµ1γµ2 · · · γµ2n

«

−
2n

X

r=1

(−1)rg
µrβ

Tr

„

γαγµ1 · · ·µ2n

«

\µr

(F.39)

where in the last term, the crossed-out µr means that the correspond-
ing index should be omitted in the trace.

Trace of six Dirac matrices will contain 15 terms, but we don’t need that
elaborate formula. Any such long string can be traded for a number of shorter
strings by making use of Eq. (F.50).

It is also useful to find traces of strings involving γ5. First, we should note
that

Tr(γ5) = 0 , (F.40)

which can be proved in much the same way that is used to prove the trace-
lessness of the Dirac matrices, using the fact that γ0 anticommutes with γ5.
It is also obvious that any string containing γ5 and an odd number of Dirac
matrices is traceless, because γ5 can be seen as a string of four Dirac matrices,
making a total of an odd number of Dirac matrices in the string. Then note
that

Tr(γµγνγ5) = −Tr(γµγ5γν) = −Tr(γνγµγ5) , (F.41)

using the cyclicity of traces in obtaining the last step. The trace must then be
antisymmetric in the indices µ and ν. There is no such object that contains
only two Lorentz indices and is antisymmetric in them. Thus the trace must
be zero:

Tr(γµγνγ5) = 0 . (F.42)

What about the trace of four Dirac matrices multiplied by γ5? Using the
anticommutation relation, we can write

Tr(γµγνγλγργ5) = 2gµν Tr(γλγργ5)− Tr(γνγµγλγργ5) . (F.43)

The first term on the right hand side is zero because of Eq. (F.42), and so
we reach the conclusion that the trace must be antisymmetric in the indices
µ and ν. Through similar manipulations, it can be shown that the trace is
in fact antisymmetric in the exchange of any pair of indices. Hence it must
be proportional to the Levi-Civita tensor εµνλρ. The proportionality constant
can be easily determined by taking the four different Dirac matrices and using
the definition of γ5 given in Eq. (4.88, p 78). This gives

Tr(γµγνγλγργ5) = 4iεµνλρ . (F.44)
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F.1.5 Strings of Dirac matrices

In Eq. (4.93, p 79), we identified a set of 16 matrices and mentioned that they
can be used as a basis set for all 4 × 4 matrices. This means that any 4 × 4
matrix can be expressed as a linear superposition of the 16 matrices shown
in Eq. (4.93, p 79). Here we give a few examples with some strings of Dirac
matrices, with and without γ5, expressing them as superpositions of the 16
basis matrices.

We start with a string of two Dirac matrices. Using Eq. (F.7) and Eq.
(F.11), we obtain easily the relation

γµγν = gµν − iσµν . (F.45)

More explicitly, the first term on the right hand side should be written as
gµν1, indicating the unit matrix. The formula then shows that a string of
two Dirac matrices can be expressed as a superposition of the unit matrix
and the matrices σµν .

In order to get to longer strings, we first use the result

εαβµνσ
µνγ5 = 2iσαβ . (F.46)

It can be easily checked by taking each possible combination of the indices
α and β and exhausting all possibilities. A more algebraic proof is outlined
in Ex. F.6. Once this is taken for granted, we can contract both sides of this
equation by εαβλρ, use Eq. (D.11, p 729), and obtain

σλργ5 = − i
2
ελραβσαβ , (F.47)

which shows how σλργ5 is expressed in terms of the basic 16 matrices. It is
now easy to multiply Eq. (F.45) from the right by γ5, and use Eq. (F.47) to
obtain

γµγνγ5 = gµνγ5 −
1

2
εµναβσ

αβ . (F.48)

A special case of this equation, with µ being the time index and ν a space in-
dex, was given in Eq. (14.10, p 414) while discussing helicity. (While comparing
with Eq. (14.6, p 413), remember that Σi = −Σi.)

2 Exercise F.6 Prove Eq. (F.46) using the outline given here. First,
write γ5 as in Eq. (F.12). The resulting expression will have a prod-
uct of two Levi-Civita tensors. Use Eq. (D.9, p 729) to express this
product as strings of elements of the metric tensor. While contract-
ing the Dirac matrices with the metric tensor, use the contraction
formulas given in §F.1.3. This will give the desired result.

In order to deal with strings of three Dirac matrices, it is useful to start
from the expression iεµνλργ

ργ5, and use the definition of γ5 from Eq. (F.12).
Using Eq. (D.9, p 729) and various contraction formulas from §F.1.3, we obtain
the following expression:

iεµνλργ
ργ5 = −1

6

(
γµγνγλ + γνγλγµ + γλγµγν − (µ↔ ν)

)
. (F.49)
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Using the anticommutation relations between the Dirac matrices to push γµ

forward in every term, followed by γν and γλ, we obtain an identity of the
form

γµγνγλ = gµνγλ − gλµγν + gνλγµ − iεµνλργ
ργ5 . (F.50)

This is an extremely important identity because it allows one to reduce the
length of any string of Dirac matrices that is more than three matrices long.
For example, if one encounters a trace with six Dirac matrices, one can use
this formula to reduce the result to some traces with four Dirac matrices only,
with and without an extra factor of γ5.

2 Exercise F.7 Show that the trace formula of Eq. (F.38) can be easily
derived by using Eq. (F.50).

2 Exercise F.8 Use Eq. (F.50) to express the contraction formula of
Eq. (F.25) in the following form involving fewer Dirac matrices on
the right hand side:

γαγµγνγλγργα = 4(gµνgλρ + gµρgνλ − gµλgνρ − iεµνλργ5) . (F.51)

F.1.6 A property of the matrix C

The matrix C was defined in Eq. (F.17). Taking the transpose of both sides
of this equation, we obtain

C⊤γ⊤µ (C−1)⊤ = −γµ . (F.52)

Using now Eq. (F.17) again on the left hand side of this equation, we obtain
the relation

[
γµ,C

⊤C−1
]

= 0 . (F.53)

Any 4 × 4 matrix can be written as a linear superposition of the 16 basis
matrices given in (4.93). This way, it can be easily seen that if a matrix
commutes with all four Dirac matrices γµ, then it must be a multiple of a
unit matrix. Thus we can write

C⊤ = aC , (F.54)

where a is a scalar. Taking the transpose of this equation, we obtain C =
aC⊤ = a2C, so that the only possible values of a are

a = ±1 . (F.55)

In order to find the right value of a, we rewrite Eq. (F.17) in the form

γµC = −Cγ⊤µ = −a(γµC)⊤ , (F.56)

implying that γµC is antisymmetric if a = +1 and symmetric if a = −1. Using
the definition of the σ-matrices, we can easily show that the matrices σµνC
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must also have the same property: antisymmetric if a = +1 and symmetric
if a = −1. This shows that a = +1 is untenable, because that would produce
ten antisymmetric matrices which are linearly independent. For 4× 4, there
can be at most six independent antisymmetric matrices. Thus a = −1, which
means that

C⊤ = −C , (F.57)

i.e., the matrix C is antisymmetric.

F.2 Dirac spinors

F.2.1 Plane wave solutions of Dirac equation

The Schrödinger equation with the Dirac Hamiltonian is often called the Dirac
equation:

i
∂ψ

∂t
= −iα ·∇ψ + βmψ . (F.58)

Multiplying both sides from the left by the matrix β or γ0, this equation can
also be written in the form

iγµ∂µψ −mψ = 0 . (F.59)

Since γµ’s are 4 × 4 matrices, ψ must be a 4-component column vector.
Let us therefore try solutions of the form

ψ(x) = upe
−ip·x , (F.60)

where up is a 4-component column vector. This is called a spinor solution.
According to the discussion after Eq. (4.7, p 63), the up appearing in Eq.
(F.60) must be a positive energy spinor. Similarly, there will be negative
energy spinors, defined by solutions of the form

ψ(x) = vpe
+ip·x . (F.61)

Obviously, there will be four linearly independent solutions altogether, which
will include two of the first kind and two of the second. We will distinguish
between different solutions of the same type by an extra subscript index, i.e.,
by writing up,s and vp,s. When we write any mathematical formula with only
one subscript on the spinors, the subscript should always be understood to be
the 3-momentum appearing in the plane wave solution, and the formula to be
valid irrespective of which of the two different solutions we take.

The spinors satisfy the equations
(
p/−m

)
up = 0 , (F.62a)

(
p/+m

)
vp = 0 , (F.62b)
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where

p/ ≡ γµpµ . (F.63)

These can be found by inserting Eqs. (F.60) and (F.61) into the Dirac equa-
tion, Eq. (F.59). Of course, the explicit solutions of Eq. (F.62) depend on the
explicit forms of the Dirac matrices. These are representation dependent, and
therefore are not of interest to us. Independent of the representation, we can
make a few observations that will be helpful for future manipulations with
the spinors. First, note how Eq. (F.62a) looks for p = 0. In this case p0 = m,
so that the equation reduces to

(
γ0 − 1

)
u0 = 0 , (F.64)

which means that u0 is an eigenvector of γ0 with eigenvalue +1. Similarly,
Eq. (F.62b) shows that v0 should be an eigenvector of γ0 with eigenvalue −1.

In Eq. (F.30), we showed that the Dirac matrices are traceless. Therefore,
the matrix γ0 must have two eigenvectors corresponding to the eigenvalue +1,
and two for the eigenvalue −1. Let us denote the normalized eigenvectors by
ξs and χs, with s takes two values which label the two degenerate solutions:

γ0ξs = ξs , γ0χs = −χs . (F.65)

In order to obtain a mutually orthogonal set of eigenvectors, we can take them
to be simultaneous eigenstates of some other hermitian matrix that commutes
with γ0. For example, σ12 can fit this role, and we can take

σ12ξs = sξs , σ12χs = sχs , (F.66)

where the index s takes the values

s = ± . (F.67)

The normalization conditions on the eigenvectors can then be set as

ξ†sξs′ = δss′ , χ†
sχs′ = δss′ , ξ†sχs′ = χ†

sξs′ = 0 . (F.68)

The zero momentum solutions should be proportional to these eigenvectors.
The normalization condition will be discussed shortly in §F.2.2.

The solutions for arbitrary momentum can be constructed in the following
way:

up,s = Np

(
p/+m

)
ξs , (F.69a)

vp,s = Np

(
− p/+m

)
χ−s , (F.69b)

whereNp is a normalizing factor. Note that these are not eigenvectors of either
γ0 or σ12 for any non-zero 3-momentum. In §4.4, we outlined the arguments
which show that these expressions indeed satisfy Eqs. (F.62a) and (F.62b),
and we do not repeat that part of the argument here.
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F.2.2 Normalization of spinors

Note that Eq. (F.69) can be written in the form

up,s = Np

(
Ep +m− γipi

)
ξs , (F.70a)

vp,s = Np

(
Ep +m+ γipi

)
χ−s , (F.70b)

using Eq. (F.65). Thus, remembering that γ†i = −γi, we can write

u†p,sup,s′ = N2
p ξ

†
s

(
Ep +m+ γipi

)(
Ep +m− γjpj

)
ξs′

= N2
p ξ

†
s

[
(Ep +m)2 − γiγjpipj

]
ξs′ . (F.71)

In writing the last form, we have used the relation

ξ†sγiξs′ = 0 , (F.72)

which can be easily shown by using Eq. (F.65) and the fact that γ0 anticom-
mutes with any γi. Next, we use the anticommutation property of the Dirac
matrices to write γiγjpipj = −p2 = −E2

p +m2. We now put it in and use Eq.
(F.68) to perform similar manipulations with the v-spinors. The results show
that if we set

Np =
1√

Ep +m
, (F.73)

then our normalization condition would read

u†p,sup,s′ = 2Epδs,s′ , (F.74a)

v†p,svp,s′ = 2Epδs,s′ . (F.74b)

In addition, we would have

u†p,sv−p,s′ = 0 , (F.75a)

v†p,su−p,s′ = 0 . (F.75b)

Of course the choice of Np merely defines a convention. But we want to
point out that our convention is a good one insofar as the definitions in Eq.
(F.69), as well as the normalization conditions obtained in Eq. (F.74), are all
valid for arbitrary masses of the fermion, including zero. An alternative way
of representing the normalization conditions will be discussed in §F.3.1.

F.2.3 Conjugation properties

Now let us look at the object γ0Cξ∗s , where the matrix C has been defined in
§F.1. Note that Eq. (F.17) implies that

γ0Cξ∗s = −Cγ⊤0 ξ
∗
s = −Cγ∗0ξ

∗
s = −Cξ∗s , (F.76)
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using the hermiticity of γ0, and the definition of ξs. On the other hand, since
σ12 is hermitian and it commutes with γ0, we can write

σ12γ0Cξ∗s = γ0σ12Cξ∗s = −γ0Cσ
⊤
12ξ

∗
s = −γ0Cσ∗

12ξ
∗
s = −sγ0Cξ

∗
s , (F.77)

where we have made use of Eq. (6.56, p 161) on the way. These two equations
show that γ0Cξ∗s is an eigenstate of γ0 with eigenvalue −1, and of σ12 with
eigenvalue −s. Its norm can be shown to be 1 easily, which means that γ0Cξ∗s
is equal to χ−s up to a phase. The phase factor, in fact, can be set to unity
by adjusting the overall phase of the matrix C, and we can write

γ0Cξ∗s = χ−s . (F.78a)

Using the properties of the matrix C deduced earlier, one can now show that
this implies

γ0Cχ∗
s = ξ−s . (F.78b)

2 Exercise F.9 Prove Eq. (F.78b) from Eq. (F.78a), using properties
of the matrix C such as those given in Eqs. (F.16) and (F.57).

To see similar results of conjugation with spinors with arbitrary momen-
tum, we make use of Eq. (F.18) to write

γ0Cu∗p,s = Npγ0C(γ∗µp
µ +m)ξ∗s = Np(−γµp

µ +m)γ0Cξ∗s . (F.79)

Now, we can use Eq. (F.78a) to discover that the right hand side is nothing
but vp,s. A similar relation is obtained by taking the complex conjugate of a
v-spinor. We display both equations here:

γ0Cu∗p,s = vp,s , (F.80a)

γ0Cv∗p,s = up,s . (F.80b)

These relations appear in the text as Eq. (6.108, p 170), in the context of charge
conjugation properties of fermions.

F.2.4 Result of γ0 multiplying the spinors

What happens when γ0 multiplies the spinors? It is convenient to use the
formulas in Eq. (F.70) in order to answer this question. We see that

γ0up,s = Npγ0

(
Ep +m− γipi

)
ξs . (F.81)

Let us now try to move the factor of γ0 to the right of the expression in the
parentheses. Since γ0 anticommutes with γi, we obtain

γ0up,s = Np

(
Ep +m+ γipi

)
γ0ξs = Np

(
Ep +m+ γipi

)
ξs , (F.82)

using Eq. (F.65) for the last step. This shows that on the right hand side,
we have also obtained a u-spinor, but which corresponds to a 3-momentum



§F.2. Dirac spinors 747

which is reversed compared to the original one. This, and the result of the
similar analysis on v-spinors can be summarized in the equations

γ0up,s = u−p,s , γ0vp,s = −v−p,s . (F.83)

These relations first appear in the text in Eq. (6.80, p 165).

F.2.5 Result of γ5 multiplying the spinors

Consider γ5ξs. Since γ5 anticommutes with γ0, it is easy to see that γ5ξs is
an eigenstate of γ0 with eigenvalue −1. It is also an eigenstate of σ12, with
eigenvalue s, since γ5 commutes with σ12. It appears to have all properties of
χs, and it might be tempting to identify γ5ξs with χs. However, that cannot
be done. There can be an extra phase factor in the relation, which cannot
be eliminated by choice of phases of the eigenvectors of γ0, because we have
already utilized the freedom by committing to Eq. (F.78). Thus, we should
write

γ5ξs = ηsχs , (F.84a)

where ηs is a phase factor. Multiplying each side by γ5, we obtain

γ5χs = η∗sξs . (F.84b)

As we said, the two phase factors η+ and η− cannot be arbitrarily chosen:
there is a relation between them that follows from Eq. (F.78). To see this,
note that Eqs. (F.78a) and (F.84b) imply the relation

χ− = γ0Cξ∗+ = γ0C

(
η+γ5χ+

)∗
= η∗+γ0Cγ⊤5 χ

∗
+ , (F.85)

using the fact that γ5 is hermitian. At this point, we can make use of Eq.
(F.19) to continue the exercise further:

χ− = η∗+γ0γ5Cχ∗
+ = −η∗+γ5γ0Cχ∗

+ = −η∗+γ5ξ− = −η∗+η−χ− , (F.86)

using Eq. (F.84a) in the last step. This shows that we must take

η− = −η+ . (F.87)

Now let us see what happens when γ5 multiplies the spinors. Starting
from the definitions of the u-spinors in Eq. (F.70a), we obtain

γ5up,s = Npγ5

(
Ep +m− γipi

)
ξs = Np

(
Ep +m+ γipi

)
γ5ξs . (F.88)

Using Eq. (F.84a) now and the definition of the v-spinors from Eq. (F.69b),
we can write

γ5up,s = ηsvp,−s . (F.89a)
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Similarly, one obtains

γ5vp,s = −η∗sup,−s . (F.89b)

One can use these properties of the spinors to write their conjugation
properties in another equivalent but useful way. Notice that

γ5Cu∗p,s = γ5γ0vp,s = −γ0γ5vp,s

= η∗sγ0up,−s = η∗su−p,−s , (F.90)

using Eqs. (F.83) and (F.89) on the way. This equation, and the similar
equation with v-spinors, can be written as

C−1γ5up,s = −ηsu
∗
−p,−s , (F.91a)

C−1γ5vp,s = −η∗sv∗−p,−s . (F.91b)

These relations were introduced as Eq. (7.59, p 199) in the context of time-
reversal transformation, with the choice of ηs given by

ηs = s , (F.92)

with s defined in Eq. (F.67), which is a particularly simple way of satisfying
Eq. (F.87).

2 Exercise F.10 Show that

C
−1up,s = v∗−p,s , (F.93a)

C
−1vp,s = −u∗

−p,s . (F.93b)

2 Exercise F.11 In the Dirac-Pauli representation, one takes

γ0 =
h

1 0
0 −1

i

, γi =

»

0 σi

−σi 0

–

. (F.94)

Using C = iγ2γ0, show that the spinors consistent with the normal-
ization and phase conventions given here are as follows:

u+ =
h

e+
σ · ne+

i

, u− =
h

e−
σ · ne−

i

, (F.95a)

v+ =−
h

σ · ne−
e−

i

, v− =−
h

σ · ne+
e+

i

, (F.95b)

where

e+ =
p

Ep +m
“

1
0

”

, e− =
p

Ep +m
“

0
1

”

, (F.96)

and

n =
p

Ep +m
. (F.97)

[Note : By matrices enclosed by square brackets, we want to signify that the
elements are written in a shorthand notation in which each displayed element is a
block of length 2.]
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F.2.6 Spin sums

Often one needs to use expressions of the sort

∑

s

(up,s)a(up,s)b , (F.98)

where the subscripts indicate elements of the spinor. Obviously, the results
can be written in terms of the elements of a matrix Su, defined by

Su =
∑

s

up,sup,s . (F.99)

To find the matrix, we let it act on u and v spinors with the same momentum.
Note that

Suup,s′ =
∑

s

up,sup,sup,s′ . (F.100)

Using Eq. (F.128a) which will be proved later, we obtain

Suup,s′ = 2mup,s′ . (F.101)

On the other hand, Eq. (F.129) shows that

Suvp,s′ = 0 . (F.102)

It should be noticed at this point that

(p/ +m)up,s′ = 2mup,s′ , (p/ +m)vp,s′ = 0 , (F.103)

which follow from the defining equations of u and v spinors, Eqs. (F.62a) and
(F.62b). Thus Su and p/+m produce the same result on the u and v spinors.
Since any 4-component column vector can be expressed as a superposition of
the four u and v spinors, it means that Su and p/+m produce the same result
on any spinor, and therefore they must be identical. Similar arguments can
be given on the sum of v spinors, and the results can be summarized as

∑

s

up,sup,s = p/+m, (F.104a)

∑

s

vp,svp,s = p/−m. (F.104b)

F.2.7 Projection matrices on spinors

There are four spinor solutions altogether for any given momentum. Two of
these are u-spinors, and two are v-spinors. The first kind satisfies Eq. (F.62a),
whereas the second kind satisfies Eq. (F.62b). But how do we define the two
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different solutions of each kind? For many applications, it is not necessary to
do so. But there are other cases when it is. In such cases, depending on the
need, we have to project out one of the u-spinors or one of the v-spinors. This
can be done with the help of projection matrices.

In order to obtain a projection matrix, one first needs to find a matrix Q

with the property

Q2 = 1 . (F.105)

With the help of this, we define the two matrices

Q± ≡
1

2
(1±Q) . (F.106)

It is easy to see that these matrices have the following properties:

Q2
± = Q± , (F.107a)

Q+Q− = Q−Q+ = 0 . (F.107b)

Eq. (F.107a) implies that the matrices Q± are projection matrices, and Eq.
(F.107b) says that they are mutually orthogonal.

Eq. (F.107a) implies that the eigenvalues of the projection matrices Q±
are 0 and 1. It is easy to see that if we start with an arbitrary choice for
the two u-spinors, Q+u will be a spinor which will be an eigenstate of Q+

with eigenvalue +1 and also of Q− with eigenvalue zero. Similarly, Q−u will
be an eigenstate of Q− with eigenvalue +1 and of Q+ with eigenvalue zero.
Below, we present several examples of possible choices of Q and comment on
the corresponding projections on spinors.

2 Exercise F.12 C Show that for 2×2 matrices, the most general choice
for Q satisfying Eq. (F.105) is either a diagonal matrix with +1 or
−1 as diagonal elements, or of the form

Q =

0

@
a1

1 − a2
1

a2
a2 −a1

1

A , (F.108)

with a2 6= 0. Show that the eigenvector with eigenvalue η (η = ±1) is
given by

Eη =
“

η + a1

a2

”

. (F.109)

Show also that, for an arbitrary column vector E with two elements,

QηE = (number) ×Eη . (F.110)

a) Chirality projection

Eq. (F.14) tells us that we have γ5 as a choice for Q. The projection matrices
that follow are usually called the chirality projection matrices, and denoted
by

R =
1

2
(1 + γ5) , L =

1

2
(1 − γ5) . (F.111)

Their properties have been discussed in detail in §14.2.
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b) Helicity projection

The helicity operator for a spinor was defined in §14.2.1:

h ≡ Σ · p
p

. (F.112)

It was mentioned there that h2 = 1. Therefore, the helicity projection opera-
tors are

h± =
1

2

(
1± Σ · p

p

)
. (F.113)

c) Spin projection

In the rest frame of a particle of mass m, the momentum 4-vector is given by
(m,0). In this frame, the spin of the particle would be a spatial vector. We
can define a 4-vector for spin, with the prescription

s
µ
∣∣∣
rest frame

= (0, ŝ) , (F.114)

where ŝ is a unit spatial vector in the direction of the spin, i.e.,

ŝ · ŝ = 1 . (F.115)

In a general frame in which the particle has energy E and 3-momentum
p, the spin 4-vector takes the form

s
µ =

(
p · ŝ
m

, ŝ +
(p · ŝ)p

m(E +m)

)
. (F.116)

2 Exercise F.13 Derive Eq. (F.116) from Eq. (F.114) using Lorentz
transformation equations for vectors.

2 Exercise F.14 Verify that

s
µpµ = 0 , s

µ
s µ = −1 , (F.117)

explicitly from the form given in Eq. (F.116). [Note : The results should
be obvious if one goes back to the rest frame and uses Lorentz invariance.]

We now have a choice of Q in the form of γ5s/. Thus, a spin projection
operator can be defined as

P
bs =

1

2
(1 + γ5s/) . (F.118)

d) Energy projection

Since (p/)2 = m2, a candidate for Q is p//m. The projection operators corre-
sponding to this choice are given by

Λ± =
m± p/

2m
. (F.119)
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Clearly, since the u- and v-spinors obey Eqs. (F.62a) and (F.62b),

Λ+up = up , Λ+vp = 0 , (F.120)

and so we can say that Λ+ projects out the positive energy spinors or the
u-spinors. Similarly, Λ− projects out the v-spinors.

F.3 Bilinears

F.3.1 Gordon identity

There are inter-relations between different types of bilinears, as we show here.
Consider two positive-energy spinors up1

and up2
corresponding to two fields,

whose quanta have masses m1 and m2 respectively. And now consider the
bilinear

up2(p1 + p2)λ(a+ bγ5)up1 . (F.121)

We can write

pλ
1 = (γλγρ + iσλρ)p1ρ = γλp/1 + iσλρp1ρ ,

pλ
2 = (γργλ − iσλρ)p2ρ = p/2γ

λ − iσλρp2ρ . (F.122)

Putting these identities in and using the Dirac equations for the spinors, we
obtain

up2
(p1 + p2)λup1

= up2

(
(m1 +m2)γλ + iσλρqρ

)
up1

, (F.123)

where

q = p1 − p2 . (F.124)

This is called the Gordon identity.

2 Exercise F.15 Prove a similar equation involving γ5:

up2(p1 + p2)
λγ5up1 = up2

„

(m2 −m1)γ
λ + iσλρqρ

«

γ5up1 . (F.125)

2 Exercise F.16 Find the corresponding equations with v-spinors.

As an important application of the Gordon identity, consider Eq. (F.123)
for the case when both spinors contain the same mass m and the same mo-
mentum p. The resulting equation is then

pλupup = mupγ
λup . (F.126)

In particular, if we consider the time component of this equation, we obtain

Epupup = mupγ
0up = mu†pup . (F.127)
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Comparing this equation and the corresponding equation with v-spinors with
Eq. (F.74), we find that the normalization conditions for spinors are equivalent
to the relations

up,sup,s′ = 2mδs,s′ , (F.128a)

vp,svp,s′ = −2mδs,s′ . (F.128b)

Unless m = 0, these equations can also be used for normalization of spinors.

2 Exercise F.17 Show that

up,svp,s′ = 0 , vp,sup,s′ = 0 . (F.129)

[Hint : For example, one can use Eq. (F.75) along with Eq. (F.83).]

F.3.2 Squaring amplitudes

Amplitudes for processes involving fermions contain bilinears of the form
w1Fw2, where w stands for a spinor, either u-type or v-type, and F is a
4 × 4 matrix. In order to calculate the rate of any process, we need to find
the absolute square of the amplitude. This requires, first of all, that we find
the complex conjugate of a bilinear. Since the bilinear, taken as a whole for a
particular matrix F , is a number, we can as well take the hermitian conjugate:
it would not make any difference. Thus,

(
w1Fw2

)†
=
(
w†

1γ0Fw2

)†
= w†

2F
†γ0w1 = w2γ0F

†γ0w1 . (F.130)

If we introduce a symbol to write

(
w1Fw2

)†
= w2F

‡w1 , (F.131)

then our previous analysis shows that

F ‡ = γ0F
†γ0 . (F.132)

For ready reference, let us tabulate F ‡ for all 16 independent matrices that
we chose in Eq. (4.93, p 79):

F 1 γµ σµν γµγ5 γ5

F ‡ 1 γµ σµν γµγ5 −γ5

. (F.133)

In evaluating the rate of a process, we often want to sum over the spins of
the fermions. Let us see then what is obtained by performing the spin sum
over a bilinear and its complex conjugate.

∑

spin

∣∣∣w1Fw2

∣∣∣
2

=
∑

spin

(
w1Fw2

)(
w2F

‡w1

)
. (F.134)
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We write it explicitly in terms of matrix elements. Once we do this, we need
not pay any attention to the ordering of different factors, and we can bring
together terms which depend on the spins s1 and s2 which correspond to the
spinors w1 and w2 respectively.

∑

spin

∣∣∣w1Fw2

∣∣∣
2

= (Fab)(F ‡)cd

∑

s1

(w1)a(w1)d

∑

s2

(w2)c(w2)b

= (Fab)(F ‡)cd

∑

s1

(w1w1)da

∑

s2

(w2w2)bc . (F.135)

Spin sums such as the ones appearing in this expression have been evaluated
in §F.2.6. Denoting the momenta of the spinors by p1 and p2 and the masses
m1 and m2 respectively, we obtain

∑

spin

∣∣∣w1Fw2

∣∣∣
2

= (Fab)(F ‡)cd(p/1 + ηw1m1)da(p/2 + ηw2m2)bc

= Tr
(

(p/1 + ηw1m1)F (p/2 + ηw2m2)F ‡
)
, (F.136)

where ηw is +1 if w happens to be a u-spinor, and −1 if it happens to be a
v-spinor.

This result was used many times in the text. Moreover, it was stretched to
use in places even where there is no spin sum involved. For example, in §6.9.4
or §14.7, where we worked with spin-polarized initial states, we introduced a
modified F , including a spin projection operator, so that we could perform
the sum over spins anyway. The projection operator in this case ensured that
the contribution to the sum came from one spin polarization only.

F.3.3 Non-relativistic reduction

In many situations, the physical meaning of a fermion bilinear can be under-
stood easily by interpreting the bilinear in the non-relativistic limit. For this
purpose, we summarize here the non-relativistic limits of a number of bilinear
combinations of spinors. We will perform the deductions involving u-spinors
only, leaving the corresponding manipulations for the v-spinors as exercise.

In the non-relativistic limit, all components of the 3-momentum are much
smaller compared to the mass of the particle. Therefore we can take pi/m
as an expansion parameter and keep only the leading order terms in it. For
example, Eq. (F.70) tells us that

up,s =
√

2m(1− γipi/2m)ξs +O
(
p2
)
. (F.137)

In what follows, we will neglect the 3-momentum altogether, so that for any
4× 4 matrix F sandwiched between two u-spinors, we write

up,sFup′,s′ = u†p,sγ0Fup′,s′
NR−→ 2m ξ†sγ0Fξs′ . (F.138)
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Now note that the hermitian conjugate of Eq. (F.65) tells us that ξ†sγ0 = ξ†s.
Thus

up,sFup′,s′
NR−→ 2m ξ†sFξs′ . (F.139)

Let us now find out the combination ξ†sFξs′ for various choices of F .
First, the scalar bilinear matrix element. This corresponds to F = 1. So

the non-relativistic limit involves

ξ†sξs′ = δss′ , (F.140)

because of the way these eigenvectors were normalized.
Let us next consider the pseudoscalar matrix element, i.e., F = γ5. Recall

that [γ0, γ5]+ = 0. Sandwiching both sides between ξ†s and ξs′ and using Eq.
(F.65), we obtain

ξ†sγ5ξs′ = 0 . (F.141)

The same argument would also imply that

ξ†sγiξs′ = 0 . (F.142)

This shows that the matrix element of the vector bilinear has vanishing spatial
components. As for the temporal component, we can use Eq. (F.65) to write

ξ†sγ0ξs′ = ξ†sξs′ = δss′ . (F.143)

If F = γ0γ5, the matrix element vanishes by the same reason that gave
us Eq. (F.141). As for the spatial parts of the axial bilinear, we invoke Eq.
(14.10, p 414), or equivalently Eq. (F.48) to write

ξ†sγiγ5ξs′ = ξ†sγ0γiγ5ξs′ = −1

2
εijkξ

†
sσ

jkξs′ . (F.144)

For s = s′, we see that the spatial parts of the axial vector bilinear are related
to the spin expectation values in the non-relativistic limit.

Among the basic bilinears, we are now left with the tensor bilinears only.
The bilinears involving σij , i.e., space-space components, are the spin expec-
tation values. The others, i.e., the ones involving σ0i, vanish in this limit.
This can be seen by using Eqs. (F.65) and (F.142).
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Evaluation of loop integrals

In this appendix, we summarize various techniques which are helpful in eval-
uating momentum integrations that arise in the amplitudes of loop diagrams.

G.1 Introducing Feynman parameters

First, we note that

∫ 1

0

dζ
1

[
ζa1 + (1 − ζ)a2

]2 =
1

a1a2
, (G.1)

which can be verified very easily. This identity is often used in an integration:
when the integrand contains two factors in the denominator, these two factors
can be written in the form given in the left side of Eq. (G.1). The variable ζ
appearing in this integration is called a Feynman parameter .

The formula can be generalized in a form that can be used when there are
more factors in the denominator. This generalization is:

Γ(n)

(
n∏

i=1

∫ 1

0

dζi

) δ
(

1−
n∑

i=1

ζi

)

[ n∑

i=1

ζiai

]n =

n∏

i=1

1

ai
. (G.2)

Sometimes, even a more general formula is helpful, where each factor in the
denominator appears with a power. This more general formula is this:

Γ(
∑

i αi)∏
i Γ(αi)

(
∏

i

∫ 1

0

dζi

) δ
(

1−
∑

i

ζi

)∏

i

ζαi−1
i

[∑

i

ζiai

]P

i αi
=
∏

i

1

aαi

i

. (G.3)

2 Exercise G.1 C Inductively or otherwise, prove Eqs. (G.2) and (G.3).
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The formulas do not seem to be very simple and one may wonder what
might one possibly gain by writing a string of factors in the denominator in
terms of an integral. To appreciate the reason, let us consider an expression
of the form

I =

∫
d4k

(2π)4
f(k)

n∏

i=1

(
(k + pi)

2 −A2
i

) , (G.4)

where f(k) is some function of the momentum that is integrated over. Using
Eq. (G.2) for the denominator, we can write

I = Γ(n)

(
n∏

i=1

∫ 1

0

dζi

)∫
d4k

(2π)4

δ
(

1−
n∑

i=1

ζi

)
f(k)

[ n∑

i=1

ζi

(
(k + pi)

2 −A2
i

)]n . (G.5)

Look at the denominator now. Within the square brackets, the co-efficient of
k2 is the sum of all Feynman parameters, which is equal to unity because of
the delta function appearing in the numerator. Thus we obtain

I = Γ(n)

(
n∏

i=1

∫ 1

0

dζi

)∫
d4k

(2π)4

δ
(

1−
n∑

i=1

ζi

)
f(k)

[
k2 +

n∑

i=1

(
2ζik · pi + ζi(p

2
i −A2

i )
)]n .

(G.6)

We can now shift to a new momentum integration variable defined by k +∑
i ζipi. This will eliminate the term linear in k in the denominator. Using

the same letter k to write the new momentum variable, we then obtain

I = Γ(n)

(
n∏

i=1

∫ 1

0

dζi

)∫
d4k

(2π)4

δ
(

1−
n∑

i=1

ζi

)
f(k −

∑

i

ζipi)

[
k2 − (

n∑

i=1

ζipi)
2 + ζi(p

2
i −A2

i )
]n .

(G.7)

The simplification lies in this form. Notice that the denominator is now of
the form of (k2 − B2)n, where the quantity B2, a function of the Feynman
parameters, is a Lorentz invariant quantity. The momentum integration can
be exactly and easily performed for an integrand of this sort, as we will show
gradually in the rest of this appendix.
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G.2 Reduction to invariant integrals

Let us now look at the numerator of the integral given in Eq. (G.6). We have
not specified what kind of a function f(k) is. It might be a Lorentz invariant,
but it might also contain vector indices. In the latter case, the overall integral
will also bear these indices. If the indices in the integrand are carried by
any momentum other than k, these factors can simply be pulled outside the
integral. We therefore need to consider only the other case, viz., when the
Lorentz indices are carried by the integration momentum k itself. We show
that in these cases, the momentum can be easily related to a Lorentz invariant
integral.

Notice that terms with odd powers of k in the numerator vanish on in-
tegration. Thus, the simplest non-trivial example will contain two Lorentz
indices, and the integral will be of the form

Iµν =

∫
d4k kµkνF (k2) , (G.8)

where F (k2) is an arbitrary function. The result must satisfy the property
Iµν = Iνµ, and would obviously be independent of any momentum. It can
then only be proportional to the metric tensor gµν , so that we can write

Iµν = gµνI , (G.9)

where I is a Lorentz invariant integral. This integral can be identified by
contracting both sides of this equation by gµν and using Eq. (D.6). The
result is ∫

d4k kµkνF (k2) =
1

4
gµν

∫
d4k k2F (k2) . (G.10)

The same procedure can be applied for terms with larger number of
Lorentz indices in the integrand. For example,∫

d4k kµkνkλkρF (k2) =
1

24
(gµνgλρ + gµλgνρ + gµρgνλ)

×
∫
d4k (k2)2F (k2) . (G.11)

2 Exercise G.2 Prove Eq. (G.11).

At the end of the discussion of §G.1, we found that the denominator of loop
integrations can be brought to a certain form that involves only k2. Now we
see that the whatever the numerators might be, the result of the integration
would be related to an integral of the sort

ID(r, s) =

∫
dDk

(2π)D

(k2)r

(k2 −B2)s
. (G.12)

In fact, to be quite general, we have also written the integration measure as
if it applies for an integration in a D-dimensional spacetime. As we will see
in §G.6, the choice for this generalization is not merely a whim: it also helps
the evaluation of certain integrals.
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G.3 Wick rotation

The form of the denominator presented in Eq. (G.12) was motivated by the
expression of Eq. (G.4), where the factors in the denominator were supposed
to come from various propagators that appear in an amplitude. To be very
precise, the denominator of a propagator is not merely a momentum squared
minus a mass squared. It contains also a vanishingly small imaginary part,
something that we did not mention when we introduced the propagators in
Ch. 4. For example, the Feynman rule for a internal line carrying a scalar
particle of mass m should really be written as

i∆F (p) =
i

p2 −m2 + iǫ
(G.13)

and the limit ǫ→ 0 should be taken at the end of every calculation. For most
operations, this subtle point is irrelevant. This is, however, one occasion when
it is not. We should remember that all these small imaginary parts from all
propagators combine, so that, instead of writing the typical loop integral as
in Eq. (G.12), we should write

ID(r, s) =

∫
dDk

(2π)D

(k2)r

(k2 −B2 + iǫ)s
. (G.14)

This is the integral we will evaluate in the rest of this appendix.
The first step toward the momentum integration involves a change in the

variable k0. We define a new variable k0 by

k0 = ik0 . (G.15)

Clearly then, Eq. (G.14) can be written as

ID(r, s) = i(−1)r+s

∫
dDk

(2π)D

(k2)r

(k2 +B2)s
, (G.16)

where, in this equation,

k2 = k2
0 + k2 . (G.17)

This is how the square of a vector would have been defined if we were dealing
with a Euclidean space. The transformation therefore amounts to going from
the Minkowski space variables to Euclidean space variables. If we consider
complex values of k0, this can be seen as an analytic continuation in that
parameter. It is a very useful tool, and has been invoked several times in the
text.

There is a tricky point in going from Eq. (G.14) to Eq. (G.16) which we explain here. Näıvely,
one would expect that if one makes the transformation shown in Eq. (G.15), the limits of the
k0-integration would be from −i∞ to +i∞, since the corresponding limits are from −∞ to
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⊗
⊗

k0

k0

Figure G.1: The contour for performing k0 integration is shown with thick lines. The
crosses indicate the poles of the integrand.

+∞ for k0. This is not so. In fact, the limits on the k0-integration are also −∞ to +∞, for
reasons that we describe now.

The transformation of variable introduced in Eq. (G.15) can also be seen as the result of
a contour integration in the complex plane if we treat k0 as a complex variable. We show the
complex k0 plane in Fig. G.1. We write the integral given in Eq. (G.14) in the form

ID(r, s) =

Z

dk0

Z

dD−1k

(2π)D

(k2)r

(k2
0 − k2 − B2 + iǫ)s

. (G.18)

The limits of the k0 integration are −∞ and +∞, which means that the integration should be
performed along the horizontal line shown in Fig. G.1, in the limit that the radius of the curved
portion becomes arbitrarily large.

Now suppose we consider the integration of the same integrand around the closed contour
shown in the figure. The locations of the poles of the integrand are shown qualitatively in the
figure, so that the contour does not include any of the poles. Theory of complex integration
then tells us that the integral around the contour should vanish. We can therefore write

0 =

Z +∞

−∞
dk0 F (k0) +

Z

C1

dk0 F (k0) +

Z −i∞

+i∞
dk0 F (k0) +

Z

C2

dk0 F (k0) , (G.19)

where F (k0) is the shorthand for the integrand, and C1, C2 represent the curved portions of
the contour. One can show that for integrals of the form that we have here, the integrals from
the curved portions vanish as we take the radius of these portions to infinity. Thus we can write

Z +∞

−∞
dk0 F (k0) =

Z +i∞

−i∞
dk0 F (k0) = i

Z +∞

−∞
dk0 F (k0) , (G.20)

using Eq. (G.15) in the last step. Thus, the limits −∞ to +∞ of the variable k0 translates
to the same limits of the variable k0. In this sense, we can think of the integration path to be
rotated from the real axis to the imaginary axis of the complex k0 plane. This trick is called
Wick rotation.
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G.4 Angular integration

Since the integral ID(r, s) depends only on the magnitude of the integration
variable k, the angular integrations should be trivial. In other words, we can
write

∫
dDk F (k2) =

∫
dk kD−1 F (k2)

∫
dΩD , (G.21)

where

k =

√
k2 (G.22)

is the magnitude, and dΩD denotes the infinitesimal element of all angular
variables in a D-dimensional space. The point is that we can determine the
angular integration by taking any F (k2) that we like, and use it for any other
function of k2. We take F (k2) = exp(−k2). This is convenient because we can
use a Cartesian system and express the integral as a product of D integrals
of a single exponential:

∫
dDk exp(−k2) =

∏

i

∫ ∞

−∞
dki exp(−k2

i ) = π
D/2 , (G.23)

using the fact that
∫ ∞

−∞
dx e−x2

=
√
π . (G.24)

On the other hand, the same integral can be expressed as in Eq. (G.21).
Noting that

∫
dk kD−1 e−k2

=
1

2

∫
dk2

(
k2
)(D/2 )−1

e−k2 =
1

2
Γ(D/2) , (G.25)

we obtain
∫
dΩD =

2π
D/2

Γ(D/2)
. (G.26)

Therefore the integral of Eq. (G.16) can be written as

ID(r, s) =
2i(−1)r+s

(4π)
D/2 Γ(D/2)

∫ ∞

0

dk kD−1 (k2)r

(k2 +B2)s
. (G.27)

G.5 Integration over the magnitude

The only integration remaining is that over the magnitude of k. Introducing
a new integration variable

ξ = k2/B2 , (G.28)
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the integral can be reduced to the form

ID(r, s) =
i(−1)r+s

(4π)
D/2 Γ(D/2)

1

(B2)s−r−D/2

∫ ∞

0

dξ
ξr+D/2−1

(ξ + 1)s
. (G.29)

In the remaining integral, make a further change of variable:

y =
1

ξ + 1
. (G.30)

Then we find that
∫ ∞

0

dξ
ξr+D/2−1

(ξ + 1)s
=

∫ 1

0

dy ys−r−D/2−1 (1− y)r+D/2−1 . (G.31)

This integral is a well-known representation of the beta function in mathe-
matical analysis:

∫ 1

0

dy ym−1 (1− y)n−1 ≡ ß(m,n) . (G.32)

Further, this function can be related to the gamma functions through the
relation

ß(m,n) =
Γ(m)Γ(n)

Γ(m+ n)
. (G.33)

Organizing these results then, we obtain

ID(r, s) =
(−1)r+s

(4π)
D/2

Γ(r + D/2)Γ(s− r − D/2)

Γ(D/2)Γ(s)

i

(B2)s−r−D/2
. (G.34)

This is the general result. For the physical spacetime dimension D = 4, the
result reads

I(r, s) ≡
∫

d4k

(2π)4
(k2)r

[k2 −B2]s

=
(−1)r+s

(4π)2
Γ(r + 2)Γ(s− r − 2)

Γ(s)

i

(B2)s−r−2
, (G.35)

where we do not put any subscript on I on the left hand side.

G.6 Divergent integrals

The gamma function, Γ(z), is well-defined for all z > 0, but diverges when z
equals zero or any negative integer. The loop integrals that we encounter in
practical calculations are of the form I(r, s) with positive integral values of
both r and s. If we obtain a 4-dimensional integral with s − r ≤ 2, we see
that the result of Eq. (G.35) is divergent.
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The divergence can be anticipated from the expression of the integral in
Eq. (G.16). The integral can be divided into two regions, k < R and k > R,
where R is chosen such that R2 ≫ B2. The first part will yield some finite
result, depending on the values of R and B. In the second part we can neglect
B in the denominator. Then, apart from a factor coming from the angular
integration, the integral can be written as

∫ ∞

R

dk kD−1(k2)r−s =
1

2(r − s) +D
k2(r−s)+D

∣∣∣∣
∞

R

. (G.36)

For the integral to converge to a finite value, we therefore need D + 2(r −
s) < 0, i.e., s − r > 2 for D = 4. Otherwise, the integral diverges. Since
the divergence comes from high values of the loop momentum, it is called
ultraviolet divergence.

We remarked in §12.2.1 that one has to introduce counterterms to cancel
the infinities that arise from such divergent integrals. Let us see how that
can be done if we interpret the integral to be an integral in D spacetime
dimensions. To be specific, we consider the case s− r = 2. From Eq. (G.34),
we find

ID(s− 2, s) =
1

(4π)
D/2

Γ(s− 2 + D/2)Γ(2 − D/2)

Γ(D/2)Γ(s)

i

(B2)2−D/2
. (G.37)

We now put D = 4 in all terms that do not have any problem for that value
of D, obtaining

ID(s− 2, s) =
i

(4π)2
Γ(ε)

(B2)ε
. (G.38)

where, for the sake of brevity, we have used the notation

ε = 2− D

2
. (G.39)

The divergence now shows in the form of Γ(0). However, we can separate out
the divergence in a well-defined manner. Let us note that the gamma function
has the property

zΓ(z) = Γ(z + 1) . (G.40)

Thus we can write

Γ(ε) =
1

ε
Γ(1 + ε) =

1

ε

(
1 + εΓ′(1) +O

(
ε2
))

. (G.41)

The derivative of the gamma function at the value 1 is given by

Γ′(1) =

∫ ∞

0

dx lnx e−x . (G.42)
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The result of the integral is negative. The absolute value is called the Euler–
Mascheroni constant and denoted by γE . Thus,

Γ(ε) =
1

ε
− γE +O (ε) . (G.43)

Putting it back into Eq. (G.38), we can write

ID(s− 2, s) =
i

(4π)2

(
1

ε
− γE +O (ε)

)(
1− ε lnB2 +O

(
ε2
))

, (G.44)

where the last factor comes from the series expansion of (B2)−ε =
exp(−ε lnB2). Hence

ID(s− 2, s) =
i

(4π)2

(
1

ε′
− lnB2 +O (ε)

)
, (G.45)

where ε′ is defined through the relation

1

ε′
=

1

ε
− γE . (G.46)

The O (ε) terms in Eq. (G.45) vanish when we take the limit ε → 0, i.e., to
D → 4. So we need not consider these terms further. Among the other terms,
clearly the infinity resides in the part coming from the Γ(ε), so we can make
a separation of the infinite part and the finite part:

ID(s− 2, s)

∣∣∣∣
divergent

=
i

(4π)2
1

ε′
, (G.47a)

ID(s− 2, s)

∣∣∣∣
finite

= − i

(4π)2
lnB2 . (G.47b)

Note that this is the reason we could set D = 4 to most terms before
considering the powers of ε. For example, consider the powers of 4π in the
denominator. If we had kept (4π)

D/2 , as suggested in Eq. (G.37), instead of
putting D = 4 in this factor, it would have amounted to an extra factor of
(4π)ε in the denominator. Expanding this factor in powers of ε as well, we
would have still obtained the expressions in Eq. (G.47), except that now ε′

would have been defined through the relation

1

ε′
=

1

ε
− γE − ln(4π) , (G.48)

and the expression for the finite part would have been exactly the same as
what appears in Eq. (G.47b).

2 Exercise G.3 Following similar steps, show that

ID(s− 1, s) =
is

(4π)2
B2

„

1

ε′
− lnB2

«

. (G.49)
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There seems to be something strange in the expression in Eq. (G.47b). The quantity B2 was
defined in Eq. (G.12), from where it is clear that it should have the same dimensions as k2. So
it seems that Eq. (G.47b) contains the logarithm of an object carrying mass dimensions, which
does not make any sense.

Agreed. The point is that in practical calculations, the integral shown in Eq. (G.12) is
multiplied with some coupling constants. The dimensions of these coupling constants depend
on the spacetime dimensions. For a definite example, consider the coupling constant of QED.
Since the action must be dimensionless in the natural units, we want

dim L = D (G.50)

for spacetime dimension equal to D. The free Lagrangians of the fermion field and the photon
field dictate the following mass dimensions for these fields:

dimψ =
D − 1

2
, dimAµ =

D

2
− 1 . (G.51)

Thus the field combination in the interaction term has the dimension

dimψγµψAµ =
3D

2
− 2 . (G.52)

This means that the dimension of the coupling constant should be 2− D
2

= ε. We can therefore
denote the coupling constant by eµε, where e is the dimensionless coupling constant of a 4-
dimensional theory and µ is an arbitrary parameter which has the dimension of mass. The
quantity of real interest is therefore not the integral defined in Eq. (G.12), but something of the
sort

JD(r, s) = (gµε)2
Z

dDk

(2π)D

(k2)r

(k2 − B2)s
, (G.53)

where g is some dimensionless coupling constant. Performing the same exercise, we would
obtain

JD(s− 2, s) =
ig2

(4π)2

„

1

ε′
− ln(B2/µ2) + O (ε)

«

(G.54)

instead of Eq. (G.45). This expression is free from the trouble of dimensions. However, it
contains an unphysical parameter µ. Therefore, in calculations of observable quantities, this
parameter must drop out.
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Feynman rules for standard model

H.1 External lines

Type of particle
Feynman rule for

incoming outgoing

Scalar 1 1

Dirac fermion u(p) u(p)

Antifermion v(p) v(p)

Vector boson ǫµ(p) ǫ∗µ(p)

(H.1)

Feynman rules for external Weyl or Majorana fermions are a bit more involved,
and are given in Table 14.1 (p 420) and Table 22.1 (p 683) respectively.

H.2 Propagators

The general method for finding propagators has been described in §4.10.2.
Here, we give the results only. As mentioned at the beginning of §G.3, the
denominator of each propagator has an additional term +iǫ. We omit this
term here.

a) Gauge bosons

ga
µ(k)→ gb

ν(k) 2
−iδab

k2

(
gµν − (1− ξg)

kµkν

k2

)
, (H.2a)

W±
µ (k)→W±

ν (k) 2
−i

k2 −M2
W

(
gµν −

(1− ξW )kµkν

k2 − ξWM2
W

)
, (H.2b)

Zµ(k)→ Zν(k) 2
−i

k2 −M2
Z

(
gµν −

(1− ξZ)kµkν

k2 − ξZM2
Z

)
, (H.2c)

Aµ(k)→ Aν(k) 2
−i
k2

(
gµν − (1− ξA)

kµkν

k2

)
. (H.2d)
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In principle, ξg, ξW , ξZ and ξA can be different from one another, although in
practice this freedom is rarely used. Most often, all these gauge parameters
are set equal to unity.

b) Ghosts

ca(k)→ cb(k) 2 −δab

k2
. (H.3)

c) Spinless bosons

w±(k)→ w±(k) 2
i

k2 − ξWM2
W

, (H.4a)

z(k)→ z(k) 2
i

k2 − ξZM2
Z

, (H.4b)

H(k)→ H(k) 2
i

k2 −M2
H

. (H.4c)

d) Fermions

For any fermion of mass m, the propagator is as follows:

f(p)→ f(p) : i
p/+ m

p2 −m2
. (H.5)

H.3 Vertices

Some couplings are given in terms of the incoming and outgoing particles,
separated by an arrow. Others have been given in terms of field operators
that generate them. Thus, e.g., the coupling given below in Eq. (H.10a) is
appropriate for any of the following 16 combinations of events at a vertex:



W+

µ in
or

W−
µ out


 and



W+

ν in
or

W−
ν out


 and



W−

λ in
or

W+
λ out


 and



W−

ρ in
or

W+
ρ out


 . (H.6)

H.3.1 Vertices in gauge sector

a) Three gauge bosons

To denote the Feynman rules for vertices involving three gauge bosons, we

use a notation like W
V−→ W . It means that at the vertex there are two W

bosons and one V boson, where V can be either the photon or the Z. The
4-momenta of the W bosons are indicated in the notation, and that of the
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V boson determined by momentum conservation. With this notation, the
Feynman rules for vertices involving the electroweak gauge bosons are:

W+
µ (p)

Aλ−→W+
ν (q) 2 ieSµνλ(p, q) , (H.7a)

W+
µ (p)

Zλ−→W+
ν (q) 2 ig cos θWSµνλ(p, q) , (H.7b)

W−
µ (p)

Aλ−→W−
ν (q) 2 −ieSµνλ(p, q) , (H.7c)

W−
µ (p)

Zλ−→W−
ν (q) 2 −ig cos θWSµνλ(p, q) , (H.7d)

where

Sµνλ(p, q) = (p+ q)λgµν + (q − 2p)νgµλ + (p− 2q)µgλν . (H.8)

There is no other cubic coupling of electroweak gauge bosons. The cubic
vertex involving gluons has the following Feynman rule:

ga
µ(p)

gc
λ−→ gb

ν(q) 2 ig3fabc Sµνλ(p, q) . (H.9)

2 Exercise H.1 Verify that the Feynman rule given in Eq. (H.9) is iden-
tical to that given in Fig. 11.2 (p 313).

b) Four gauge bosons

Possible vertices with electroweak gauge bosons are as follows:

W+
µ W

+
ν W

−
λ W

−
ρ 2 ig2Sµνλρ , (H.10a)

AµAνW
+
λ W

−
ρ 2 −ie2Sµνλρ , (H.10b)

ZµZνW
+
λ W

−
ρ 2 −ig2 cos2 θWSµνλρ , (H.10c)

AµZνW
+
λ W

−
ρ 2 −ieg cos θW Sµνλρ , (H.10d)

where

Sµνλρ = 2gµνgλρ − gµλgνρ − gµρgνλ . (H.11)

The quartic gluon vertex is given by

ga
µg

b
νg

c
λg

d
ρ 2 −ig2

[
fabe fcdeEµνλρ + face fdbeEµλρν + fade fbceEµρνλ

]
, (H.12)

where

Eµνλρ ≡ gµλgνρ − gµρgνλ . (H.13)

c) Gauge bosons and ghosts

cb(p′)
Ac

µ−→ ca(p) 2 −gpµfbca . (H.14)
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H.3.2 Gauge bosons and Higgs bosons

By the term Higgs bosons, we here imply both the physical spinless boson of
the standard model as well as the unphysical would-be Goldstone modes that
are eaten up by the W± and the Z gauge bosons.

a) One gauge boson and two Higgs bosons

H(p)
Wµ−→ w±(p′) 2 ∓ ig

2
(p+ p′)µ , (H.15a)

z(p)
Wµ−→ w±(p′) 2

g

2
(p+ p′)µ , (H.15b)

H(p)
Zµ−→ z(p′) 2 ∓ ig

2 cosθW
(p+ p′)µ , (H.15c)

w±(p)
Zµ−→ w±(p′) 2 ∓ ig cos 2θW

2 cos θW
(p+ p′)µ , (H.15d)

w±(p)
Aµ−→ w±(p′) 2 ∓ie(p+ p′)µ . (H.15e)

b) Two gauge bosons and one Higgs boson

W+
µ W

−
ν z 2 0 , (H.16a)

W+
µ W

−
ν H 2 igMWgµν , (H.16b)

ZµZνH 2 ig
MZ

cos θW
gµν , (H.16c)

ZµZνz 2 0 , (H.16d)

W+
µ Aνw

−
2 ieMWgµν , (H.16e)

W+
µ Zνw

−
2 −igMWgµν

sin2 θW

cos θW
. (H.16f)

c) Two gauge bosons and two Higgs bosons

W+
µ W

−
ν w

+w−
2
ig2

2
gµν , (H.17a)

ZµZνw
+w−

2
ig2 cos2 2θW

2 cos2 θW
gµν , (H.17b)

ZµAνw
+w−

2
ige cos2θW

cos θW
gµν , (H.17c)

AµAνw
+w−

2 2ie2gµν , (H.17d)

W+
µ W

−
ν zz 2

ig2

2
gµν , (H.17e)

ZµZνzz 2
ig2

2 cos2 θW
gµν , (H.17f)
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W+
µ W

−
ν HH 2

ig2

2
gµν , (H.17g)

ZµZνHH 2
ig2

2 cos2 θW
gµν . (H.17h)

H.3.3 Scalar self-interactions

a) Three Higgs bosons

w+w−H 2 − igM
2
H

2MW
, (H.18a)

zzH 2 − igM
2
H

2MW
, (H.18b)

HHH 2 − 3igM2
H

2MW
. (H.18c)

b) Four Higgs bosons

w+w−w+w−
2 − ig2M2

H

2M2
W

, (H.19a)

w+w−HH 2 − ig2M2
H

4M2
W

, (H.19b)

w+w−zz 2 − ig2M2
H

4M2
W

, (H.19c)

zzHH 2 − ig2M2
H

4M2
W

, (H.19d)

HHHH 2 − 3ig2M2
H

4M2
W

, (H.19e)

zzzz 2 − 3ig2M2
H

4M2
W

. (H.19f)

There is no other quartic vertex. In particular, there is no vertex with an odd
number of z or H lines.

H.3.4 Vertices involving fermions

a) Fermions and a gauge boson

In the following, T3 is the eigenvalue of the left-handed component of the
fermion under the neutral generator of SU(2)L, and Q is the electric charge
in units of e.

νl
Wµ−→ l 2

−ig√
2
γµL , (H.20a)

dB
Wµ−→ uA 2

−ig√
2
VABγµL , (H.20b)
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f
Zµ−→ f 2

−ig
cos θW

γµ

[
T3L− sin2 θWQ

]
, (H.20c)

f
Aµ−→ f 2 −ieQγµ , (H.20d)

q
ga

µ−→ q 2 −ig3
(
λa/2

)
γµ . (H.20e)

b) Fermions and a Higgs boson

f1
w+

−→ f2 2
ig√

2MW
(m1R−m2L) , (H.21a)

f
z−→ f 2

gmf

2MZ cos θW
γ5 , (H.21b)

f
H−→ f 2

−igmf

2MZ cos θW
. (H.21c)



Appendix I

Books and other reviews

This is not an exhaustive list of reference materials on the subject matter
presented in the book. This is only a declaration that the following books and
articles were around me at the time of writing this book. So, it is possible
that I have been influenced by these books or articles. I also had some of my
class notes, most importantly the notes that Professor Lincoln Wolfenstein
circulated among the students when I took my first course of particle physics in
1979. However, I surely have been influenced by many other books, papers and
review articles that I have read through my student life and research career,
but it would be impossible for me to produce a complete list of everything I
have read that is relevant to this book.

General textbooks on particle physics or quantum field
theory

1) Francis Halzen, Alan D. Martin • Quarks and leptons (John Wiley & Sons,
1984)

2) T. P. Cheng, L. F. Li • Gauge theory of elementary particle physics (Oxford
University Press, 1988)

3) Otto Nachtmann • Elementary particle physics (Springer-Verlag, 1989)

4) John F. Donoghue, Eugene Golowich, Barry R. Holstein • Dyanmics of the
standard model (Cambridge University Press, 1992)

5) Michael E. Peskin, Daniel V. Schroeder • An introduction to quantum field
theory (Westview Press, 1995)

6) Elliot Leader, Enrico Predazzi • An introduction to gauge theories and modern
particle physics (Cambridge University Press, 1996, in two volumes)

7) B. R. Martin, G. Shaw • Particle physics (John Wiley & Sons, 2nd edition,
1997)

8) Quang Ho-Kim, Xuan-Yem Pham • Elementary particles and their interac-
tions (Springer, 1998)

9) Amitabha Lahiri, Palash B. Pal • A first book of quantum field theory (Narosa
Publishing House, 2nd edition, 2005)
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10) Steven Weinberg • The quantum theory of fields (Vols. 1 and 2) (Cambridge
University Press, 2005)

11) C. P. Burgess, G. D. Moore • Standard model : a primer (Cambridge Univer-
sity Press, 2007)

12) Alessandro Bettini • Introduction to elementary particle physics (Cambridge
University Press, 2008)

Popular or semi-popular expositions

13) Yuval Ne’eman, Yoram Kirsh • The particle hunters (Cambridge University
Press, 2nd edition, 1996)

14) Peter Woit • Not even wrong (Vintage books, 2007)

15) Lincoln Wolfenstein, João P. Silva • Exploring fundamental particles (CRC
Press, 2011)

Monographs and review articles related to one or a few
chapters of this book

16) M. K. Gaillard, M. Nikolic (eds) • Weak interactions (Institut National de
Physique nucléaire et de physique des particules, Paris, publication date not
mentioned)

17) Eugene D. Commins • Weak interactions (McGraw-Hill, 1973)

18) Richard Fernow • Introduction to experimental particle physics (Cambridge
University Press, 1986)

19) Heinz J. Rothe • Lattice gauge theories: an introduction (World Scientific,
1992)

20) T. Muta • Foundations of quantum chromodynamics (World Scientific, 2nd
edition, 1998)

21) I. I. Bigi, A. I. Sanda • CP violation (Cambridge University Press, 1999)

22) Aneesh V. Manohar, Mark B. Wise • Heavy quark physics (Cambridge Uni-
versity Press, 2000)

23) Andrei Smilga • Lectures on Quantum chromodynamics (World Scientific, Sin-
gapore, 2001)

24) G. Dissertori, I, Knowles, M. Schmelling • Quantum chromodynamics (Claren-
don Press, 2003)

25) Jiri Horejsi • Fundamentals of electroweak theory (Karolinum Press, Charles
University, 2003)

26) K. Zuber • Neutrino physics (Institute of Physics Publishing, 2004)

27) Rabindra N. Mohapatra, Palash B. Pal • Massive neutrinos in physics and
astrophysics (World Scientific, 3rd edition 2004)

28) G. C. Branco, L. Lavoura, J. P. Silva • CP violation (Clarendon Press, 2007)

29) Robert Cahn, Gerson Goldhaber • The experimental foundations of particle
physics (Cambridge University Press, 2nd edition, 2009)

30) R. Gupta , “Introduction to lattice QCD”, Les Houches Session LXVIII, Prob-
ing the standard model of particle interactions, edited by R. Gupta, A. Morel,
E. de Rafael, F. David, pp 83–219 [arXiv:hep-lat/9807028v1]
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31) Abdelhak Djouadi, “The anatomy of electro-weak symmetry breaking I: The
Higgs boson in the standard model”, Phys. Rept. 457 (2008) 1–216 [hep-ph/

0503172]

32) G. Bhattacharyya , “A pedagogical review of electroweak symmetry breaking
scenarios”, Rept. Prog. Phys. 74 (2011) 026201 [arXiv:0910.5095[hep-ph]]

33) P. B. Pal , “Representation-independent manipulations with Dirac matrices
and spinors”, http://arxiv.org/abs/physics/0703214

34) J. Beringer et al. (Particle Data Group), “The Review of Particle Physics”,
Phys. Rev. D86, 010001 (2012)



Appendix J

Answers to selected exercises

0

Ex. 1.6 (p. 10): 0.9987c.
0

Ex. 1.7 (p. 13): MP =
p

~c/GN = 2.17 × 10−5 g.
0

Ex. 2.19 (p. 34): 0 .
0

Ex. 3.1 (p. 37): 0, −2, ‘yes’.
0

Ex. 3.10 (p. 44): f+0+ = i, f−0− = −i, f+−0 = −2i.
0

Ex. 4.5 (p. 72): u0,s =
√

2m ξs, v0,s =
√

2m χ−s.
0

Ex. 5.9 (p. 129): 0.67 × 10−24 cm2.
0

Ex. 6.21 (p. 175): A table entry J signifies that the particular combination of initial and
final state is allowed by angular momentum conservation. Similarly, P and
C mean allowed by parity and charge conjugation respectively.

Final state

Initial state 1S0 + γ 3S1 + γ γ + γ γ + γ + γ
3P0 P JPC JPC J
3P1 JP JPC PC J
3P2 P JPC JPC J
1P1 JPC JP P JC

0

Ex. 7.6 (p. 198): CP : R+
0 = R−

0 , A− = −A+, B− = −B+, C− = C+, D− = −D+;

T : D+ = D− = 0;

CPT : R+
0 = R−

0 , A− = −A+, B− = −B+, C− = C+, D− = D+.
0

Ex. 8.6 (p. 218): See Eq. (10.112, p 287) for the answer in a different notation.
0

Ex. 8.7 (p. 218): Sz = +1 : 1√
2
(pNnN− nNpN),

Sz = 0 : 1
2
(pNnH− nNpH− pHnN + nHpN).

0

Ex. 8.9 (p. 224): π± = (π1 ∓ iπ2)/
√

2, π0 = π3.
0
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Ex. 9.3 (p. 246):
p

(E1 +E2)2 − (p1 + p2)2, i.e.,
q

m2
1 +m2

2 + 2(E1E2 − p1 · p2).

0

Ex. 10.9 (p. 267): Dimensions of the representations: 10, 15, 27.
0

Ex. 10.13 (p. 287): All members with charge eQ have magnetic moment equal to −Qµ−,

where µ− is the magnetic moment of the ∆−.
0

Ex. 11.12 (p. 310): The factor 2 in the last term would have to be replaced by 1/C(f).
0

Ex. 12.7 (p. 342): 4 and 2.
0

Ex. 12.22 (p. 368): sin2 θ
2

sinα d θ
2
dαdβ.

0

Ex. 13.2 (p. 391): M−2 and M−1.
0

Ex. 14.9 (p. 429): About 11 GeV.
0

Ex. 15.1 (p. 449):
√

2λv2.
0

Ex. 17.4 (p. 494): M1.
0

Ex. 17.9 (p. 497): 1.5 × 10−5.
0

Ex. 18.1 (p. 525): dRuRqLℓL, qLqLuRℓR, dRuRuRℓR, uRuRdRℓR.
0

Ex. 18.2 (p. 529): θ1 = α− β, θ2 = α+ β.
0

Ex. 18.6 (p. 532):
√

2λv2.
0

Ex. 18.7 (p. 532): No.
0

Ex. 18.13 (p. 547): The indefinite integral is:
Z

dx [tanh(x+ a) − tanh x] = ln(1 + tanh x tanh a).

0

Ex. 20.1 (p. 597): The representations 6 and 15 are real.
0

Ex. 20.6 (p. 605): About 1 eV.
0

Ex. 21.1 (p. 622): (a∗b), or equivalently, the phase of a∗b.
0

Ex. 21.12 (p. 633): a = −d =
p

2/3, b = c =
p

1/3.
0

Ex. 21.21 (p. 650): 1
2
e−γt(1 + |λf |2).

0

Ex. 22.16 (p. 699): −1.
0

Ex. 22.17 (p. 699): A Majorana mass term contains the combination νLνL, which has
T3 = +1. A singlet of SU(2)L contains only T3 = 0.

0

Ex. 23.1 (p. 703): (2,2,0).



For graduate students unfamiliar with particle physics, An Introduc-
tory Course of Particle Physics teaches the basic techniques and 
fundamental theories related to the subject. It gives students the 
competence to work out various properties of fundamental particles, 
such as scattering cross-section and lifetime. The book also gives a 
lucid summary of the main ideas involved. 

In giving students a taste of fundamental interactions among ele-
mentary particles, the author does not assume any prior knowledge 
of quantum field theory. He presents a brief introduction that sup-
plies students with the necessary tools without seriously getting into 
the nitty-gritty of quantum field theory, and then explores advanced 
topics in detail. The book then discusses group theory, and in this 
case the author assumes that students are familiar with the basic 
definitions and properties of a group, and even SU(2) and its repre-
sentations. With this foundation established, he goes on to discuss 
representations of continuous groups bigger than SU(2) in detail.

The material is presented at a level that MSc and PhD students can 
understand, with exercises throughout the text at points at which 
performing the exercises would be most beneficial. Anyone teaching 
a one-semester course will probably have to choose from the topics 
covered, because this text also contains advanced material that 
might not be covered within a semester due to lack of time. Thus it 
provides a teaching tool with the flexibility to customize the course 
to suit your needs.
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